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Collagen is a kind of biocompatible protein material, which is widely used in medical

tissue engineering, drug delivery, cosmetics, food and other fields. Because of its wide

source, low extraction cost and good physical and chemical properties, it has attracted

the attention of many researchers in recent years. However, the application of collagen

derived from terrestrial organisms is limited due to the existence of diseases, religious

beliefs and other problems. Therefore, exploring a wider range of sources of collagen has

become one of the main topics for researchers. Marine-derived collagen (MDC) stands

out because it comes from a variety of sources and avoids issues such as religion. On the

one hand, this paper summarized the sources, extraction methods and characteristics of

MDC, and on the other hand, it summarized the application of MDC in the above fields.

And on the basis of the review, we found that MDC can not only be extracted frommarine

organisms, but also from the wastes of some marine organisms, such as fish scales. This

makes further use of seafood resources and increases the application prospect of MDC.

Keywords: marine-derived collagen, tissue engineering, drug delivery system, cosmetics, food, health care

product

INTRODUCTION

Collagen is a kind of biological macromolecule, which is the richest protein in the human body,
accounting for more than 30% of the total body protein (1). It is the main material of extracellular
matrix of skin, bone, ligament, cartilage and tendon. More than 85% of human collagen is type I,
while other common types of collagens include type II, III, and IV. Collagen is a trimer composed
of three polypeptide α chains (2). And it has a typical triple helix structure and glycine, proline and
hydroxyproline residues is rich.

Collagen as a biomaterial is widely used in various fields due to its biocompatibility,
biodegradability, accessibility and high throughput (3, 4). However, the health of collagen extracted
from cattle and pigs is very worrying due to diseases (5). For example, outbreaks of bovine
spongiform encephalopathy (BSE), infectious spongiform encephalopathy (TSE) and foot-and-
mouth disease (FMD) have aroused wide health concerns about the use of collagen and collagen
derived products in terrestrial animals (6). In addition, religious disputes are inevitable (7). At
present, collagen has been extracted from many marine products. Marine-derived collagen (MDC)
solves the problems of other animal diseases and pathogens. And, MDC has better chemical and
physical durability and is abundant in quantity (8, 9).
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In recent years, MDC in various fields has been widely used
due to its extensive sources, simple extraction methods, good
biocompatibility, edibility and so on. This paper summarizes
the sources, extraction methods and characteristics of MDC. In
addition, the application of MDC in medical tissue engineering,
drug delivery, cosmetics, food and other fields was reviewed. On
this basis, we preliminarily explored the biocompatibility of gill
dolphin collagen and tilapia collagen as well as the application in
skin tissue engineering.

Many researchers have been looking for alternative sources
of collagen in aquatic animals (10, 11). With the extraction
of MDC, fish skin, fish scale and other fishery wastes have
been better utilized. Transforming waste into collagen solves
the environmental problems related to fish (12, 13). The use of
collagen derived from terrestrial animals is controversial due to
the problems related to disease, religion and so on. However, as
a biomaterial with a wide range of sources, MDC has attracted
more and more researchers because of its good biocompatibility
and degradation properties.

TABLE 1 | Characterization and amino acid characteristics of MDC.

Sources Type Characterization methods Amino acids (composition, content, and

characteristics)

References

The skin of Nile tilapia (O.

niloticus)

Marine collagen

peptides

Amino acid analysis Seven essential amino acids (16.18%) and 10

non-essential amino acids (79.56%); Accounting for over

58% of the total residues in MCPs, were hydrophilic.

(14)

Jellyfish Rhizostoma pulmo

(jCOL)

Collagen Biochrome (15)

Axinella cannabina;

Suberites carnosus

Intercellular

collagen (ICC)

UV or fluorometry (16)

Mussel byssus Collagen High performance liquid

chromatography (HPLC)

Amino acid composition of PSC obtained was similar

regardless hydrolysis conditions

(17)

Tra catfish (Pangasianodon

hypophthalmus), clown

knifefish (Chitala ornata),

and tilapia (Oreochromis

niloticus)

Acid-soluble

collagen (ASC)

Amino acid analysis glycine 33.2–33.7%; The content of proline and

hydroxyproline (imino acid) of collagen from three fish

skins is 19.2–20%.

(18)

Takifugu flavidus Collagen Amino acid analysis Gly was the most abundant residue; accounting for a

quarter of the total amino acid components.

(6)

Eleven fish species

inhabiting wide spectrum of

temperatures

Acid Soluble

Collagends (ASCs)

Circular Dichroism (CD) Substitution from Hyp to Ser allows greater flexibility in

the collagen triple helix; maintaining stability with seryl

hydroxyl group driven hydrogen bonds.

