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Major depression (MD) and posttraumatic stress disorder (PTSD) share common

brain mechanisms and treatment strategies. Nowadays, the dramatically developing

COVID-19 situation unavoidably results in stress, psychological trauma, and high

incidence of MD and PTSD. Hence, the importance of the development of new

treatments for these disorders cannot be overstated. Herbal medicine appears to

be an effective and safe treatment with fewer side effects than classic pharmaca

and that is affordable in low-income countries. Currently, oxidative stress and

neuroinflammation attract increasing attention as important mechanisms of MD and

PTSD. We investigated the effects of a standardized herbal cocktail (SHC), an extract

of clove, bell pepper, basil, pomegranate, nettle, and other plants, that was designed

as an antioxidant treatment in mouse models of MD and PTSD. In the MD model

of “emotional” ultrasound stress (US), mice were subjected to ultrasound frequencies

of 16–20 kHz, mimicking rodent sounds of anxiety/despair and “neutral” frequencies

of 25–45 kHz, for three weeks and concomitantly treated with SHC. US-exposed

mice showed elevated concentrations of oxidative stress markers malondialdehyde

and protein carbonyl, increased gene and protein expression of pro-inflammatory

cytokines interleukin (IL)-1β and IL-6 and other molecular changes in the prefrontal

cortex as well as weight loss, helplessness, anxiety-like behavior, and neophobia

that were ameliorated by the SHC treatment. In the PTSD model of the modified

forced swim test (modFST), in which a 2-day swim is followed by an additional

swim on day 5, mice were pretreated with SHC for 16 days. Increases in the

floating behavior and oxidative stress markers malondialdehyde and protein carbonyl
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in the prefrontal cortex of modFST-mice were prevented by the administration of SHC.

Chromatography mass spectrometry revealed bioactive constituents of SHC, including

D-ribofuranose, beta-D-lactose, malic, glyceric, and citric acids that can modulate

oxidative stress, immunity, and gut and microbiome functions and, thus, are likely

to be active antistress elements underlying the beneficial effects of SHC. Significant

correlations of malondialdehyde concentration in the prefrontal cortex with altered

measures of behavioral despair and anxiety-like behavior suggest that the accumulation

of oxidative stress markers are a common biological feature of MD and PTSD that can

be equally effectively targeted therapeutically with antioxidant therapy, such as the SHC

investigated here.

Keywords: antioxidant nutrients, oxidative stress, depression, post-traumatic stress disorder, pro-inflammatory

cytokines, prefrontal cortex, forced swimming, mice

INTRODUCTION

A large portion of the human population is chronically exposed
to stress. Nowadays, given the dramatically developing COVID-
19 situation globally, a degree of stress can become devastating
and even traumatic in most countries (1). This is prone to cause
a high incidence of neuropsychiatric disorders, including major
depression (MD), posttraumatic stress disorder (PTSD), and
other stress-related conditions (2). Apart from the mentioned
medical problems resulting from the COVID-19 pandemic, its
devastating economic consequences can hamper the use of
costly antidepressants and sedatives, particularly in countries
with limited medical care. These factors necessitate further
development of inexpensive and effective alternatives to current
therapies and prevention approaches (3). Herbal medicine
appears to be a reasonable treatment of neuropsychiatric
disorders that is more affordable and with fewer side effects
than classic pharmaca. With this problem, there is a need for
safe herbal remedies for these socially significant diseases. As
such, the importance of addressing this issue in studies using
advanced animal models of MD and PTSD for society cannot
be overstated.

Oxidative stress and inflammation attract increasing attention

as important mechanisms of neuropsychiatric disorders, which
are often targeted with herbal medicine (4, 5). A variety of

herbal extracts and herbal compositions with stress-reducing

properties were previously shown to exert anti-inflammatory and
antioxidant effects, being effective in patients with stress-related

and other disorders. For example, ginger phenolics decrease
lipid peroxidation and oxidative stress neuronal damage in
rats (6), vanilla suppresses free radical production in a mouse
model of cancer (5), and polysaccharides from red seaweed
suppress expression of tumor necrosis factor (TNF) receptor–
associated factor-6 in a model of LPS-induced toxicity (7). Our
recent studies with an herbal composition containing five herbs
shows beneficial action on anxiety-like behavior, hippocampal
malondialdehyde (MDA) concentration and expression of AMPA
receptors in mice subjected to the “emotional” ultrasound stress
(US) model (8).

Currently, the role of oxidative stress and associated
neuroinflammation in MD and PTSD is well established (9–
13). Increased production of free radicals and/or reduced
antioxidant defenses under challenged conditions result in
excessive levels of free radicals in the brain, leading to
mitochondrial dysregulation, microglia activation, and neuronal
death (14–17). These mechanisms are suggested to play a key role
in helplessness, anxiety, and inappropriate retention of aversive
memories (9, 10, 18–21).

An increasing body of data suggests modulatory
interconnections between oxidative stress and increased
inflammation as well as overexpression of glycogen synthase
kinase 3 (GSK-3) cascade during depressive and PTSD-related
conditions (22–24). Augmented production of inflammatory
cytokines is found to trigger microglial activation that further
upregulates their expression (25–27), leading to suppressed
neurogenesis, survival, migration, and recruitment of new
neurons and eventually neuronal dysfunction (28–31).
Moreover, microglial activation further promotes oxidative
stress in the brain (14–17, 32). Pro-inflammatory cytokines
can inhibit production of anti-inflammatory cytokines, such as
interleukin-15 (IL-15) and phosphorylated Akt kinase, functional
antagonists of major pro-apoptotic/cellular stress molecules,
GSK-3β and GSK-3α (12, 33). Increased expression and protein
activities of GSK-3β are well-documented correlates of neuronal
degeneration (33–35).

A number of oxidative stress markers are found to be
upregulated in patients with various forms of affective
abnormalities and PTSD (9, 36–39). For instance, increased
plasma levels of oxidative stress marker 8-hydroxy-2’-
deoxyguanosine is shown in patients with agitated depression
(39). Positive correlations between blood levels of C-reactive
protein, pro-inflammatory cytokines (such as IL-1β, IL-6, and
TNF), and cyclooxygenase-1 (COX-1) and the enhanced learning
of aversive memories are demonstrated in patients with PTSD
(11, 40, 41). Brain overexpression of pro-inflammatory cytokines
and GSK-3 is associated with treatment resistance in depressed
patients with comorbidity for PTSD (42–44). Upregulation of
GSK-3 is shown to be implicated in the processing of aversive
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memories during PTSD (45) and emotional and cognitive
dysregulation during depressive syndrome (46).

