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Ruminants are mostly herbivorous animals that employ rumen fermentation for the

digestion of feed materials, including dairy cows. Ruminants consume plant fibre as

their regular diet, but lack the machinery for their digestion. For this reason, ruminants

maintain a symbiotic relation with microorganisms that are capable of producing

enzymes to degrade plant polymers. Various species of microflora including bacteria,

protozoa, fungi, archaea, and bacteriophages are hosted at distinct concentrations for

accomplishing complete digestion. The ingested feed is digested at a defined stratum.

The polysaccharic plant fibrils are degraded by cellulolytic bacteria, and the substrate

formed is acted upon by other bacteria. This sequential degradative mechanism forms

the base of complete digestion as well as harvesting energy from the ingested feed.

The composition of microbiota readily gets tuned to the changes in the feed habits

of the dairy cow. The overall energy production as well as digestion is decided

by the intactness of the resident communal flora. Disturbances in the homogeneity

gastrointestinal microflora has severe effects on the digestive system and various

other organs. This disharmony in communal relationship also causes various metabolic

disorders. The dominance of methanogens sometimes lead to bloating, and high sugar

feed culminates in ruminal acidosis. Likewise, disruptive microfloral constitution also

ignites reticuloperitonitis, ulcers, diarrhoea, etc. The role of symbiotic microflora in the

occurrence and progress of a few important metabolic diseases are discussed in this

review. Future studies in multiomics provides platform to determine the physiological

and phenotypical upgradation of dairy cow for milk production.
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INTRODUCTION

Nearly 200 species of ruminants were identified till date, and
among them, six were domesticated (1). Dairy cow was the
most studied. Earlier studies provide insights into the knowledge
of their digestive metabolism. Ruminants (mostly herbivores)
employ foregut fermentation that allows them to digest cellulosic
materials from plants. But during evolution, vertebrates lost
the ability to produce enzymes that degrade cellulose and
other complex polysaccharides (2). The ruminants rely upon
a symbiotic relationship with microorganisms to digest such
compounds. The microbiota produces enzymes to break the
complex compounds into simpler molecules for easy absorption
by the intestine. To carry out this, the host system has to
provide an optimal environment and substrate for the survival
of microflora. Thus, a commensal relationship is maintained
where the host organism provides the substrates and maintains
the environment required for the survival of the organism. In
return, the microflora offers the nutrients required for the host
organism (3).

The physiology and structure of the ruminant digestive system
evolved billion years ago to ensure the effective digestion of
cellulosic materials and various polysaccharides (4). The potency
of the system lies in its design where the ingested feed material
experiences a prolonged interaction with microflora (5). The
ruminant stomach is a quadra compartmental digestive sac
composed of the rumen, reticulum, omasum, and abomasum.
Rumen internal environment is partitioned into different sacs by
reticulo-ruminal fold in which the ingested food enters the rumen
and then the reticulum (Figure 1). The rumen is lined with
papillae, whereas the reticular epithelium forms a honeycomb
structure. Feed consumed is directed toward the rumen through
the reticulum (6). Reticulorumen (collective chamber of rumen
and reticulum) stores the feed consumed for rumination and
interaction with microflora. The feed is chewed to mix it with
saliva and then swallowed. The ingested feed is then transferred
to the anterior reticulorumen. Saliva is crucial for ingestion
as well as rumination. It contains phosphate, potassium, and
sodium bicarbonate in high concentrations to buffer the acids
generated during fermentation. The reticulorumen appears to
be a multifunctional fermentation sac with sizes varying from
cattle (35–100 L) and sheep (3–5 L) (7). The physicochemical
parameters of the rumen are described in Table 1 (9–13). The
host organism maintains the environment of rumen through
various mechanisms. The atmosphere in the reticulorumen is
mostly anaerobic with carbon dioxide (65%), methane (27%),
nitrogen (7%), and hydrogen (0.2%) (14, 15). Along with these,
traces of O2, H2S, and CO are also present. This gas composition
is due to the rigorous fermentation in the rumen by resident
microflora. The ingested feed is regurgitated to facilitate proper
fermentation through interaction with microflora, a process
called rumination.

Rumination helps in increasing the surface area and
decreasing the size of the feed particles, thereby promoting
proper fermentation (16–18). In continuation, after the
degradation of feed particles into smaller compounds, the
feed is passed into the following chamber omasum. Omasum

plays the role of a filter through which lesser size (<2mm)
particles can freely pass through (19). Then the digested fodder
moves to abomasum, the true stomach. The abomasum has a
distinct enzyme component lysozyme that attacks the cell walls
of bacteria (20, 21). In abomasum, the digestion of bacterial
proteins as well as digesta is done in a similar fashion as the
other non-ruminants (17). Host genetics also play a crucial
role in deciding the fate and constitution of rumen microflora,
which in turn has an effect on fermentation and the products
(22). The maintenance of the rumen environment is crucial
for the host to digest the feed and survive (23). This process
in turn effects the ability of the dairy cattle to produce milk.
The constitution of microflora is very important for all the
above reasons. Deviation of the constitution of microflora or
intrusion of infective organisms through feed, environmental,
and other factors leads to disturbances in the metabolism of the
host. This leads to diseases, and the regulation of such process
is mandatory. Present review throws light on the roles of gut
microbes in the health and metabolic diseases of ruminants.