(19)

Codfish skin Collagen Biochrom Collagen type I consists of 20 different amino acids

organized; three α-chains which wrap around each

other; characteristic triple-helix conformation.

(20)

Sturgeon (Acipenser

schrencki × Huso dauricus)

Type II collagens Automated amino acid analyzer The glycine abundant (21)

Skipjack Tuna (Katsuwonus

pelamis)

Scale gelatin (TG)

and antioxidant

peptides (APs)

SDS-PAGE; Fourier transform

infrared spectroscopy (FTIR);

electrospray ionization mass

spectrometers (ESI-MS); radical

scavenging assays

TG with a yield of 3.46 ± 0.27% contained Gly (327.9 ±

5.2 residues/1000 residues); content was 196.1

residues/1000 residues; TG was more unstable than that

of type I.

(22)

Surf clam shell

(Coelomactra antiquata)

Collagen Hitachi L-8800 auto amino acid

analyzer (Hitachi, Tokyo, Japan)

Guanidine hydrochloride soluble collagen (GSC) and

pepsin soluble collagen (PSC) contained glycine as the

major amino acid.

(23)

SOURCE, EXTRACTION, AND
CHARACTERIZATION

With the increasing demand for collagen, new materials are
needed as the source of collagen (Tables 1, 2). Extracting collagen
from marine organisms can not only avoid the problem of
religious belief, but also has its unique properties. The efficiency
and effectiveness of collagen extraction process has always been
considered in the process of collagen extraction. Compared with
the conventional acid assisted and pepsin assisted extraction of
collagen, the collagen extracted by the improved physical assisted
process retains a higher molecular weight, and the peptide
spectrum is similar to that extracted only with acid (88). In
addition, collagen extracted from dried jellyfish and squid has
potential applications in biomedicine, medicine and health care
products (89). As shown in Table 3, methods of extracting MDC
are reported.

Electrodialysis is also a promising technology, but it has
not been applied to the extraction of fish collagen. At present,
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TABLE 2 | Sources of various marine-derived collagen (MDC).

Species Tissue or organs References

Tilapia Skin (14, 24–27)

Scale (28–35)

Unknown (36–39)

Jellyfish Unknown (40–47)

Shark Skin (48–51)

Cartilage (52)

Salmon Skin (53–59)

Bone (60)

Scale (60)

Sponge Unknown (27, 61–66)

Snakehead fish Scale (67)

Unknown (68)

Tuna Skin (69)

Unknown (70)

Others: Prionace

glauca Skin (71)

Giant croaker (Nibea

japonica)

Swim bladder (72)

Sole fish Skin (73)

Codfish Skin & bone (74)

Sparidae / (75)

Sturgeon fish / (76)

Gadiformes Skin (77)

Mrigal fish Scale (78)

Flatfish Skin (79)

Weever Skin (80)

Seabass Scale (81)

Silver carp Skin (82)

Synodontidae fish Scale (83)

Eel Skin (84)

Codfish / (20)

Gadus morhua / (85)

Cyprinus Carpio / (86)

Grouper Swim bladder (87)

the physical and chemical properties of flavonoid collagen are
retained by electrodialysis, which fully shows its advantages in
the experiment. Therefore, we can assume that electrodialysis
can also improve the production environment of fish collagen
(95). The extraction of collagen from fish skin improves the
value of marine by-products and avoids the pollution caused by
large amounts of waste. Taking Atlantic cod as an example, the
extraction rates of collagen by acetic acid and pepsin were 5.72
and 11.14%, respectively (96). Compared with the traditional
organic acid solution extraction, the extraction rate of collagen
and the properties of products are improved by CO2 acidification
water, which has potential value in the field of biomedicine and
cosmetics (97).

Marine resources have great potential (Figure 1). When
looking for natural moisturizing cosmetics, sea cucumber is
finally selected. Pepsin soluble collagen was extracted from sea

cucumber wall. Its moisture retention and moisture absorption
with tilapia collagen are better than those of glycerol, which
shows the potential application of MDC in cosmetics (98)
(Table 4).