Although oxidative stress is frequently the target mechanism
of herbal medicine in numerous studies, it has to be noted
that the majority of reported translational approaches rely on
other than establishedmodels of psychiatric disorders mimicking
MD- and PTSD-like features. Recently, we proposed new mouse
paradigms of MD and PTSD in which the role of oxidative
stress and neuroinflammation as well as normalizing effects of
antioxidants were demonstrated. A new mouse paradigm of MD,
the model of US, was designed to mimic emotional stress in
rodents instead of generally used chronic stress procedures that
are based on physical stressors (8, 47, 48). We also established a
novel mouse paradigm of enhanced contextual conditioning of
adverse memories, the modified forced swim model (modFST),
in which the classic two-day swimming test is followed by an
additional swim test on day 5 (24, 49, 50). Increased floating
behavior and overexpression of GSK-3β in the prefrontal cortex
that are exhibited during the delayed swim session were found
to be context-dependent and reversible by a pretreatment with
antidepressant and antioxidant compounds (24, 51). These
features validate the modFST as a PTSD model in contrast
to a routine swim test. In both paradigms, brain increases of
oxidative stress markers and pro-inflammatory cytokines are
shown (48–50, 52).

In the present study, we sought to study oxidative stress
changes in the prefrontal cortex of mice exposed to US and
modFST also under conditions of chronic administration of an
antioxidant standardized herbal cocktail (SHC) to investigate
adjusting behavioral, neuroinflammatory, and stress-related
molecular changes in these paradigms. We chose to study
molecular changes in the prefrontal cortex as this brain structure
is implicated in the pathogenesis of both MD and PTSD (45, 53)
and because contextual potentiation of floating behavior in the
modFST correlates with stress markers, such as GSK-3β activity,
in this but not other brain areas (24).

We studied the accumulation in the prefrontal cortex of
MDA, a classic oxidative stress marker (54) that was not yet
investigated yet in the US and modFST models. It is detectable
in the smallest amount of tissue among similar markers, allowing
for individual analysis of each sample and a clearer picture of
its correlation with other readouts, such as behavioral measures,
which is one the main purposes of the current work. In addition,
concentrations of protein carbonyl, another established marker
of oxidative stress (55, 56), were studied.

With the US model, BALB/c mice were subjected to
ultrasound frequencies of 16–20 kHz, mimicking rodent sounds
of anxiety and despair, which are randomly alternating
with “neutral” frequencies of 25–45 kHz, for three weeks,
as described elsewhere (47). Cohorts of mice concomitantly
received antioxidant treatment with SHC or vehicle; mice were
studied for helplessness in the forced swim test, anxiety-like
behavior, and concentrations of protein carbonyl and MDA
in the prefrontal cortex. Congruently, in the modFST model,
mice were pretreated with SHC or vehicle for 16 days and
investigated for floating, anxiety-like, and open field behaviors
and concentrations of protein carbonyl and MDA.

Additionally, in view of the changes observed in these
studies, C57BL/6 mice that were not used in the US model
so far were exposed to the US protocol and antioxidant
therapy as in the study on BALB/c mice and investigated
for the described behaviors, gene and protein expression
of oxidative stress-related pro-inflammatory cytokines IL-1β
and IL-6, anti-inflammatory cytokine IL-15, and markers of
cellular stress GSK-3β and GSK-3α as well as counteracting
this cascade Akt/Akt phosphorylated kinase in the prefrontal
cortex. Among numerous anti-inflammatory cytokines, IL-15
was studied because of its unique role in periphery-brain
mechanisms of immune microglial activation (57), oxidative
stress mechanisms, and a demonstration of Akt- and GSK-
3β-mediated regulation of cellular immune response and cell
survival (58, 59). Correlation analysis was performed between
molecular and behavioral measures.

METHODS

Animals
Experiments were performed onmale BALB/c and C57BL/6mice
that were 3 months old; animals were provided by a provider
licensed by Charles River (http://www.spf-animals.ru/about/
providers/animals). Mice were housed individually in standard
plastic cages (27x22x15 cm) and maintained on a reversed 12-
h light/dark cycle under controllable laboratory conditions (22
± 1◦C, 55% humidity, room temperature 22◦C; lights were
on at 19:00). Food and water were available ad libitum. All
efforts were undertaken to minimize the potential discomfort
of experimental animals. Experimental protocols conformed to
directive 2010/63/EU, were compliant with ARRIVE guidelines
(http://www.nc3rs.org.uk/arrive-guidelines), and were approved
by local veterinarian committees (iCell2METCZuyderland Zuid,
the Netherlands and MSMU #11-18-2018/2019).

Study Design
The experimental design and sequence of procedures are
presented in Figures 1A–D. In the US model, BALB/c mice
(n = 7 in each group) were unstressed or submitted to the
US for three weeks; they were either nontreated or received
SHC solvent or SHC, which was administered daily per os via a
pipette as described (see below; Figure 1A). The ultrasound of
alternating frequencies that mimics naturally emitted sounds of
anxiety and despair and neutral sounds were applied as described;
24 h thereafter, mice were weighed and studied in the swim test
and the open field; and 16 h later, mice were anesthetized and
killed (see below) and their prefrontal cortex was dissected for
the MDA and protein carbonyl assays (see below). As virtually
no effects of SHC solvent were found in this experiment, vehicle
was not used in other studies. In another US study, male three-
month-old C57BL/6 mice (n = 8 in each group) were exposed
to the US and SHC as in the previous experiment (Figure 1B).
In 24 h, they were investigated in the swim test, the elevated
O-maze, and the open field test. In 16 h, animals were killed
and their prefrontal cortex was dissected for the RT-PCR and
Western blot examination of the expression of GSK-3β and GSK-
3α, Akt/Akt-pSer473, IL-1β, IL-6, and IL-15 (see below). In the
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FIGURE 1 | Study flow. (A) BALB/c mice remained unstressed or were submitted to US for three weeks; they were either nontreated or received SHC solvent or SHC

(n = 7 per group). Thereafter, mice were weighed and studied for the open field and forced swim tests and consequently killed; their prefrontal cortex was dissected

for the MDA and protein carbonyl assays. (B) Following the above-described US and SHC treatment, C57BL/6 mice (n = 8 per group) were weighed and scored for

floating and open field and O-maze behaviors and consequently killed; their prefrontal cortex was dissected for the RT-PCR and Western blot examination of the

expression of GSK-3β and GSK-3α, Akt/Akt-pSer473, IL-1β, IL-6, and IL-15. (C) C57BL/6 mice were nontreated or pretreated with SHC for 16 days and submitted to

2-day 6-min swimming sessions (days 1 and 2), followed by an additional session on day 5. They were killed 10min after the last session together with

nonmanipulated controls (n = 10 per group); their prefrontal cortex was dissected for MDA and protein carbonyl assays. (D) In the modFST, C57BL/6 mice were

pretreated with SHC for 16 days and subjected to swimming sessions as described above (n = 7 in each group). They were studied for anxiety-like behavior in the

O-maze and the open field and sacrificed 10min after the last test for MDA assay of the prefrontal cortex. (E) The shape of the ultrasound signals was fluctuating,

mimicking natural ultrasonic vocalizations of rodents. PFC, prefrontal cortex; FST, forced swim test; D, Day. US/FST-exposed groups are highlighted with a circle.
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TABLE 1 | Composition of SHC and SHC solvent.

Solution SHC SHC-solvent

Composition Pomegranate Alcohol 30%, water

Nettle

Clove Basil

Bell pepper

Turmeric

Alcohol 30%

TABLE 2 | Chemical composition of SHC of molecules with a content of >1%.