WHAT IS THE NEED OF MICROFLORA?

Ruminants feed on plants that are the sources of complex
polysaccharides, viz., hemicellulose, cellulose, and lignin (24).
However, due to the lack enzymatic system to degrade
polysaccharides, they employ microflora that are capable of
hydrolyzing these compounds in the gut for energy generation
(25). These commensal microbes utilize the feed consumed by
the host for survival, thereby establishing a healthy symbiotic
relationship. The microbial population is habituated in the
reticulorumen compartment. The reticulorumen environment
is strictly anaerobic. It comprises dense and diverse microflora
with eukarya (fungi and protozoa), archaea (methanogens), and
bacteria at concentrations of 104, 106, and 1010, respectively
(26). These bacterial populations seem to be very sensitive and
can be influenced by little changes in the rumen environment.
Fermentation by the rumen microflora is a complex process in
which microorganisms act in coordination to generate simpler
compounds that are easily metabolized by the host (27). The
polysaccharides are metabolized into two simpler forms. The
former one is the proteins required for bacterial cell wall synthesis
and the later form is the volatile fatty acid (VFA), which are
end products of fermentation (28, 29). VFA plays a crucial role
in ruminant metabolism and acts as a source of host energy.
They participate in vital pathways such as fatty acid synthesis and
gluconeogenesis. Recent findings indicate that VFA holds ∼70%
of plant polysaccharides energy content (30, 31).

MEMBERS OF MICROBIAL CONSORTIUM

Primarily rumen is hosted by various microorganisms that assist
the host organism in the digestion of complex polysaccharides
of the dairy cow. The infants derive basal flora from
the environment, feed consumed, partners, etc. The early
gut microflora is developed from breast feeding (43%) and
environment (28%), whereas non-breastfed lambs receive from
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FIGURE 1 | Ruminant digestive system, microflora and metabolic diseases in ruminants.

vagina (46%) and air (31%) (32). The first floor of the rumen of
neonates is colonized by enterococcus and streptococcus species
which transform the gut environment to anaerobic (33). This
helps in the recruitment of strict anaerobes in the gut to maintain
the anaerobic ambience. Facultative anaerobes and aerobes are
present in very less quantities, approximately 100-fold lesser in
comparison with anaerobic organisms. The digestive capability
of the dairy cow is directly proportional to the existing rumen
microflora activity. Most of the organisms present in the rumen
are non-culturable, whereas the culturable biota were studied in
all aspects (34, 35).

The constitution of gut microbiota varies with the host,
indicating a solid environmental-driven specificity of the host.
The microbial composition of the feces in twins was more
similar than in siblings (36). This implies the involvement of host
genetics in deciding the individual gut microflora. Individuals
also vary in fungal and archaeal compositions. The choice and
development of gut microflora hence is a collaborative play of
host genetics as well as environment. It is an ardent fact that the
physiology of the individual has a strong relationship with gut
microbial development. Apart from this, microflora differs from
section to section in gut regions. Strict segregation of microflora

between digestive and epithelium starts in the early stages of the
life of a calf. Themethanogenic composition also differs down the
gastrointestinal tract. In neonatal calves the phylum Bacteroides is
predominant, whereas in adult animals the phyla Prevotella and
Bacteroidetes are abundant. Studies indicate that the microflora
of 21-day-old calves has Prevotella (15.1%) and Bacteroidetes
(15.8%), implying a starter-feed-driven rumen microbiome
development during maturation. Methanogens and cellulolytic
members were observed at 3–4 days of age, and this population
is similar to that of matured mammals. Cellulolytic flora is
present in 1-day individuals, indicating their importance in the
ruminant system. Surprisingly, the rumen microflora of 14-day-
old calves harbors more profuse yet ephemeral microorganisms
in comparison with adult organisms. Metagenomic studies
indicate that archaea (0.6–4%), eukarya (1.5%), and bacteria
were present in ascending order of magnitude, with bacteria
contributing 95% of the coding sequence.

Bacteria
Bacteria occupies the major portion of gut microflora, and
their presence is crucial for the health of the dairy cow. They
aid in the fermentation and degradation of plant polymers by
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the secretion of various enzymes (37, 38). Rumen contains
about 1 × 103 bacteria/mL, and this consortium is complex in
terms of functionality and taxon identification. The communal
interaction of various bacteria enables the breakdown of the
ingested fiber. The identification of these bacteria and their
unique functionality has become the focal point of many studies.
With the advancement of next generation sequencing technology,
microbiological techniques, culture free approaches, and genetic
engineering it has become easier to step forward in studying the
role of commensal flora in host metabolism. Gene sequencing
helped to identify and classify bacteria based on 16 s rRNA and
physicochemical properties. The predominant microflora in the
rumen are Proteobacteria, Bacteroidetes, and Firmicutes. In a
study, Prevotella has also been identified with 42–60% of rRNA
composition in two lactating cows. The coordinated metabolism
of themicroflora in which themetabolic product of one organism
acts as a substrate for the other allows the sequential digestion
of plant polymers (39, 40). The bacterial consortium is highly
complex, and hencemost of the bacteria are uncultured. The flora
which are dominant and have a specific role in themetabolism are
covered here so far.