All of the fish collagen extracts were found to have high
levels of imino acids (227-232/1000 residues). All collagen is
soluble at acidic pH. In addition, the high collagen content,
especially in the skin, and the good thermal properties [thermal
transition temperature (31.6–33.7◦C) and thermal denaturation
temperature (31.1–32.2◦C)] of the extracted collagen suggest that
they have great potential as a collagen substitute in mammals
(70). The low denaturation temperature of sponge collagen
enables gelatin extraction at a lower temperature than that of
mammalian gelatin. MDC is considered to be an equivalent
biomaterial that is safer than the land-based biomaterials that
currently dominate the market. The results showed that sponges
A. cannabina and S. carnosus could be used as substitutes for
collagen. If marine sponge is used as gelatin raw material in the
food industry, it will bring high economic benefit (16). MDC
also has promising applications in vitro 3D bioprinted models.
But not the product of the modification of collagen and collagen
denaturation gelatin easy rapid degradation. In order to solve this
problem, in past research, scientists have developed a collagen
and gelatin crosslinking of the chemical and physical methods,
increasing the tunability of their mechanical properties. Marine
collagen can be used as a biomaterial for tissue engineering
and 3D bio-printing by controlling the content of methacrylate,
as well as the intensity duration of ultraviolet light and the
concentration of photoinitiator to control the required degree of
cross-linking (122). The hydrogel with rheological characteristics
was prepared by combining high-yield collagen with chondroitin
sulfate. In addition, prionace glauca (PG) pepsin-soluble collagen
(PSC) combinedwith shark-derived chondroitin sulfate produces
a hydrogel with a cohesive polymer matrix that can be used
for cartilage regeneration (91). The results showed that the best
collagen yield was obtained when the papain concentration was
7,000 U/mg, and the pH value was 5.90, 22.79% collagen was
hydrolyzed with alcalase and then separated by gel filtration
chromatography. Compared with unhydrolyzed collagen, the
four major components of the hydrolyzed product showed
significant antioxidant and antiglycosylation activity (123). Based
on previous studies, we summarized some characterization
methods of MDC, aiming to understand the characteristics of the
components of MDC (Table 1).

MDC IN MEDICAL TISSUE ENGINEERING

Tissue engineering and regenerative medicine is an emerging
and rapidly growing life sciences domain. Using engineering
and biological theory to create biomimetic tissues and organs
on the basis of biological materials has become a common idea
and hot topic among scientists in recent years. The excellent
biocompatibility of MDC has stimulated its potential role in
the design of biomaterial scaffolds in tissue engineering and
regenerative medicine (Figure 2; Table 4).
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TABLE 3 | Extraction methods of MDC and their advantages and disadvantages.

Sources Extraction method Principle Advantages Disadvantages References

Mussel byssus Pepsin solutions Pepsin is typically indiscriminate in its digestion

of proteins, with the notable exception of the

triple helical domain of native collagen with

further limited pepsin digestion, the

cross-linked molecules at the telopeptide

region are cleaved without damaging the

integrity of the triple helix.

• Ensure the integrity

of the collagen

molecule

(17)

Axinella cannabina;

Suberites carnosus

Alkaline solubilization,

trypsin solubilization

The first method was initially introduced for the

isolation of insoluble collagen (InSC) from G.

cydonium and C.reniformis by employing an

alkaline, both denaturing and reducing,

homogenization buffer affording collagen in

high yield;

The second one utilizes a trypsin-containing

extraction buffer, known to destroy the

interfibrillar matrix and, therefore, releasing the

collagen fibrils (ICC). After exhaustive water

extraction, the remaining debris generally

comprises the spongin/spongin-like collagen.

• Reagent

residues in

collagen;

• Generate

abundant

waste liquid;

• Resulting in

environmental

pollution

(16)

Surf clam shell

(Coelomactra antiquata)

Guanidine

hydrochloride and

pepsin

• Safer;

• Cheape;

• More moderate;

• Less destructive than

acid hydrolysis

(23)

Indian major carp rohu

(Labeo rohita)

Enzymatic method (90)

Bigeye tuna Acetic acid and pepsin (70)

Shark (Prionace glauca) and

ray (Zeachara chilensis and

Bathyraja brachyurops)

Acidic and enzymatic

extractions

(91)

Codfish skin An acid-base

procedure

• Ineffective with

byssal threads

(20)

Salmon Byproducts Bacterial extracellular

proteases fermentation

The proteases secreted by marine bacteria play

an important role in the decomposition of

organic nitrogen in oceans.

• Potential bioactive

peptides would be

released;

• The reaction time

is shortened.

(92)

Nile tilapia (Oreochromis

niloticus) skin

Collagen extraction

after fermentation

pretreatment

• Type I collagen with

high purity;

• Retained the integrity

of their triple

helical structure.