Chemical component Percentage, by

dry weight

Chemical class

Methyl α-D-Glucopyranoside 39.4% Methyl monosaccharide

Methyl β-D-Galactopyranoside 9.5% Methyl monosaccharide

D-Fructofuranose 5.5% Monosaccharide

D-Ribofuranose 2.5% Monosaccharide

β-D-Lactose 2.2% Monosaccharide

D-Glucose 2.0% Monosaccharide

Malic acid 3.2% Organic acid

Glyceric acid 1.5% Organic acid

Citric acid 1.0% Organic acid

modFST, C57BL/6 mice were pretreated with SHC for 16 days
and subjected to two-day 6-min swimming sessions with a 24 h
interval (days 1 and 2), followed by an additional session on
day 5 (Figure 1C). They were killed 10min after the last session
simultaneously with nonmanipulated controls (n = 10 in each
group) and their prefrontal cortex was dissected for MDA and
protein carbonyl assays. The same treatment scheme was applied
on a separate cohort of mice, which was studied for anxiety-like
behavior in the O-maze and the open field, using the above-
listed parameters, on day 5 of the experiment (n = 8 in each
group; Figure 1D). Time for euthanasia was defined in previous
studies with employed models that are also in accordance with
other literature (24, 30, 48). The number of animals per group
was selected based on current welfare regulations and former
experience with the US and modFST paradigms and findings of
interstrain differences in susceptibility to stress (24, 48, 60).

Antioxidant Treatment With SHC
The drops were made out of herbs, spices, and dried fruits
to match an SHC, an extract of clove, bell pepper, basil,
pomegranate, nettle, and other plants that was designed as an
antioxidant treatment (Table 1) diluted in 30% alcohol solvent,
SHC solvent (kindly provided by Mr. R. Vendeville, Voorhout,
The Netherlands).

Solutions of the SHC or the SHC solvent were administered
orally using a pipette for 21 days concomitantly with ultrasound
emission in the US studies and during 16 days prior the
start of the modFST experiment. In the latter study, the
dosing was continued throughout days 1 and 2 of the test
lasting, in total, 18 days. Solutions were dosed in a volume

of 120 µl per day for each mouse during the morning hours.
Gas chromatography mass spectrometry analysis of SHC was
carried out (see Supplementary Material). Chromatography
mass spectrometry revealed bioactive constituents of SHC,
including D-ribofuranose; beta-D-lactose; and malic, glyceric,
and citric acids (Table 2).

Emotional US
We used ultrasound radiation of intensity of 50 ± 5 dB and
variable frequencies in a 20–45Hz range as described elsewhere
(8, 47, 48). The intensity of the sound fluctuated at the range
±10% of the averaged value, i.e.,±5 dB. It was constantly emitted
in a laboratory room to the experimental groups of animals using
a random schedule of alternating frequencies via a manufactured
device (Weitech, Wavre, Belgium). During the 10-min periods,
ultrasound frequencies fluctuated at variable short time spans
of ≤1 s (average frequency 70 ± 10Hz). Thirty percent of the
emission time consisted of frequencies 40–45 kHz, and 35% of
the emission consisted of frequencies 20–25 and 25–40 kHz; the
remaining 35% consisted of low frequencies (16–20 kHz). The
selectivity of the adverse effects of low-frequency ultrasound
in comparison with the potential general negative effects of
a constant noise as well as pharmacological sensitivity of the
US-induced behavioral changes and blood cortisol increases to
fluoxetine and buspirone in mice were shown previously (47, 52).
The shape of the ultrasound signals was fluctuating, mimicking
natural ultrasonic vocalizations of rodents (Figure 1E).

modFST
In the modFST, mice were first tested in a two-day swimming
protocol on days 1 and 2 using a previously established method
(61) and then additionally studied under the same conditions
on day 5 (24). Treatment with SHC was continued on days 1
and 2. Mice were placed for 6min in a transparent cylinder (Ø
17 cm) filled with water (+23◦C, water height 13 cm, height of
cylinder 20 cm, under subtle lighting). The parameters of floating
behavior were scored as in the forced swim test; in addition,
the number of floating episodes was measured. Data from day 5
were normalized to data from day 2 and expressed in percentage.
This parameter was used as a previously established measure
of potentiation of floating behavior resulting from repeated
exposure to a context of forced swimming on day 5 (24, 50, 51).

Behavioral Testing
All behavioral tests were carried out during the active period of
the animals’ light cycle (09:00–21:00); behavior was recorded and
scored off-line. The experimenter was unaware of the treatment
each animal had received. Behavioral equipment was thoroughly
cleaned with water between each test.

Open Field Test
In the open field paradigm, animals were placed in a square gray
plastic box (45× 45× 45 cm) illuminated with white light (25 lx)
near the wall for 10min (Open Science, Moscow, Russia). The
number of rearings, a measure of novelty exploration, and the
distance covered were scored as described elsewhere (48). The
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recordings were analyzed using the automated video-tracking
Viewpoint software (Viewpoint, Lyon, France).

Forced Swim Test
The test was performed as described elsewhere (61). Mice were
placed into a plastic transparent cylinder (Ø 17 cm) filled with
water (+23◦C, water height 13 cm, cylinder height 20 cm) under
subtle lightning (light intensity 25 lx) for 6min. Their parameters
of floating behavior, defined by the absence of any directed
movements of the animals’ head and body, were scored off-
line using the automated video-tracking Viewpoint software
(Viewpoint, Lyon, France). The total time spent floating was
evaluated for the entire duration of the test; the latency to float
was recorded as well.

Elevated O-Maze
The apparatus (Open Science, Moscow, Russia) consisted of a
circular path (runway width 5.5 cm, diameter 46 cm) that was
placed 45 cm above the floor. Two opposing arms were protected
by walls (closed area, height 10 cm), and the illumination strength
was 25 Lux. The apparatus was placed on a dark surface to
maintain control over lighting conditions during testing. Mice
were placed in one of the closed-arm areas of the apparatus.
Behavior was assessed using previously validated parameters
during a 5-min observation period (62, 63). The latency of the
first exit to the open compartments of the maze and the number
of exits to the open arms were scored.

Culling and Dissection of Prefrontal Cortex
Mice were terminally anesthetized with isoflurane inhalation for
a subsequent material collection and then transcardially perfused
with 10mL ice-cold saline. Brain was dissected and prefrontal
cortex was isolated and stored at −80◦C until use for gene
expression analysis. All procedures were carried out as described
previously (24).

Biochemical Assays
MDA Assay
We chose to use MDA concentration in the brain because it is an
established parameter of lipid peroxidation (54) that is produced
in high concentrations in the brain tissue (64), thus allowing
obtaining a sufficient amount of tissue for other assays from the
same animal. Concentrations of MDA were measured following
Abcam ab118970 kit instructions (Abcam, Eugene, OR, USA).
Briefly, the tissue was washed in cold PBS and homogenized in
lysis solution, centrifuged at 13,000 g for 10min. TBA reagent
was added to a supernatant and incubated at 95◦C for 60min;
the supernatant was analyzed at 532 nm in a 96-well-microplate
as described elsewhere (8).