The cell wall of a plant is comprised of a hemicellulose
matrix with embedded cellulose fibers in it. The initial
degradation of this matrix is carried out by a particular
taxon of bacteria that secretes cellulolytic enzymes (24, 25).
In general, bacteria contribute to most of the xylanase and
endoglucanase activities in the rumen. These degrade the
cellulose into smaller oligo/disaccharides which are then acted
upon by other organisms. The first order cellulolytic bacteria
includes Ruminococcus flavefaciens, Ruminococcus albus, and
Fibrobacter succinogenes. Also, Butyrivibrio fibrisolvens is present
in a lesser extent in comparison with the above said organisms.
Apart from these, other uncultured bacteria can also act upon
the substrate to degrade cellulose fibers. Some organisms like
Cellulosilyticum ruminicola H1, from the rumen of Yak, also
have the capability to produce lignocellulolytic enzymes. On the
other hand, coculturing of some organisms implicated negative
interaction and decreased enzyme efficiency (41). This inhibition
is found to be an effect of the bacteriocins secreted as a part of
the defense mechanism and competition for the substrate (42).
For instance, R. flavefaciens and R. albus secrete bacteriocins in
competition for cellulose (43, 44). Non-cellulolytic bacteria also
secrete bacteriocins and are supposed to be tough competitors
for different substrates in a rumen environment (45, 46).

The end products of cellulolytic bacterial interaction act as
substrates for different microflora that start further degradation
of such compounds. Other important polymers, such as starch,
are hydrolyzed by Selenomonas ruminantium, Succinomonas
amylolytica, Butyrivibrio fibrisolvens, Streptococcus bovis,
Ruminobacter amylophilus, and Prevotella species, whereas
pectin is degraded by Lachnospira multiparus and Succinovibro
dextrinosolvens. Besides, the constitution of bacteria changes
with the type of feed consumed by the host (5, 47, 48). Animal
feeding differs in various places. High fiber feed is rich in
cellulose whereas high grain feed is packed with starchy material.
This influences the type of bacteria required to digest the
material consumed and has a strong impact on microflora

TABLE 1 | Physicochemical properties of the rumen.

Parameter References

Temperature 39◦C (optimal), vary in between 38–41◦C (2, 8)

pH ∼6.5 (buffered in the range of 5.5–7.0)

Dry content Maintained constant around 10–20%

Osmolality 250–400 mOsmol/Kg (increases with the feed

intake)

Redox potential Lies within the range of −150 to −350mv

Gaseous

composition

CO2 (65%), CH4 (27%) are the major gases

produced by fermentation. N2 (7%), O2 (0.6%)

H2 (0.2%) are present in traces.

constitution in the gut environment (49, 50). Sugar and starch
fermenters constitute most of the rumen bacteria. Maximum
energy is extracted from the plant polysaccharides as the end
products of bacterial fermentation serve as substrate to many
other organisms. Megasphaera elsdenii acts upon lactate (end
product of bacterial fermentation) and Veillonella alcalescens
utilizes succinate, acetate, and hydrogen (51, 52).

Recent metagenomic studies on gut microflora of various
mammalian species revealed that in ruminant and herbivore
microflora the anabolic pathways for the synthesis of amino acids
(AAs) are more prevalent in comparison to carnivores. This is
because the diet of a carnivore would be rich in protein, and
therefore the constitution of gut microbiota is chosen to be more
proteolytic. In the point of herbivores, the diet is fiber rich, and
carbohydrate is the core source of energy (53). Hence in the
microbiota of rumen, the AA synthesis pathways are commonly
seen. Indeed, a certain cellulolytic activity some organisms also
exhibit potent proteolytic activity, such as B. fibrisolvens, P.
ruminicola, S. ruminantium, and R. amylophilus. P. ruminicola
exhibits deaminase and proteolytic activities and produces higher
amounts of ammonia (NH3) in the rumen. This activity is
considered to be crucial as the rumen environment has lesser
protein and ammonia that act as nitrogen sources for AA and
protein synthesis (54). Other classes of bacteria include sulfate-
reducing bacteria that assist in the reduction of sulfate to H2S.
In addition, it has to be noted that the rumen microbiota is fine-
tuned depending upon the dietary changes to assist degradation
and fermentation of various complex compounds. They also have
communal relations with each other and with the host to ensure
their survival as well as maximum energy production. They also
play a role in supplying VFAs and proteins to the host organism.
Disturbances in concentrations of microbiota sometimes have
a heavy impact on the host system and may lead to diseases.
Different types of bacteria are listed in Table 2.

Archaea
Anaerobic methanogens make up most of the archaea
constituting ∼0.6–3.3% of the total rumen microbiota (65).
Major archaea members of rumen microbiota are listed in
Table 3. Metagenomic studies and 16 s rRNA sequencing
analyses revealed the presence of archaea in the rumen
environment. Studies revealed that about 3.6% of microbiota
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TABLE 2 | Gut bacteria in ruminants (mostly rumen).