(93)

Jellyfish (Acromitus

hardenbergi)

Physical-aided

acid-assisted

extraction method

Increase physical intervention. • Similar amino acids

composition;

• Retained high

molecular

weight distributions;

(88)

Takifugu flavidus Electrodialysis

extraction

This method can purify charged

proteins/peptides by ion-exchange membranes

through a stimulated diffusion process under

the influence of electric potential difference.

• High efficiency;

• Large capacity;

• High extraction yield;

• Better

environmental sustainability

(94)

Freeze drying and

electrospinning

processes

(40)

Tilapia Electrospinning • Simple operation (36)

Bone Tissue Engineering
MDC with its high hydrophilicity and amino acids provides
the optimal extracellular microenvironment and has many
applications in bone tissue. It can promote the proliferation and
differentiation of osteoblasts, and the bonemarrowmesenchymal

stem cells (BMSCs) that induce osteoblastic differentiation retain
their immunomodulatory function. For example, tilapia collagen
can promote the growth and differentiation of osteoblasts
without the use of any additional induction reagents (28, 49),
just as human bone marrow mesenchymal stem cells (hMSCs)

Frontiers in Nutrition | www.frontiersin.org 4 August 2021 | Volume 8 | Article 702108

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Xu et al. Marine-Derived Collagen

FIGURE 1 | Abundant marine-derived collagen (MDC) as biomaterials are extracted from various marine organisms for human health.

readily adhere to tilapia squamous collagen during cell culture
in vitro, thus significantly accelerating the early differentiation
of hMSCs into osteoblasts (75). Biphase scaffolds of biomimetic
mineralized salmon collagen and fibrotic jellyfish collagen were
prepared by combining lyophilized and cross-linked methods,
indicating that they can support chondroblast and osteogenic
differentiation of hMSCs in vitro (41). Shark skin collagen also
promotes the growth of osteoblasts and the synthesis of collagen
in bone cells (49). When this collagen was further mixed with
calcium phosphate from shark teeth to form a 3D composite
scaffold, it could support the attachment and proliferation of
osteoblast-like cells (48). Some researchers also found that the
collagen peptide extracted from the scales of two kinds of fish,
Sephareidae, can promote the proliferation of osteoblasts and
inhibit the proliferation of mature osteoclasts, which can be
used to prevent osteoporosis and help bone remodeling (50).
In Codfish, low concentration of fish collagen peptide (FCP)
may promote the proliferation of cells, and also promote the
expression and differentiation of apoptotic osteoblasts (74).
Collagen in salmon skin can also significantly up-regulate gene
expression of various collagen-modifying enzymes in mouse pre-
osteoblastic cells (MC3T3-E1) osteoblasts, which has a positive
effect on osteoblasts (59).

MDC can also play a great role in bone development and
bone injury repair. They used a sponge-collagen-based (SPG)
scaffold and photobiodularization (PBM) to test a model of
skull defect in Wistar rats. The results showed that SPG/PBM
treated rats showed more connective tissue and newly formed
bone tissue in the defect area (66). Mixing sponge collagen
with hydroxyapatite (HA) to form scaffolds has the potential to

improve graft performance for bone regeneration applications
(62). MDC peptide (MCP) extracted from salmon skin was used
to study the femur of growing rats. The results showed that MCP
supplementation could increase the femur volume, bone density,
dry weight and ash content of growingmale rats. Therefore, MCP
supplementation could promote the development of long bone
in growing male rats (104): The effects of MDC oligopeptides
and calcium aspartate on bone mineral density in ovariectomized
Wistar rats were studied. It was found that the combination
of MDC oligopeptides and calcium aspartate could significantly
improve bone mineral density, which also indicated that MDC
oligopeptides could promote the absorption of calcium aspartate
(103). All these indicate that MDC has a good effect on bone
growth and development.

In future studies, MDC may also provide new options for
bone grafting and regeneration. Researchers have successfully
developed a novel collagen fiber wikestone hydrogel based on
the dual network (DN) concept using fish swim bladder collagen
(SBC) extracted from sturgeon. The gel was implanted into
the osteochondral defect of rabbit knee joint and showed good
biomechanical properties in vivo. Mixed with hydroxyapatite
wrapped DN gel combined with bone also is good. This kind of
new collagen matrix composite DN gel has good biomechanical
properties and combined with bone, is a kind of soft, elastic
ceramic material, to design the next generation of orthopedic
implants as artificial cartilage, the body weight bearing area of
bone defect repair material provides a new choice (76). For
bone regeneration, low immunogenicity fish collagen protein and
bioactive nano-hydroxyapatite (N-HA)-reinforced polylactide
glycogen (PLGA) nanofiber membranes were prepared for
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TABLE 4 | Applications of MDC in medical tissue engineering.