Protein Carbonyl Assay
Determination of protein carbonyls used the OxiSelectTM Protein
Carbonyl Fluorometric Assay kit (Cell Biolabs, Inc., San Diego,
USA). Glass–glass homogenization of frozen prefrontal cortex
followed by sonification was performed on ice in 1ml of 1 ×

sample diluent from the OxiSelectTM kit, centrifuged at 10,000 g
for 5min at 4◦C, and the supernatant removed. The total protein
concentration was adjusted to 1–10 mg/ml with 1 × sample

diluent, and protein carbonyls were determined according to
the guidelines of the manufacturer using the GloMax Multi
Detection System (Promega, Madison, WI, USA) equipped with
a fluorescence module (485/540 nm filter set). Results were
normalized to protein concentration as described previously
(55, 65).

Quantitative Reverse Transcription
Polymerase Chain Reaction Analysis
(RT-PCR)
qRT-PCR was performed as described elsewhere (50), using
CFX96 the Deep Well Real-Time PCR Detection System (Bio-
Rad, Hercules, CA, USA) in a 10-µl reaction volume containing
5 µl of SYBR Green master mix (Bio-Rad Laboratories,
Philadelphia, PA, USA), 3 µl of RNase-free water, 1 µl of
cDNA, and 1 µl of specific forward and reverse primers at
a concentration 20 pmol/µl. The initial denaturation step for
qRT-PCR was set at 95◦C for 4min followed by 40 cycles of
denaturation at 95◦C for 20 s; annealing was at 54◦C for 90 s.
All samples were run in triplicate. Sequences of all primers used
(Evrogen, Moscow, Russia) are listed in Supplementary Table 1.

Western Blot Assay
Western blot assay was carried out as described elsewhere (48).
Frozen tissue was treated with lysis buffer containing 20mM of
Tris-HCl (pH 7.5), 450mMof NaCl, 1% solution of Triton X-100,
1mM of EDTA, 1mM of NaF, 1mM of Na3VO4, and protease
inhibitor (Roche Diagnostics, Indianapolis, IN, USA); 50 µl of
buffer per 1 g of tissue was used. Samples were centrifuged at
16,000 rpm for 20min at 4◦C and supernatant was collected and
stored until use at −20◦C. Twenty-five micrograms of protein
from each sample was mixed with 35 µl of Laemmli buffer. A
sample of identical volume, comprising 26 µl of Laemmli buffer,
5 µl of Page Ruler, and 4 µl of Magic Mark (Sigma, Munich,
Germany), was used as a reference. For electrophoresis, samples
were diluted in a solution containing MiliQ H2O, 1.5M of Tris
Buffer (pH 8.8), 30% solution of Acrylamide, 10% solution of
SDS Temed, and 10% solution of ammonium persulfate (APS).
For the next step, a solution containing MiliQ H2O, 0.5M of
Tris Buffer (pH 8.8), 30% solution of Acrylamide, 10% solution
of SDS Temed, 10% solution of APS, and gel (Sigma, Munich,
Germany) was used. The percentage of gel solution was adjusted
to the sizes of proteins of interest as follows: 20% for proteins
of size of 4–40 kDa, 12.5% for proteins of the size of 40–70
kDa, 10% for proteins of the size of 70–100 kDa, and 7.5% for
proteins larger than 100 kDa. A buffer containing 25mM of Tris
Base buffer, 192mM of Glycine (Sigma, Mannheim, Germany),
10% solution of SDS, and MiliQ H2O (pH 8.3) was used for
gel electrophoresis, which was carried out under the constant
voltages of 80 and 130V. A polyvinylidene difluoride (PVDF)
membrane (9 x 6 cm, EMD Millipore, Billerica, MA, USA) was
consequently incubated in a 99% methanol solution for 1min
(Brocacef, Amsterdam, the Netherlands), MiliQ H2O for 5min,
and a transfer buffer for 15min. The latter contained 25mM of
Tris Base, 192mM of glycine, 20% solution of methanol, and
MiliQ H2O (pH 8.3). For the next step, a blot “transfer sandwich”
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was composed of a buffer-soaked sponge, consisting of two buffer
soaked Whatman filter papers, gel, activated membrane, and ice-
cold transfer buffer; the constant current of 300mA was used for
2 h 30 min.

Thereafter, the membrane was treated with a 5% dry milk
solution; the TBST, containing 50mM of Tris-HCl (pH = 8.2);
150mM of NaCl; and 0.05% solution of Tween 20 (Sigma,
Munich, Germany) for 1 h at room temperature and subsequently
incubated with primary antibodies (see Supplementary Table 2)
at 4◦C overnight, which was followed by the incubation with
respective horseradish peroxidase-conjugated secondary (HRP)
antibodies (Sigma-Aldrich, St. Louis, MO, USA) for 2 h at
room temperature on a roller. The membrane was washed in
TBST three times, 5min each time, and placed on the plastic
cover. Thereafter, the Western BrightTM ECL kit (Advansta Inc,
Menlo Park, CA, USA) was used according to the manufacturer’s
instructions. A relative optical density of immunoreactive protein
bands was examined using ImageJ software (NIH, Bethesda, MD,
USA). Results were normalized to the relative intensity of the β-
tubulin band that was selected as a reference protein as described
elsewhere (8, 66). Blots were stripped by incubation with Restore
Western Blot stripping buffer (Thermo Scientific, Rockford, IL,
USA) at room temperature for 15 min.

To normalize the data, the value of each protein of interest
was expressed in percentage from the concentration value of β-
tubulin, the reference protein. The choice of a reference protein
was based on the previous observations in which its expression
was found to vary moderately across various experimental
conditions and the linear representation of its signal intensity was
demonstrated as described elsewhere (48).

Determination of Protein Concentration
Protein concentration was quantified using the BCA protein
assay kit (Pierce, Rockford, IL, USA). The working reagent was
prepared in accordance with manufacturer instructions: 25 µl
of each standard or sample preparation were pipetted into a
microplate well, 200 µl of the working reagent was added to
each well and mixed thoroughly on a plate shaker for 30 seconds
and the assay was run in duplicate. The covered plate was
incubated at 37◦C for 30min and cooled to room temperature
for 10min. The absorbance was measured at 562 nm in a Biotek
Microplate Reader (Biotek Instruments, Winooski, VT, USA).
The Ascent Software Program (Winooski, VT, USA) coupled
to the microplate reader was used to calculate protein values
based on comparing optical density readings of the experimental
samples with those obtained from the standard curve; the blank
value was subtracted from all other optical density readings. A
standard curve was generated by plotting the average blank-
corrected 562 nm measurements for each BSA standard vs. its
concentration inµg/ml. Information on primary antibodies used
in theWestern blot assay is presented in Supplementary Table 2.

Statistics
Data were analyzed using GraphPad Prism version 8.01 (San
Diego, CA, USA). Two- and one-way ANOVAs were employed
to perform four- and three-group comparisons, respectively,
followed by Tukey’s post-hoc test. The unpaired two-tailed t-test

was applied for two-group comparisons. For correlation analysis,
Pearson correlation was used; p < 0.05 was set as a level of
significance. Data were presented as mean± SEM or mean.