Bacteria type Bacterial species Gram staining End products References

Cellulolytic Fibrobacter succinogens Negative Acetate, Formate, Ethanol, propionate (55–60)

Ruminococcus flavefaciens Positive

Ruminococcus albus Positive

Clostridium longisporum Positive

Eubacterium cellulosolvens Positive

Clostridium cellobioparum Positive

Butyrivibrio fibrisolvens Negative

Hemi cellulolytic Eubacterium xylanophilum Positive Acetate, Formate, Ethanol, propionate (55–60)

Eubacterium uniformis Positive

Prevotella ruminicola Negative

Lipolytic Anaerovibrio lipolytica Negative Acetate and propionate (61)

Pectinolytic Treponema saccharophilum, Negative Acetate and formate (62)

Lachnospira multiparus Positive

Proteolytic Prevotella sp. Negative Amino acids, nitrogen (63)

Ruminobacter amylophilus, Positive

Clostridium bifermentans Positive

Amylolytic Prevotella ruminicola Negative Formate, propionateand Acetate (64)

Streptococcus Bovis, Positive

Ruminobacter amylophilus Positive

Saccharolytic Succinivibrio sp. Negative Lactate, Acetate, Fumarate, Succinate (55–60)

Lactobacillus sp. Positive

Bifidobacterium ruminantium Positive

Tanninolytic Streptococcus Caprinus Positive Lactate, Acetate, Fumarate, Succinate (62)

Eubacterium oxidoreducens Positive

Ureolytic Megasphaera elsdenii Negative Ammonia and CO2 (55–60)

in rumen exhibited autofluorescence, a distinctive property
exhibited by methanogenic bacteria (71). Methanogens, as
the name indicates, generate methane (CH4) either by the
reduction of CO2 or by the hydrolysis of acetate to CH4

and CO2. Most of the ruminal methane is produced via
the reduction of CO2 rather than dissimilating acetate. The
process of CO2 reduction requires electrons which come from
various sources, including methylamine, methanol, formate,
and hydrogen produced as metabolic intermediates (72, 73).
Archaea are clustered under Euryarchaeota and are classified
as Methanomicrobiales, Methanosarcinales, Methanococcales,
Methanobacteriales, and Methanopyrales. Most of the ruminant
methanogens fall under one of the three categories identified.
They are ordered as Methnaomicrobiales < Methnaomicrobium
and Methanobacteriales (14.9%) < Methanobrevibacter (61.6%).
Apart from this, another set of uncultured ruminal archaea
were categorized under rumen cluster C (RCC). A study
on the ruminal archaea community of red deer, cattle, and
sheep disclosed the fact that their composition is maintained
throughout different species. They are more conserved when
compared to the bacterial members. The dominant archaea
species stood same in all the rumens. Species belonging to
Methanobrevibacter is found to be dominant in rumen. About
26.5% of the total archaea is occupied by members of RCC
(55, 66).

Methane production by various archaea is mediated
by cytochrome in few methanogens, whereas alternative
complexes mediate this process in some methanogens. The
genus Methanosarcinales comprises of methanogens and has
the capability to grow on a wide range of substrates. Hydrogen
concentration in the environment plays a crucial role in the
production of methane. Cytochrome-based methanogens
have higher growth yields when compared with non-
cytochromic methanogens. Non-cytochromic methanogens
need lesser hydrogen concentration to produce methane
whereas cytochromic methanogens need about 10-fold higher
concentrations of hydrogen for the optimal growth. This is the
reason for the presence of non-cytochromic methanogens in
higher concentrations in the rumen. Hydrogen utilization by
methanogens is crucial as it decreases the pressure, allowing
the conversion of endergonic metabolic reactions to exergonic
reactions. This makes bacterial fermentation energetically
favorable (74). Hydrogen consumption by methanogens stands
as a good example of the symbiotic relationship between
methanogenic and cellulolytic bacteria, wherein the hydrogen
produced by the latter is consumed by the former for its survival.
Coculturing of rumen methanogens and ruminal fungus has
a heavy influence on cellulolytic and fermentation activities.
Hydrogen transfer among methanogens and other microflora
in rumen is best described by coculturing methanogens with
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TABLE 3 | Various microflora in rumen.

Organism Species Mode of action References

Archaea Methanobacterium formicicum, Methanobacterium bryantii, Methanobrevibacter

ruminantium, Methanobrevibacter smithii, Methanomicrobium mobile,

Methanosarcina barkeri, Methanoculleus olentangyi

Strictly anaerobic and

produce methane from CO2

and H2.

(65, 66)

Protozoa Entodinium bovis, Entodinium bubalum, Entodinium bursa, Entodinium caudatum,

Entodinium chatterjeei, Entodinium parvum, Entodinium longinucleatum, Entodinium

dubardi, Entodinium exiguum, Epidinium caudatum, Isotricha prostoma, Isotricha

intestinalis, Dasytricha ruminantium, Diplodinium dendatum, Diplodinium indicum,

Oligoisotricha bubali, Polyplastron multivesiculatum, Eremoplastron asiaticus,

Eremoplastron bubalus

Lignocellulosic digestion

and degradation of complex

compounds to reducing

sugars

(67)

Bacteriophages Methanobacterium phage Ψ M1, Methanobacterium phage Ψ M10,

Methanobacterium phage Ψ M100, Methanothermobacter phage Ψ M100,

Methanobacterium phage ΨM2

Strictly anaerobic and

produce methane from CO2

and H2.