Applications Manufacture technique Forms Additive materials Biological evaluation References

Bone

Tissue

Engineering

/ Scaffolds Hydroxylapatite / (99)

/ Scaffolds Hydroxylapatite / (100)

Freeze-drying and EDC

cross-linked

Scaffolds Alginate hMSCs (41)

/ Solution Moringa oleifera Albino rats (101)

Freeze-

drying/dehydrothermal

treatment

Scaffolds Glycosaminoglycan MC3T3-E1 (48)

/ Solution / Mouse (49)

Hydrolysis Solution / BMSCs (102)

/ solution / Human osteoblasts (74)

/ Scaffolds / Wistar rats (66)

/ Peptide solution Calcium aspartate Rats (103)

Freeze-drying Native collagen / Primary hMSCs (28)

Enzymatical hydrolysis Peptide / Rats (51)

Enzymatical hydrolysis Peptide / MG-63 cells (75)

Freeze-drying/EDC

cross-linked

Scaffolds / NIH3T3, MG-63 cells and Mouse (104)

Freeze-drying/EDC/NHS or

HMDI cross-linked

Scaffolds / Saos-2 cells (50)

Freeze-drying Scaffolds Chitosan/Hydroxyapatite MG-63 cells (61)

Freeze-

drying/Glutaraldehyde

cross-linked

Scaffolds Chitosan/Hydroxyappatite 6T-CEM cells (52)

Vacuum drying Scaffolds Hydroxyapatite/PMMA MC3T3-E1 cells and L929 cells (62)

Glutaraldehyde cross-linked Scaffolds Poly (N,

N’-dimethylacrylamide)

Rabbit bone defect model (76)

Electrospinning Scaffolds PLGA/Hydroxyapatite Primary BMSC and Human

gingiva fibroblasts

(6)

Cartilage tissue

engineering

Freeze-drying/Chemical

cross-linking.

Scaffolds / hMSCs (105)

Freeze-drying Scaffolds / Rabbit (106)

Freeze-drying Collagen solution / hMSCs (42)

Freeze-drying Scaffolds / Rabbit chondrocytes and Rude

mice

(107)

Cryogelation Scaffolds / (71)

Freeze-drying Peptide solution / (91)

Enzymatical hydrolysis Peptide / Primary horse adipose-derived

stromal cells

(108)

Enzymatical hydrolysis Peptide / Rabbit osteoarthritis model (77)

Acid soluble Native collagen / hMSCs (29)

Freeze-drying/EDC

cross-linked

Scaffolds / Primary human and rat nasal

septum chondrocytes and Rat

septal cartilage defect model

(45)

Freeze-drying/EDC

cross-linked

Scaffolds Alginate hMSCs (47)

Enzymatical hydrolysis Peptide / Human (clinic) (109)

/ Scaffolds / Rats (45)

Dental tissue

engineering

Enzymatical hydrolysis Peptide / Rat odontoblast-like cells

(MDPC-23)

(30)

Enzymatical hydrolysis Peptide / Primary human periodontal

ligament cells

(31)

Elecrospinning Scaffolds Bioactive glass/Chitosan Primary human periodontal

ligament cells and dog furcation

defect model

(38)

Nerve regeneration Enzymatical hydrolysis Peptide solution / Rats (53)

Acid dissolution tilapia collagen gel / hiPSCs (37)

Skin tissue

engineering

Enzymatical hydrolysis Peptide solution / Rabbit (14)

(Continued)
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TABLE 4 | Continued

Applications Manufacture technique Forms Additive materials Biological evaluation References

Electrospinning Nanofibers / Rats (24)

Hydrolyze Peptide solution / / (110)

Solvent

casting/Glutaraldehyde

cross-linked

Scaffolds / L929 cells and Rat wound model

Freeze-

drying/glutaraldehyde

cross-linked

Scaffolds / Primary human fibroblasts and

keratinocytes and Rat wound

model

(78)

Freeze-

drying/Dehydrothermal

treatment at 105◦C

Scaffolds Shrimp shell

chitosan/glycerin

Primary human fibroblasts and

keratinocytes

(35)

EDC cross-linked Scaffolds / NIH3T3 cells (111)

Freeze-drying/EDC

cross-linked

Scaffolds Alginate/Chitooligosaccharides Primary human dermal cells (79)

Freeze-drying Scaffolds / Hamster kidney fibroblasts

(BHK21)

(112)

Freeze-drying Scaffolds / Rat wound model (26)