RESULTS

Ultrasound Stress Induces Helplessness
and MDA Accumulation: Effects That Are
Ameliorated by Herbal Antioxidant
Treatment
Two-way ANOVA revealed significant effects of stress and
treatment and no effect of their interaction on the latency to
float in BALB/c mice subjected to the US (F = 5.16, p = 0.043;
F = 4.94, p = 0.039; and F = 2.61, p = 0.936, respectively; two-
way ANOVA). There was a significant effect of stress but not
treatment or their interaction on the total duration of floating
(F = 13.0, p = 0.001; F = 0.666, p = 0.523; and F = 0.180,
p = 0.837, respectively). In comparison with controls, US-
nontreated mice showed shortened latency to float (p = 0.038,
Tukey’s test; Figure 2A). In comparison with the latter group,
this measure was significantly longer in the stressed SHC-treated
mice (p = 0.023). A significant prolongation of the duration
of floating in comparison with control group was shown for
stressed nontreated and SCH-solvent-treated animals (p = 0.026
and 0.032, respectively), but not for SHC-treated stressed mice
(p= 0.998, Figure 2B).

No significant group differences were found in distance
traveled in the open field, and there was no effect of treatment,
stress, or their interaction (F = 2.28, p = 0.141; F = 1.33,
p= 0.28; and F= 0.376, p= 0.69, respectively; two-way ANOVA,
Figure 2C). Significant effects of stress and stress × treatment
interaction, but not treatment effect, were found for body weight
(F = 4.3, p = 0.049; F = 4.76, p = 0.018; and F = 0.843,
p = 0.442, respectively). Nontreated and SHC solvent–treated
US groups had significant body weight loss in comparison with
controls that was not shown for the SHC-treated stress group
(p = 0.025, 0.048, and 0.791, respectively; Figure 2D). Together,
the administration of SHC but not SHC solvent prevented US-
induced despair behavior and loss of body mass that are classic
signs of helplessness and stress. At the same time, US did not
affect general locomotion, a potential source of artifacts in the
evaluation of rodent behavior that rules out possible confounds
in measuring helplessness in the present work.

There was a significant stress effect on MDA concentration
although treatment and their interaction did not significantly
affect this parameter (F = 19.2, p = 0.001; F = 1.68, p = 0.208;
and F = 2.71, p = 0.086, respectively; two-way ANOVA).
MDA concentration was higher in stressed nontreated and SHC
solvent–treated groups than in controls (p= 0.001 and p= 0.002,
Tukey’s test; respectively), no such difference was shown for US
SHC-treated mice (p = 0.092; Figure 2E). Similarly, we found a
significant stress effect on the concentration of protein carbonyl
(F = 16.5, p = 0.01); however, treatment and their interaction
did not alter this measure (F = 1.55, p = 0.263 and F = 2.04,
p = 0.093, respectively). The concentration of protein carbonyl
was higher in stressed nontreated and SHC solvent–treated
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FIGURE 2 | Effects of herbal antioxidant treatment on behavioral changes and oxidative stress markers of BALB/c mice exposed to US. In comparison with controls,

US nontreated and SHC solvent–treated mice showed (A) shortened latency to float, (B) a significant prolongation of the duration of floating that was now shown for

SHC-treated stressed mice. (C) No significant group differences were found in distance traveled in the open field. (D) Nontreated and SHC solvent–treated US groups

had significant body weight loss in comparison with controls that was not shown for the SHC-treated stress group. Concentrations of (E) MDA and (F) protein

carbonyl were higher in stressed nontreated and SHC solvent–treated groups than in controls, no such differences were shown for US SHC-treated mice. MDA

concentration in the prefrontal cortex was significantly correlated with (G) the duration of floating and (H) body weight. *p < 0.05 vs. nontreated nonstressed controls,
#p < 0.05 vs. the nontreated stressed (US) group, two-way ANOVA and post-hoc Tukey’s test. NT, nontreated. Bars are mean ± SEM.

groups than in control mice (p= 0.01 and 0.01, respectively). No
such difference was shown for US SHC-treated mice (p = 0.165;
Figure 2F). MDA concentration in the prefrontal cortex was
significantly correlated with the duration of floating (p = 0.002,
r= 0.53; Pearson correlation, Figure 2G). There was a significant

correlation between MDA levels and body weight (p = 0.008,
r=−0.430). No significant correlation was shown betweenMDA
concentration and the latency to float (p = 0.673, r = −0.079)
and distance covered in the open field (p = 0.453, r = −0.014).
As for protein carbonyl samples that were pulled together, no

Frontiers in Nutrition | www.frontiersin.org 8 April 2021 | Volume 8 | Article 661455

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


de Munter et al. Herbal Antioxidant Counteracts Affective Pathology

correlation analysis between this parameter of oxidative stress
and behavior could be done. Collectively, the US-induced effects
on behavior and oxidative stress markers were ameliorated by
herbal antioxidant treatment.

Herbal Antioxidant Treatment Normalizes
Altered Behaviors and Pro-inflammatory
and Distress Markers in C57BL/6 Mice
Exposed to US
C57BL/6 mice displayed significant group differences in the
duration of floating (F = 3.691, p = 0.043, one-way ANOVA).
Nontreated US mice but not stressed SHC-treated mice showed
a significant prolongation of this behavior in comparison
with controls (p = 0.023 and 0.695, respectively, Tukey’s test;
Figure 3A). In the open field, the number of rearings was
significantly different between the groups (F = 3.569, p= 0.046);
this score was significantly lower in nontreated US mice but
not in US SHC-treated than in controls (p = 0.049 and 0.575,
respectively; Figure 3B). No group differences in the distance
traveled were found (F = 1.88, p= 0.201; data not shown).

In the elevated O-maze, there were significant group
differences in the time spent in the open arms and the number
of exits therein (F = 4.174, p = 0.036 and F = 5.961,
p = 0.012, respectively; one-way ANOVA). In comparison with
controls, US nontreated animals had a decrease in these measures
(p = 0.018 and 0.032, respectively; Tukey’s test) that was not
found in US SHC-treatedmice (p= 0.094 and 0.105, respectively,
Figures 3C,D). Additionally, increased latency of risk assessment
events and decreased number of these events were found in
comparison with controls in the nontreated US group (p= 0.044
and 0.010, respectively, data not shown). These changes were not
revealed in the SHC-treated group (p= 0.238 and 0.147, data not
shown). These findings suggest increases of behavioral despair,
anxiety-like behavior, and a decrease in the novelty exploration
in C57BL/6 mice exposed to the US that were not observed in
SHC-treated animals and are similar to above-described effects
in the BALB/c strain.

There were significant group differences in the mRNA
concentrations of IL-6 and IL-1β (F = 4.92, p = 0.018 and
F = 4.12, p = 0.032, respectively; one-way ANOVA), but not
of GSK-3β, GSK-3α, Akt, and IL-15 (p > 0.05). In comparison
with controls, there was a significant increase of mRNA
concentrations of IL-6 and IL-1β in the stressed nontreated mice
(p = 0.015 and 0.032, respectively) but not in the stressed SHC-
treated group (p = 0.638 and 0.33, respectively; Figure 3E).
Results of the Western blot assay support most of the gene
expression findings, showing significant group differences in the
expression of IL-6 and IL-1β (F = 4.137, p= 0.037 and F = 4.22,
p = 0.047, respectively) and a significant increase of both
parameters in stressed nontreated mice but not in the stressed
SHC-treated animals in comparison with controls (p = 0.029,
0.041 and 0.276, 0.85, respectively, Figure 3F). Significant group
differences were found in protein levels of GSK-3α (F = 6.303,
p = 0.030) that were increased in both nontreated and SHC-
treated stressed mice in comparison with controls (p= 0.027 and
0.008, respectively).