(3)

Fungus Piromyces communis, Piromyces mae, Piromyces minutus, Piromyces dumbonicus,

Piromyces rhizinflatus, Piromyces spiralis, Piromyces citronii, Piromyces

polycephalus, Anaeromyces mucronatus, Anaeromyces elegans, Caecomyces

communis, Caecomyces equi, Caecomyces sympodialis, Cyllamyces aberensis,

Cyllamyces icaris, Neocallimastix frontalis, Neocallimastix patriciarum, Neocallimastix

hurleyensis, Neocallimastix variabilis, Orpinomyces joynii, Orpinomyces intercalaris

Act upon lignin and cellulose

fibers to and forms Formate,

Succinate, Hydrogen,

acetate and lactate.

(68–70)

protozoa. Even though archaea and bacteria fall prey to protozoa,
methanogens get habituated inside and help in the generation
of energy by consuming the hydrogen produced during the
metabolism (74–76). Hydrogen consumption by methanogens
forms the root of symbiosis with other microbiota in the
rumen for maximal energy production (77–79). The commensal
interactions of methanogens with protozoa and other rumen
microbiota facilitate the complete degradation of complex plant
polymers. The methane production is directly related to the
amount of fodder and hemicellulose degradation (80–82). About
19% of the total energy of the feed is lost during the production
of methane gas by methanogens. The commensal interaction
of methanogens with other microbiota in the rumen enhances
energy production to a maximum extent. But the gas production
has a hinderance effect on the overall energy harvested
from the ingested feed.

Protozoa
Protozoa are unicellular organisms bound by pellicle or cuticle
in the rumen. They are the simplest forms of eukaryotes found
in the universe (Table 3). Most of the protozoa are parasitic as
they feed on microorganisms, organic matter, and cell debris.
Ciliates are more prevalent in ruminant gut in comparison
with several flagellate species. Ciliates are subcategorized into
Vestibuliferida and Entodiniomorphida with 25 genera. Protozoa
in the rumen have specialized functions tuned to survive in a
rumen environment (83, 84). Most of the protozoa are anaerobic,
but very few species are supposed to sequester oxygen. Oxygen
sequestration from the environment is advantageous to the host
as it maintains the anaerobic ambience of the reticulorumen.
This also helps in the survival of strict anaerobes and promotes
the digestive degradation. Various complex carbohydrates viz.,
lignocellulose, starch, and sugar are consumed by protozoa for
energy production. Around 50% of the total biomass in the
rumen is composed of protozoa. Degradation of fats, proteins,
and carbohydrates is facilitated by direct engulfing (85). The

lignocellulosic digestion capacity by protozoa is presumed to be
the result of lateral gene transfer from the bacteria they engulf
(86). Protozoa prey on selective species of bacteria, and the reason
for feeding on particular bacteria is not clearly understood (87–
89). Ciliates play a crucial role in fermentation and plant fiber
degradation. The products obtained as a result of protozoan
fermentation are found similar to that of bacteria. In contrast
to bacteria, protozoa divide at a much slower rate (15–24 h). To
overcome the washing out of protozoa before division, they tend
to reside in the lower layers of the rumen. Many methanogens
reside on the protozoan surface for H2. Hydrogen gas is produced
is used for the reduction of CO2 to methane. Methanogens
residing on protozoa account for around 9–25% of total rumen
methane (77, 90). Protozoa are capable of engulfing and store
more starch at once, which decreases acid production by lowering
pH (91).

Protozoa (holotrich) produces pectin esterase, invertase,
amylase, and polygalactouronase to degrade plant sugars and
fibers. Protozoa also produce cellulolytic and hemicellulolytic
bacteria in lower quantities compared with that of
entodiniomorphids. Ciliates in the rumen secrete proteolytic
enzymes, resulting in the production of AAs and ammonia. The
type of engulfed microbiota decides the nitrogen metabolism
of the protozoa. Generation of nitrogenous compounds in
turn influences the recycling of nitrogen. Rumen ciliates also
influence ammonia as well as VFA production. The symbiosis
of protozoa and rumen bacteria were investigated and showed
that the presence of rumen protozoa effected the bacterial
composition in rumen. Absence of protozoa has a positive
effect on the growth of cellulolytic and hemicellulolytic bacteria.
Lambs with no protozoan population showed increased growth
of wool as much as 10% when compared to lambs with
rumen protozoa. No proper effect of protozoa on methane
production is observed. Variations in the composition of
digested material in both omasum and abomasum are observed
in defaunated and faunated animals. It is an ardent fact that
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protozoa influence many processes in the metabolism of host
(92–94).