Freeze-drying/EDC

cross-linked

Scaffolds Chitosan Mouse embryonic fibroblasts

(MEF) and Rabbit wound model

(80)

Enzymatical hydrolysis Peptide / Human keratinocyte (HaCaT)

and Rabbit scald wound model

(14)

Enzymatical hydrolysis Peptide / Rat wound model (54)

Electrospinning Scaffolds Bioactive glass HaCaT cells, dermal fibroblasts

and HUVECs

(36)

Casting-solvent evaporation

technique

Native collagen / Swelling behavior

Freeze-drying/ceftazidime

cross-linked

Scaffolds / NIH3T3 cells (113)

Freeze-

drying/Glutaraldehyde

cross-linked

Scaffolds / NIH3T3 cells and HaCaT cells (114)

Electrospinning Scaffolds Chito oligosaccharides Human skin fibroblasts (115)

Enzymatical hydrolysis Peptide Human (clinic) (116)

Enzymatical hydrolysis Peptide / Human (clinic) (117)

Enzymatical hydrolysis Peptide / L929 and HaCaT cells (63)

Wound healing / Tilapia collagen extract / Rats (24)

/ Peptide solution / SD rats (118)

Enzymatical hydrolysis Formulated into a

cream

/ Male white rats (Rattus

norvegicus)

(68)

Electrospinning Nanofibers / HaCaTs and SD rats (39)

/ Hydrogel / Albino rats (119)

Freeze-drying Peptide solution / Mice (44)

Freeze-drying Peptide solution / NIH3T3 cells (72)

Corneal tissue

engineering

Decellularization/Decalcification Scaffolds / Rat ocular implantation model (32)

Drying at 25◦C Native collagen / Human limbal epithelial cells (81)

Vascular tissue

engineering

/ Peptide solution / CAVECs and Wistar rats (120)

Freeze-drying/Cold-

pressing/1,4-butanediol

diglycidyl ether cross-linked

Scaffolds / Mouse lymphatic endothelial

cells

(67)

Electrospinning Scaffolds PLGA Primary rabbit aortic endothelial

cells and smooth muscle cells

(40)

Oral mucosa

regeneration

Freeze-

drying/Dehydrothermal

cross-linked

Scaffolds Chitosan Primary oral keratinocytes (33)

Spinal cord injury

repair

/ Double-layer collagen

membrane

/ / (121)

hiPSCs, human induced pluripotent stem cells; hMSCs, human marrow stromal cells; BMSC, bone marrow stromal cells; HUVECs, human umbilical vein endothelial cells; CAVECs,

carotid artery vascular endothelial cells.

Frontiers in Nutrition | www.frontiersin.org 7 August 2021 | Volume 8 | Article 702108

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Xu et al. Marine-Derived Collagen

FIGURE 2 | Applications of marine-derived collagen (MDC) for various area in human health, mainly including medical tissue engineering (TE), drug delivery system,

cosmetics and Facials, and foods and health care products.

electrospinning guided bone regeneration (GBR). It was found
that the membrane had good cytocompatibility with bone
marrow mesenchymal stem cells (BMSCs) and human gingival
fibroblasts (HGF). The experimental results showed that the
composite fibrous membrane has great potential to guide bone
or tissue regeneration (6).

Cartilage Tissue Engineering
MDC plays a very important role in cartilage tissue and enhances
chondroblast differentiation. For example, the researchers
experimented with chondrogenic differentiation of human bone
marrow mesenchymal stem cells (hMSCs) on the collagen fibers
of tilapia scales and compared them with porcine collagen
and uncoated culture dishes. The results showed that tilapia
collagen fibrils in chondrogenic medium specifically enhanced
chondrogenic differentiation of HMSCs. Therefore, collagen
from tilapia scales can provide a suitable source of collagen
for chondrogenic formation of hMSCs in vitro (29). Jellyfish
collagen can also be used as a novel cartilage repair implant,
using active growth factor nanoreservoir (TGF-β3), adult human
mesenchymal stem cells derived from bone marrow. It was

found that jellyfish type collagen implants led to chondrogenic
differentiation of mesenchymal stem cells, and TGF-β3 as
a nanoreservoir led to chondrogenic gene expression and
chondrogenic differentiation (42). Using jellyfish collagen as
a scaffold, for example, the researchers developed a three-
dimensional porous scaffold with interconnected pores that can
support and maintain chondrogenic differentiation of human
mesenchymal stem cells (105). Porous scaffolds of jellyfish
collagen fibers and sodium alginate hydrogels are also available
(47). And it can stimulate the differentiation capacity of some
other cells. For example, the researchers used the blue shark skin
collagen with and without external stimuli induced human fat
stem cells (hASC) their potential to differentiate into cartilage
cells (71), and the sharks and rays of collagen combined shark
chondroitin sulfate can be used to simulate human cartilage
extracellular matrix. That suggests the MDC, a biomaterial,
can be used as a template for cartilage regeneration (91).
MDC stimulated the differentiation of chondroblasts and further
promoted the formation of cartilage. The researchers prepared a
three-dimensional porous fish collagen (FC) scaffold using MDC
by freeze-drying technique. When rabbit auricle chondrocytes