Furthermore, the concentration of IL-1β mRNA significantly
correlated with the duration of floating and the number of risk
assessment events in the elevated O-maze (p = 0.039, r = 0.504
and p = 0.035, r = 0.534, respectively). Gene expression of
two molecules with antistress functions, IL-15 and Akt, was
significantly correlated with the duration of floating behavior
(p = 0.025, r = 0.654 and p = 0.042, r = 0.409, respectively).
Besides this, GSK-3α gene expression positively correlated with
floating behavior (p= 0.015, r = 0.563) and negatively correlated
with the time spent in the open arms of the O-maze (p = 0.01,
r = −0.588). The concentration of MDA significantly correlated
with the duration of floating behaviour (p = 0.021, r = 0.624;
Figure 3G). Together, correlation analysis suggests that pro-
inflammatory and stress-related changes in their prefrontal
cortex are interrelated with altered behaviors in C57BL/6 mice
subjected to the employed model. This highlights the significance
of the improvement of both molecular and behavioral effects of
the US by applied herbal antioxidant treatment. As for Western
blot results, because samples were pulled together, the correlation
analysis between this parameter and other readouts could not
be done.

Enhanced Learned Helplessness and
Increases in Markers of Oxidative Stress in
the modFST Are Prevented by the
Administration of Herbal Antioxidant
The duration of floating and the number of floating episodes
on day 5 normalized to day 2 were significantly lower in the
SHC-treated group than in nontreated mice (p = 0.019 and
0.405, t-test; Figures 4A,B). Behavioral analysis of mice exposed
to the modFST revealed a lack of group differences in the
number of exits in the O-maze (F = 0.32, p = 0.725, one-
way ANOVA), time spent therein (F = 0.39, p = 0.67), and
number of rearings in the open field (F = 0.11, p = 0.88),
suggesting that repeated swimming did not induce general effects
on anxiety and novelty exploration (Figures 4C–E). A three-
group comparison that additionally included control naïve for
swimming mice revealed no significant group differences for
mRNA GSK-3β concentrations (F = 3.109, p = 0.059, F = 7.91,
p= 0.006; Figure 4F).

One-way ANOVA showed significant group differences in the
MDA concentration (F = 7.91, p = 0.006) that was significantly
higher in nontreated modFST-exposed animals than in naïve
controls (p = 0.021, Tukey’s test; Figure 4G). No such increase
was observed within the SHC-treated modFST group (p = 0.87),
which had significantly lower MDA concentrations than the
nontreated modFST-exposed group (p = 0.006). For the level of
protein carbonyl, similar group differences and increases in the
nontreated modFST mice were found (F = 6.22, p = 0.04, 0.031,
Figure 4H) that were not revealed in the SHC-treated animals
exposed to this paradigm (p = 0.77). Significant correlation was
found between the duration of floating on day 5 and MDA
concentrations (p = 0.007, r = 0.65; Pearson correlation). No
significant correlations were revealed between MDA levels and
three behavioral parameters that were additionally investigated
in modFST mice; the number of exits to the open arms of the
elevated O-maze, time spent therein, and the number of rearings

Frontiers in Nutrition | www.frontiersin.org 9 April 2021 | Volume 8 | Article 661455

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


de Munter et al. Herbal Antioxidant Counteracts Affective Pathology

FIGURE 3 | Ultrasound exposure of C57BL/6 mice induces abnormal behaviors and neuroinflammation: changes that are prevented by herbal antioxidant treatment.

(A) Mice exposed to US that received no treatment but not stressed SHC-treated mice showed a significant prolongation of this behavior in comparison with controls.

(B) In the open field, the number of rearings was significantly lower in nontreated US mice but not in US SHC-treated than in control. In the elevated O-maze, (C) the

time spent in the open arms and (D) the number of exits therein were decreased in US nontreated animals in comparison with controls that was not found in US

SHC-treated mice. (E) Several markers of inflammation and distress were studied for their gene expression in the prefrontal cortex. US-induced gene overexpression

of IL-6 and IL-1β was ameliorated by SHC administration. (F) We found that US-exposed mice display the upregulation of several markers of inflammation and

distress on a protein level. The overexpression of IL-6 and IL-1β, but not GSK-3α was normalized in the US SHC mice *p < 0.05 vs. nontreated nonstressed controls,

#p < 0.05 vs. nontreated stressed group, one-way ANOVA and post-hoc Tukey’s test. (G) The concentration of MDA significantly correlated with the duration of

floating behaviour. Con, control nonstressed nontreated group. Bars are mean ± SEM.

in the open field (p = 0.56, r = 0.133; p = 0.569, r = 0.140; and
p= 0.723, r= 0.89, respectively). As for protein carbonyl samples
that were pulled together, no correlation analysis between this
parameter of oxidative stress and behavior could be done.

Hence, these data suggest that helplessness in the modFST model
correlates with the concentration of MDA in the prefrontal
cortex of mice, and both of them can be prevented by a chronic
pretreatment of herbal antioxidant used in this study (Figure 4I).
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FIGURE 4 | Oxidative stress and helplessness in the modFST are counteracted by herbal antioxidant treatment in C57BL/6 mice. In comparison to nontreated

animals, (A) the duration of floating and (B) the number of floating episodes on day 5 normalized to day 2 were significantly lower in the SHC-treated mice; thus, the

latter group showed a reduced potentiation of floating behavior by the end of repeated testing in the modFST. Mice exposed to the modFST revealed no significant

differences in the (C) number of exits in the O-maze, (D) time spent therein, and (E) number of rears in the open field. (F) A three-group comparison that additionally

included control naïve swimming mice revealed no significant group differences for mRNA GSK-3β concentrations but for normalized brain MDA concentration.

(G) This measure was significantly higher in nontreated modFST-exposed animals than in those naïve for modFST. No such increase was shown by the SHC-treated

modFST group, which had significantly lower MDA concentrations than the nontreated modFST-exposed group. (H) The level of protein carbonyl was increased in the

nontreated modFST mice but not in the SHC-treated animals. (I) Significant correlation was found between the duration of floating on day 5 and MDA concentrations

(Pearson correlation). *p < 0.05 vs. nontreated controls, t-test, or one-way ANOVA and Tukey’s test (see the ms text). Bars are mean ± SEM.