Fungi
Rumen is a repository of anaerobic fungi with an explicit capacity
of lignocellulose degradation. Fungi contribute to 20% of the
overall microbiota in the rumen. They are deliberate members
of plant fiber degradation. Fungi also exhibit proteolytic activity.
In the fungal structure, polycentric or monocentric thallus is
observed, and the zoospores are polyflagellate or uniflagellate.
Asexual life cycle of anaerobic fungi is mostly observed (95).
Most of the fungi are not present alone in the rumen of the
animals but are vividly present along the digestive tract. Fungal
species were also isolated from the feces and saliva of the dairy
cow. Domestic animals host Chytridiomycetes for assisting
their digestion. These organisms occupy about 8% of total
ruminal microbiota in the animals fed on forage, which allows
more retention in the rumen (45). But in the case of high grain
diets, fungal population decreases. Enzymes secreted by fungal
cultures degrade lignin, hemicellulose, starch, and cellulose (33).
In addition, fungi are strict anaerobes, and hence carbohydrate
fermentation is the sole source of energy production. Fungi are
devoid of cytochromes and mitochondria that are coplayers
of oxidative phosphorylation. Despite that, they contain
Hygrogenosomes that facilitate the generation of energy.
Hydrogenosomes are mitochondrial derivatives that occurred
during evolution, and they are not only confined to fungal
genera. Various anaerobic eukaryotes and trichomonads are also
found to contain this organelle. Hydrogenosomes differ from
conventional mitochondria by possessing pyruvate/ferredoxin
reductase instead of dehydrogenase. They also provide room for
ATP production and pyruvate conversion.

Commensal interplay of fungi and bacteria is a well-studied
concept. In vitro studies were carried out to understand the
degradative dynamics of fungi when cocultured with cellulolytic
bacteria. Cellulose degradation capacity of the fungi increases
manifold with Megasphera elsdenii, Selenomonas ruminantium,
and Viellonella alcalescens. Xylan consumption is increased by
coculturing Neocallimastix frontalis with cellulolytic bacteria
like Selenomonas ruminantium, Prevotella ruminicola, and
Succinivibrio dextrinosolvens (Table 3). On the other hand,
coculturing with Streptococcus brevis or Lachnospira sp. has a
negative effect on xylan degradation. R. flavefaciens, and R. albus
coculturing with fungi have shown adverse effects on cellulolytic
activity. These bacteria release a polypeptide into the broth that
has detrimental effects on cellulolytic activity of the fungus.
The fungal activity in the degradation of cellulosic materials is
considered minimum than that of bacteria. This might be due
to their larger doubling time, inhibition by bacteria, competition
for substrates, and decreased retention. Nevertheless, they exhibit
remarkable activity in the degradation of lignocellulosic material,
as the rhizoids pervade the cell wall of plants and make it easily
accessible by the rest of the rumen microbiota (96).

Bacteriophages
Bacteriophages are obligate parasites and play a crucial role
in rumen microbiota. Bacteriophages infect bacteria and lyse

them after their replication (Table 3). Through lysis, the
overall bacterial population is maintained in the host digestive
environment. Bacterial lysis releases bacterial proteins that act
as precursors of AA synthesis (97). Bacteriophages are found
to vary with the organism, i.e., they are specific for a particular
organism. This may be used by the researchers to destroy a
particular genus of microbes from the rumen environment. Very
little information is known about the bacteriophages infecting
protozoans, methanogens, and archaea. It was identified that
siphophages are capable of infecting methanogenic bacteria. The
knowledge about the enzymatic profile and genetic makeup of
rumen phages is limited and yet to be explored to manipulate the
rumen environment (98).

METABOLIC DISORDERS IN RUMINANTS

Disturbances in the homogeneity of gastrointestinal microflora
have severe effects on the digestive system and various organs.
This disharmony in the communal relationship also causes
various metabolic disorders, including bloat, ruminal acidosis,
hypoglycemia, diarrhea, ulcers in gastrointestinal (GI) tract, and
retivuloperitonitis (Figure 1).

Bloat
The rumen tympany, also called as bloat, is associated with a
condition in which excess gas is accumulated in the rumen. This
is observed in animals fed with higher quantities of grains or
forages (99), which can be categorized into free gas and frothy
bloat. Free-gas bloat is associated with pathological/physical
problems hindering gas release from the stomach of the
dairy cow. Esophagus obstructions (external particles cloths
and fruit material, etc.), cysts, blisters, tumors, thoracic or
cervical enlargement, reticular dysfunction, and hypocalcemia
are major conditions affecting gas belching (100–102). Frothy
bloat is the result of feed ingestion, which continuously produces
froth that cannot be easily expelled from the stomach. Testing
with a stomach tube helps in figuring the type of bloat. If
the causative agents are physical obstructions, they have to
be removed manually to ensure the gas expulsion. Frothy
bloat contains both hydrophobic and hydrophilic properties.
The foam is the result of partial digestion of polymeric
compounds including, lipopolysaccharides, fatty acids, glycans,
and glycolipids. Presence of these partially digested compounds
increases rumen viscosity and hinders gas removal. Gaseous
distension exerts pressure on the nearby organs causing edema,
pain, organ failure, and death. Several practices that are employed
to treat free bloat and frothy bloat include using a stomach tube
to remove gas and partially digested feed, anti-foaming agent
administration, and the placement of fistula or cannula (103).