Frontiers in Nutrition | www.frontiersin.org 8 August 2021 | Volume 8 | Article 702108

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Xu et al. Marine-Derived Collagen

were implanted into porous fish collagen, it was found that it
promoted the formation of chondrospecific extracellular matrix
(ECM) in vivo and in vitro, and thus promoted the formation
of cartilage under the rabbit skin (106, 107). TGF-β1 can induce
chondrogenesis of adipocyte stromal cells (ADSCs) by adding
fish collagen to TGF-β1, which can induce chondrogenesis
effectively (108).

In cartilage tissue repair, the MDC matrix provides excellent
performance for cartilage tissue engineering through the
experiments of nasal cartilage repair with MDC in situ model of
rats (45). It also has a protective effect on cartilage (77).

Dental Tissue Engineering
In previous research, some researchers used type I collagen from
tilapia scales in rat experiments to show that it has similar
biocompatibility with pig skin collagen, which reminds us that
tilapia scales collagen has the potential to replace mammalian
type II collagen in oral and maxillofacial tissue regeneration.
Soon after, the researchers carried out the periodontal membrane
cell culture experiment of hydrolyzed tilapia collagen and proved
that it had the function of periodontal tissue regeneration in
vitro. The collagen of tilapia was extracted by electrospinning
method, and the composite nanofiber membrane was prepared
with bioactive glass and chitosan. The cell viability and osteogenic
gene expression of human periodontal ligament cells (HPDLCs)
were detected by the composite membrane in the canine class
II bifection defect model experiment. It also promoted the
expression of Runt-related transcription factor 2 (RUNX-2) and
osteopontin (OPN) proteins (30, 31, 38). In conclusion, the
application of MDC in teeth also has great potential.

Vascular Tissue Engineering
MDC also has some applications in vascular tissue. For example,
MDC can promote the growth of vascular endothelial cells.
Experimental studies have investigated the protective effect
of MDC peptides (MCPs) on carotid vascular endothelial
cells (CAVECs) in type 2 diabetes mellitus (T2DM) and
its mechanism. They injected Wistar rats with different
concentrations of MCPs. In vitro, the vascular/endothelial
construction of human umbilical vein endothelial cells
(HUVECs) was cultured. Then, inflammatory exudation and
related molecular markers of the vena cava endothelial cells were
detected and analyzed. The results showed that MCP treatment
for 4 weeks significantly reduced blood glucose, endothelial
thinning. And inflammatory exudation of carotid vascular
endothelial cells was reduced in rats. In vitro, high glucose
intervention increased apoptosis in HUVECs significantly.
Moderate and high doses of MCPs partially improved this
high glucose mediated apoptosis and reduced the level of
apoptotic biomarkers. Therefore, moderate dose of MCP inhibits
apoptosis and reduces the expression of coupling factor 6 and
microparticles, suggesting that we can use MCP to prevent early
cardiovascular complications of T2DM (120). Some researchers
also used freeze-drying and electrospinning to prepare MDC and
PLGA fiber tubular scaffolds for vascular transplantation, and
the electrospinning fiber PLGA layer on the surface of porous
tubular collagen scaffolds in dry and wet states improved the

mechanical strength of collagen scaffolds. The results showed
that co-culture of smooth muscle cells (SMCs) and endothelial
cells (ECs) using a collagen-PLGA scaffold under a pulsating
perfusion system enhanced the development of vascular EC and
preserved the differentiated cell phenotype (40).

Due to the good biocompatibility of fish collagen, the
researchers use extra methylation modification and 1, 4-
butanediol diglycidyl ether (BDE) crosslinking steps to improve
the scales of the collagen derived from the physical and chemical
properties. It was found that collagen integration plaques with
the surrounding tissue was good. The infiltration of cells, blood
vessels and lymphatic vessels was good. This study demonstrates
the collagen derived from fish scales as a promising scaffold
material in various biomedical applications (67).