DISCUSSION

Our results are similar for the US and the modFST models’

increases of the MDA levels in the prefrontal cortex and floating

scores that significantly intercorrelate in each paradigm and
were prevented by an antioxidant treatment with SHC. Protein

carbonyl levels were increased in the prefrontal cortex of the

US- and modFST-exposed mice, further suggesting comparable
oxidative stress changes in these models. Significant correlations
were also found between MDA concentrations and a loss of
body weight in the US-exposed mice, additionally supporting
a validity of brain MDA as an important marker of systemic
stress response. Moreover, gene expression of key inflammatory
and stress-related hallmarks, the IL-1 beta, IL-6, IL-15, Akt,
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and GSK-3 that are functionally related to oxidative stress
significantly correlated with measures of floating behavior,
anxiety-like changes, and disrupted novelty exploration in the
US-exposed mice. Changes in gene expression of investigated
molecular markers were in parallel with their protein expression
changes. No alterations were found in anxiety and open field
behaviors in the modFST model, nor significant correlations of
these parameters with oxidative stress measures were revealed.
Chronic administration of antioxidant treatment normalized the
majority of stress-related behavioral and molecular changes in
both mouse paradigms. Together, our data suggest that increased
MDA accumulation and oxidative stress in the prefrontal cortex
may mirror the overlapping features of MD- and PTSD-like
syndromes that can be targetable by the same antioxidant
therapies, such as SHC.

Extensive literature suggests the therapeutic potential of the
components of SHC during stress-related disorders investigated
here. For example, clove, Syzygium aromaticum, is used in
traditional medicine to treat upset stomach, nausea, and
inflammation of the mouth and throat (67). The bell pepper,
Capsicum annuum, is shown to be enriched with antioxidants,
such as vitamin C and E, provitamin A, ascorbic acid, and
carotenoids (4). Basil, Ocimum basilicum, contains important
antioxidants, such as p-coumaric acid, ferulic acid, isoquercitrin,
rutin, and quercitrin (68). Likewise, pomegranate, Punica
granatum, is also rich in antioxidants, e.g., ellagitannins, ellagic
acids, anthocyanins, flavonols, flavan-3-ols, and flavones (3).
Turmeric, Curcuma longa, is enriched with curcuminoids,
including curcumin, a well-demonstrated antioxidant with anti-
inflammatory and immunotropic properties (69). Finally, nettle,
Urtica dioica, contains such important nutrients as terpenoids,
β-carotene, neoxanthin, violaxanthin, lutein, lycopene, palmitic
acids, cis-9,12-linoleic and α-linolenic acids, polyphenols,
essential amino acids, and others (70).

Gas chromatography mass spectrometry analysis of the
sample reveals that, apart from three monosaccharides used
for gustatory properties of SHC, six elements constitute the
SHC at concentrations exceeding 1% of the total dry weight of
the sample. Among them is D-ribofuranose, which accounted
for 2.5% of the total dry weight of the sample and which
exists as two enantiomers: alpha-D-ribofuranose (aDR) and
beta-D-ribofuranose (bDR). They are previously reported to
modulate oxidative stress, immunity, and gut and microbiome
functions and, thus, are likely to be active antistress elements
of the investigated herbal antioxidant treatment (see Table 3).
The main effects of these six elements are reviewed in a
Supplementary Material.

Our results were obtained in previously validated models of
MD and PTSD. The US model of MD is designed to mimic
emotional/mental stress in humans, a prevalent form of stress
leading to neuropsychiatric pathology in a clinic (71). This
type of stress, also called “psychological” or “informational”
stress, is defined as a response to adverse experiences of a
nonmaterial nature. In mice, the US paradigm was initially
established on BALB/c mice and is reported to increase
aggressive behavior, anhedonia, and helplessness and enhance
hippocampal expression of stress-related factors, including

TABLE 3 | Functions of SHC chemical ingredients (for References, see

Supplementary Material).

Ingredient Effects/roles

Methyl α-D-

Glucopyranoside

This is a non-metabolizable glucose analog (López-Yoldi

et al., 2016; Veyhl-Wichmann et al., 2016), commercially

exploited in food industry, biologically inactive in low amounts,

broadly used for gustatory properties or/and crystallizing and

surfactant agents in food industry

Methyl β-D-

Galactopyranoside

It is used in food industry, has no known effect for human

organism might indirectly affect gut microbiome via its effects

on E. coli and Lactobacillus (Sahin-Tóth et al., 2002; Mukai

et al., 1998).

D-Fructofuranose It is used in food industry as the sweetener (Malik et al., 2015)

D-Ribofuranose Its derivatives exhibit immunostimulatory, antinociceptive,

anti-inflammatory, and potential anti-cancer effects (Petrelli

et al., 2017; Ota et al., 2018; Rahman et al., 2020).

β-D-Lactose IT induces fiber-like effect (Schaafsma, 2008), enhances

intestinal mineral absorption particularly on calcium and

magnesium (Abrams et al., 2002)

D-Glucose It is present nearly in all plants, in low concentrations glucose

does not induce any specific regulatory effects (Mergenthaler

et al., 2013)

Malic acid It is involved in citric acid cycle and stimulates metabolism

with simultaneous decrease in tissue respiration, can

ameliorate cell metabolism during of hypoxia (Dunaev et al.,

1988; Tang et al., 2013)

Glyceric acid As a precursor of serine, it is essential for neuronal

metabolism, including protein and nucleotide synthesis,

neurotransmitter synthesis, and lipids as well as glycolysis

regulation (Tabatabaie et al., 2010)

Citric acid It is implicated in energy generation in cells and exerts

anti-hypoxia effects in ischemic neurons and astrocytes,

suggested to play neuroprotective role (Ying et al., 2002;

Abdel-Salam et al., 2014).

GSK3β; oxidative stress markers, such as a drop in glutathione
level; decreased functionality of plasticity markers, e.g., AMPA
receptor subunits (8, 47, 48) and cause other negative effects.
Classic antidepressants and compounds with antioxidative
properties, including thiamine compounds, are shown to prevent
most of these changes (47, 52).

Present data corroborate earlier reported results. A
dysregulation of oxidative stress in the prefrontal cortex of
US-exposed mice is in line with previously reported signs of
oxidative stress in the hippocampus of US-exposed mice as
shown by decreased levels of total glutathione and elevated
concentrations of MDA and protein carbonyl in this brain
structure (48, 52). These changes and an associated increase of
pro-inflammatory cytokines were normalized by antioxidant
thiamine compounds (52, 72). The finding of augmented floating
scores in the nontreated US group is consistent with previous
results reported in the USmodel (47) and are generally supported
by reports of a relationship between increases in helplessness
and chronic stress (73, 74). The demonstration of a significant
correlation between MDA and floating scores suggests a causal
relationship between these phenomena.

Behavioral parameters of an anxiety-like state in the O-maze
were increased in nontreated US-exposed animals and correlated
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with overexpression of IL-6, IL-1 beta, and downregulation
of anti-inflammatory cytokine IL-15. These findings and a
decrease in exploratory activity of the nontreated US mice in
the open field support previous findings of elevated anxiety
and pro-inflammatory changes in this paradigm, shown in
the hippocampal formation (8, 48, 52) as well other literature
establishing neuroinflammation as a mechanism of pathological
anxiety (5, 73, 75, 76). Anxiogenic-like changes of US mice also
correlate with the overexpression of GSK-3β, a molecular hub
of distress, and downregulation of its functional antagonist Akt.
Both of these factors are implicated in the regulation of oxidative
stress (77) and the production of pro-inflammatory cytokines
(78, 79).