Apart from physical factors, the microbiota in the rumen also
contribute to the development of gas. Gas is generated as a result
of methanogenic bacterial action upon various substrates. This
methane, hydrogen, and CO2 gases produced in excess when left
unattended by downstream flora results in the accumulation of
gas in the stomach. The hydrogen gas produced as a part of
methanogen metabolism also has to be addressed. It is a well-
known fact that the rumen environment is highly anaerobic.
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But excess CO2 can cause subtle changes in the rumen. CO2

can be reduced by methanogens to generate methane and/or
as such CO2 in excess can cause tympany. It is nevertheless
necessary to attend to the excess production of these gases to
maintain ruminal microbial harmony. Hence to maintain the
environment, probiotics can be used to replenish the rumen flora.
Treated and high fiber feed also helps in relieving the stress
caused by methanogenic bacteria (104).

Ruminal Acidosis
Ruminal acidosis is caused by the consumption of more
fermentable carbohydrate-rich feed material than grainy feeds
(105, 106). Molasses, sugar beets, potatoes, and cereal grains
result in acidosis. Fermentation of such compounds result in
higher amounts of lactic acid production and hence pH of rumen
is drastically reduced (107, 108). Due to this, many gram-negative
bacteria are destroyed releasing endotoxin into the rumen. All
these results in low pH, accumulation of fluid, disturbance of
microbiota, and partial digestion. Low pH and acid production
have destructive effects on the inner epithelium of the stomach
causing ulcers as well as mucosal inflammation. Drastic fall in pH
also inhibits the cellulolytic bacteria but enhances propionate-
producing bacteria in the rumen. Rumen microbiota alteration
leads to improper metabolism which can cause liver dysfunction,
lung-related diseases, and can also lead to death (109–111).

Hypoglycemia
Hypoglycemia is a disorder observed when the rate of glucose
uptake is very less in comparison to the rate of utilization
(112, 113). Vitamin B12 plays a key role in the synthesis
of glucose from propionate, and its deficiency is also related
to the occurrence of hypoglycemia. In new-born calves and
lambs in a cold environment, hypoglycemia leads to death.
Gluconeogenesis does require NADH and ATP apart from
substrates made available in the ruminant environment. For this
reason, an organism depends primarily on dietary carbohydrates
for glucose rather than synthesis. Deficiency in glucose supply
caused hypoglycemia in all the animals. On the other hand,
hypoglycemia is also seen in animals whose diet is rich
in inhibitors of fatty acid beta oxidation in the kidney
and liver. Required amounts of AAs, fatty acids, ambience,
and vitamins have to be provided for treating hypoglycemia
(114–116).

Most of the fed polysaccharides should be degraded to
glucose for energy production. Disharmony in the activity
of rumen microbiota contributes to impaired degradation
of polysaccharides that in turn affects glucose turnover.
Proper diet at regular intervals with the maintenance of
a favorable environment and supplementing cellulolytic
bacteria may also address this issue in less severe conditions
(117, 118).

Ulcers in GI Tract
Ulcers in the dairy cow are more common in the duodenum and
abomasum. They are often observed in cows and buffaloes than
in sheep (119, 120). Ulcers are mostly associated with improper
feed intake, over grazing stress, microbial infection, and

malnutrition. These occur in concomitance with other diseases,
viz., salmonellosis and blue tongue (Clostridium perfringens
abomasitis). Over usage of non-steroidal antiinflammatory drugs
can also cause ulcers. Perforating ulcers are generally more
infectious and have adverse effects on the epithelium of
gastrointestinal tract than non-perforating ulcers (121).

The disruption of the outer epithelium of gastrointestinal
tract is caused by acid production and can be alleviated by
the administration of probiotics containing lactic acid bacteria.
Antihistamine with iron injection can also reduce the pain and
bleeding in adult ruminants (122).

Reticuloperitonitis
Reticuloperitonitis, also called as traumatic reticulitis or
hardware disease, is mainly observed in cattle with unsystematic
feeding (123, 124). Indiscriminate feeding habits of dairy cow
leads to the disturbances in the harmony of rumen microbiota.
Continuous feeding deters bacterial revival and causes improper
digestion which may lead to bloat and ruminal acidosis. It is a
noncontagious disease which if not properly observed causes
devastating effects. Proper dietary consumption at regular
intervals will enable bacterial resurgence and revival. Usage of
probiotic syrups, administration of antibiotics, and digestive
aids may help in the initial stages and rumenotomy is suggested
during severity index (125).