Chronic treatment of mice with an applied antioxidant
composition has precluded US-induced increases of helplessness,
anxiety-like behavior, and neophobia as well as most of the
reported molecular changes pointing to the role of oxidative
stress inflammation processes in these behavioral aberrations.
Multiple comparisons reveal a lack of significant stress-
induced increases in MDA and protein carbonyl content as
well as overexpression of pro-inflammatory cytokines and
distress marker GSK-3β in the US-exposed mice that were
treated with SHC. Measured readouts in the US-exposed
animals that received SHC solvent did not significantly differ
from the changes in the stressed nontreated group. The
treatment of nonstressed mice with the herbal composition
did not significantly alter the investigated behavioral and
molecular parameters.

Previous studies demonstrate the ameliorative effects of
compounds with antioxidant and anti-inflammatory properties
on behavioral parameters during stress (48, 51, 55). Other studies
reveal the anxiolytic-like effects of compounds with antioxidant
properties under stress conditions (3, 5, 80). Moreover, a
relationship between the antianxiety action and normalization
of MDA content in the brain is demonstrated in mice (69).
Although beneficial functional effects of the herbal composition
are to be ascribed to its antioxidant and anti-inflammatory
effects, the administration of its solvent resulted in partial
amelioration of several measures, such as body weight and IL-
6 expression. These effects were reminiscent of the effects of
the herbal composition itself and are likely due to well-known
antistress and anti-inflammatory effects of alcohol (81–83), its
main ingredient acting as a solvent. As such, SHC solvent
might produce additive beneficial effects in the action of the
herbal cocktail in question. At the same time, the effects of the
solvent observed here are an important limitation that has to be
addressed in the future studies.

The present study reveals an overexpression of GSK-3α
on a protein level in stressed nontreated mice and its even
greater increase in stressed mice that received SHC. These data
further demonstrate the previously reported implication of GSK-
3α expression in stress-related processes (24, 49) analogous
with the well-documented role of GSK-3β as a molecular hub
of distress. Both GSK-3 isoforms, GSK-3α and GSK-3β, are
independently implicated in the regulation of similar molecular
and cellular functions, such as cell development, apoptosis, and
the mechanisms of distress, although there is also cross-talk

between them (84, 85). Biochemical evidence shows that GSK-3α
is generally involved in fast and relatively short-lasting cellular
events, whereas GSK-3β activities tend to be associated with
delayed and longer-lasting changes (86). Although the functions
of GSK-3α and GSK-3β in a cell may overlap, GSK-3α determines
a number of processes that are specific for this kinase (87), such
as formation of hippocampal neurons (88) and a role in plasticity
(89). For example, GSK3α, but not GSK-3β, has been implicated
in fast spine shape remodeling and plasticity in the hippocampus
(90). Our studies show a decrease of GSK-3α expression in the
prefrontal cortex of mice exposed to two-day forced swimming
and an increase of this measure after three repetitive swim
sessions in the modFST model, suggesting complex dynamics
in its regulation during stress (49). Based on these and
present data and the above-discussed roles of this molecule
in brain plasticity and remodeling, one can speculate that the
increase in GSK-3α expression in the present study mirrors its
potential adaptive effects under stress conditions, which might
be potentiated by SHC treatment. Other findings with stress
and antioxidant therapies are in line with current observations:
chronic administration of thiamine has resulted in increased
hippocampal GSK-3α expression along with amelioration
of despair behavior in mice subjected to repeated forced
swimming in the modFST model (49). Of note, pharmacological
manipulation of GSK-3α activity had greater therapeutic effects
than the GSK-3β-targeting treatments on apoptosis, a factor
counteracting synaptic plasticity during stress (91), which further
supports speculations about the role of plasticity and remodeling
underlying the potentially positive effects of GSK-3α on
brain functions.

Another recently proposed model used in the current study
to address the potential effects of SHC is the model of enhanced
learning of adversities, modFST. In this paradigm, increased
floating behavior and GSK-3β overexpression were exhibited
during the delayed swim session and were found to be context-
dependent (24). The increase of floating behavior during the
delayed test on day 5 correlates with brain overexpression of
GSK-3β that was validated as a biomarker of enhanced learning
of adverse context. Both changes were associated with the
exposure of animals to the context alone and were previously
shown to be reversible by pretreatment with antidepressant and
antioxidant thiamine compounds. In addition, increased floating
behavior was accompanied by the overexpression of the pro-
inflammatory mediators IL-1β, TNF, and COX-1 and increases in
brain glutathione and protein carbonyl levels in the hippocampus
and prefrontal cortex (49–51).

In line with previous studies showing that the majority of
neurobiological abnormalities in the modFST are prevented
by chronic pretreatment with administration of thiamine
compounds (49, 50), the administration of SHC ameliorated
protein oxidative stress markers in the prefrontal cortex.
Importantly, the MDA levels in the prefrontal cortex were
significantly correlated with the duration of floating behavior.
Present findings in the modFST of an upregulation of
MDA and protein carbonyl in the prefrontal cortex are in
good agreement with previously reported results regarding
antioxidant therapies. These data are in keeping with the

Frontiers in Nutrition | www.frontiersin.org 13 April 2021 | Volume 8 | Article 661455

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


de Munter et al. Herbal Antioxidant Counteracts Affective Pathology

literature suggesting compromised markers of oxidative stress
during depression and comorbid disorders, such as PTSD,
and their normalization by antidepressant treatment (11, 92).
In the present study, we found no significant increases in
the expression of GSK-3β; as a consequence, no significant
changes in this measure were found in SHC-treated mice. This
can be due to the confounding effects of intense handling
during dosing of animals with antioxidant treatment that is
a key element of contextual learning in the modFST model.
In summary, our data, demonstrating ameliorating effects
of SHC in modFST-exposed mice, together with the above-
discussed previous findings further argue for the importance
of oxidative stress in the PTSD-like induced syndrome and
the therapeutic potential of herbal antioxidant therapy during
this condition.

CONCLUSIONS

Thus, the continual administration of SHC to mice during
their exposure to the emotional US model or to a paradigm of
enhanced learning of adversities/PTSD results in normalizing
effects on the measures of behavioral despair and anxiety and
the concentration of oxidative stress markers. The comparison
of neurochemical changes in the prefrontal cortex and behavioral
changes in two novel mouse models of MD and PTSD reveals
an intricate overlap between oxidative stress and helplessness.
Thus, analogous with shared antidepressant drug therapy used in
patients suffering from these disorders and their comorbidities,
there is a potential that the use of antioxidant remedies, such
as SHC, can be equally effective in both of these conditions.
Several pharmacokinetics and pharmacodynamics analyses have
to be carried out before comparing the efficacy of SHC with
standard antidepressants and bringing it to patients. It has to
be noted that the average efficacy of antidepressants that are
mainly used in therapy of PTSD comorbid with MD is about
60%, whereas for placebo, it approaches 40% (11). Given this
limited response rate, herbal treatments may be considered
as effective and safe supplements to current medications of
PTSD comorbid with MD and other stress-related disorders.
As medicinal herbs exert fewer side effects than conventional
drugs and are affordable for low-income societies (93), the
use of such therapies appears to be particularly beneficial
for the improvement of mental health under conditions of
the ongoing economic and medicinal crisis related to the
COVID-19 pandemic.
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