Diarrhea
Diarrhea is a severe problem prevalent in young calf. It is
associated with various symptoms including disturbance of
electrolyte balance, dehydration, and weakness. The reason for
the disease varies with geographical location, type of feed, type
of infection, and host metabolic issues. In most of the time, the
disease occurrence is multifactorial. Pathogens namely, bacteria,
virus, parasites, and protozoa can trigger infection. Infection
by bacterial diarrhea includes Enterobacter sp. mycobacterium
paratuberculosis, Clostridium perfringens, Salmonella sp. as well
as Staphylococcus. Rotavirus and adenoviruses contribute to viral
infections. Trichonema sp. and Strongylus sp. are major parasites
infecting the gastrointestinal tract of the dairy cow. Nonetheless,
Trichomonas sp., Entamoeba sp., and Giardia sp. contribute to
protozoan infection. Infection of the ruminant flora by either
of the above species causes disturbance in the homogeneity
and functionality, culminating in disease. Malabsorption or
hypersecretion of fluids into the gut usually results in the
secretion of excessive fluid from the intestine. Severe outflux
of fluids with salts leads to weakness. Things to be observed
to treat diarrhea are suppressing the infection and adjusting
physiological imbalance. This allows eradication of the causative
agent helping in faster recovery. Usage of antibiotic drugs will
also help in wiping out the existing infection and maintaining the
functional role of microflora (126).

ROLE OF MULTIOMICS IN DAIRY COW

Gut microbiota plays a crucial role in ruminant digestion as
well as energy production. Hence it is essential to study the
genomic environment to predict the changes that cause genetic
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and metabolic disorders. But it is difficult to isolate and study
the genome of a particular flora in the consortium. For this
reason, the whole genome of the consortium is studied under
the branch metagene “omics”. The complete genome of the
gut microflora, termed as gut microbiome, is obtained by
sequencing methodologies and omics approaches (127). The
identity of the microbiome is determined by general sequencing
protocols, whereas “omics” determine the actual functionality of
the microbiome present in rumen. Omics approaches embrace
metabolomics, metaproteomics, metatranscriptomics, and
metagenomics. The relationship between host and microbiota is
well-studied by omics approaches. For instance, metagenomics
approaches revealed that Bacteroidetes is energetically less
favorable to the host in comparison to Firmicutes. The action
of Firmicutes increases nutrient availability to the host, which
culminated in obesity.

Role of omics in the physiology and functionality of
livestock is an area which is yet to be explored. Many omics-
related approaches succeeded in finding the relation between
microbiome composition and livestock production (128). These
studies also helped in revealing taxonomical differences in
the ruminal microenvironment of the organisms based on
the dietary changes and environmental variations (22, 129).
Recent studies on profiling microbiome of the rumen in a
large sample set (>700) revealed a diet-dependent relationship
between the host and microflora. The type of feed ingest decides
the flora in the rumen (130). In depth analysis of the rumen
microbiome using omics approaches helps in identifyingmarkers
that decide the variability in feed efficiency in cattle. Omics-
based studies also help in assessing colonization patterns in the
dairy cow.

CONCLUSIONS AND FUTURE
PERSPECTIVES

In the last few decades, the role of GI microbiota in health
and disease has become the focal point of many studies.
Involvement of gut microbiota in digestion and various diseases
in humans is well-studied. However, in the case of dairy cows,
the underlying mechanisms of host–microbial interactions are
yet to be uncovered. The interaction of rumen or gut microflora
is purely symbiotic in which one organism benefits the others.
The higher organisms lost the capacity to degrade plant cell wall
and other materials during evolution to use it as a source of
energy. Hence, ruminants employed microorganisms to digest
plant materials and in turn provided them nutrients required for
survival. Several types of microorganisms reside in the rumen
and gut of the dairy cow. These organisms are from all the
main groups such as bacteria, protozoa, archaea fungi, and
bacteriophages. Composition of rumen microbiota varies with
the geographical location and type of regular feed. However,
the dominant strains in the rumen environment are always

conserved. Surprisingly, the microbiota adapts to the feed intake
and changes its constitution to meet the requirement of the
host. Bacteria occupy a major part of the ruminal microflora.
Microorganisms are adopted in such a way that most of the

energy is extracted from the provided substrate. Collaborative
action of various species of organisms helps in proper digestion
and energy production. The end product of one organism acts
as a substrate for the secondary organism. In this manner, the
degradation of the plant fiber is carried out to harvest maximum
energy from the ingest.

To understand the metabolic disease of dairy cow, many
factors have to be taken into consideration. This should start
with the type of feed, interval of feed, grazing area, and response
of the ruminant system to various drugs. Rumen microflora
are the crucial role players in the digestion as well as energy
generation for the dairy cow. Hence, it is nevertheless necessary
for a dairy cow to maintain the ambience in the GI tract
to ensure the proper symbiotic relationship with the resident
bacteria. Infection by pathogens can lead to disharmony in the
commensalism of the bacteria that culminates in various diseases.
Prior identification of the infection, proper care, and treatment
are required to rescue the organism. Preventive measures
like proper ingest, probiotic supplementation, and vaccination
protect the organisms from infections, thereby increasing the
productivity. In depth analysis of microbiome using omics
approaches helps in attaining knowledge about gut microbial
mechanisms and functional activities at various conditions. Also,
the variations in the gut microbiome have a strong impact on the
phenotypic definition and physiology of the host. Gut microbiota
has an influence on the health and productivity of dairy cow.
Future studies in multiomics provide a platform to determine the
physiological and phenotypical upgradation of the dairy cow for
milk production.
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