Spinal Cord Injury Repair and Nerve
Regeneration
MDC has also been used in spinal cord regeneration. A new
double-layer collagen membrane was designed and tested in a rat
model of incomplete spinal cord injury. The previous research
results showed that the transplantation of neural stem cells
into a double-layer collagen membrane with different pore size
promoted the differentiation of neural stem cells, alleviated the
pathological injury, and improved themotor function of rats with
incomplete spinal cord injury significantly (121).

Tilapia skin collagen was obtained by acid solution method
and the stiffness of brain tissue was replicated for in vitro
recombination experiments. By adding a cross-linker, a gel with a
hardness similar to that of living brain tissue (150–1,500 Pa) was
obtained, and the ability of the gel as a stem cell medium and the
effect of hardness on neural lineage differentiation using human
Induced pluripotent stem (iPS) cells were further investigated. It
was found that exposure to a gel with a hardness of about 1,500 Pa
promoted the production of neurons in the dorsal cortex during
the early stages of neuroinduction (37).

To study the neuroprotective effects of MDC peptides (MCPs)
isolated from salmon skin by enzymatic hydrolysis on perinatal
asphyxia in male rats. Researchers found that MCPS promoted
long-term learning and memory in perinatal asphyxia (PA)
pups by decreasing oxidative damage and acetylcholinesterase
(AChE) activity in the brain, and increasing the expression of
p-CREB and brain-derived neurotrophic factor (BDNF) in the
hippocampus (53).

Skin Tissue Engineering and Wound
Healing
MDC has significant biological activity and plays an important
role in skin tissue. MDC can promote wound healing. For
example, the study used the MDC peptide (MCP) in Nile tilapia
skin to carry out the burn wound experiment in deep part
thickness of rabbits and the scratch experiment in vitro of rats
(14). At the same time, there is also a research team, for example,
using porous collagen sponge to conduct experiments on burned
wounds in rats (114), using jellyfish collagen polypeptide to
conduct oral experiments in rats and salmon skin wounds in
rats (54), using ethylene amine and fish scale collagen to conduct
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wound experiments in rats (113), all of which indicate that MCP
can promote wound healing. Moreover, its suitability as a dermal
substitute was found in the wound healing experiment of rat
model (78). The researchers found that MDC could quickly and
effectively promote the wound healing of rats (26). If it is made
into scaffolds or nanofibers, it can also promote wound healing.
The researchers prepared chitosan/sponge collagen/glycerin
three-dimensional porous scaffolds and bionic electrospinning
fish collagen/bioactive glass (COL/BG) nanofibers. The healing
experiments on rat skin wounds also showed the ability of MDC
to promote wound healing (35, 36). At the same time, MDC is
also an excellent scaffold for skin tissue regeneration (79), and a
potential wound dressing with antimicrobial properties (115).

In vivo experiments with MDC scaffolds from Cadfish and
Weever showed that the scaffolds promoted the proliferation
and migration of NIH/3T3 fibroblasts, and promoted tissue
regeneration and healing (111, 124). Fibroblasts from small
hamster kidney (BHK21) were inoculated on a three-dimensional
collagen gel. The results showed that it could activate the
proliferation of BHK-21 cells, so MDC could be used as a
potential biomaterial extract for biomedical applications (112).

Hydrolyzed collagen is a kind of more and more popular
health care products, its molecular weight is very low peptide,
easy to be digested, absorbed and distributed by human body.
Many clinical trials have been completed and current studies
have shown the effects and benefits of collagen peptides on skin,
such as hydration, elasticity and reduction of wrinkles. Therefore,
hydrolyzed collagen can be considered an important weapon in
the world every day in the fight against skin aging (116). Some
researchers used hydrolyzed MDC to conduct experiments on
the cheek skin of women aged 45–60 years old, and found that
it could reduce skin wrinkles, enhance elasticity and tightness,
improve gloss, and effectively improve the skin health (110).
Orthosilicic acid, which hydrolyzes collagen and stabilizes it,
which also has this effect (117).

MDC plays an important role in skin wound healing.
Researchers used Nile tilapia skin collagen extract to promote
skin wound healing in rats, and the experimental group showed
obvious signs of skin healing. Moreover, the expression levels
of vascular endothelial growth factor (VEGF) and transforming
growth factor-β1 (TGF-β1) were significantly increased, and the
gene expressions of VEGF, basic fibroblast growth factor (bFGF)
and Alpha-smooth muscle actin (α-SMA) were significantly up-
regulated. These results indicate that local application of Nile
tilapia collagen extract can promote skin wound healing in rats,
which may be due to its stimulating effect on the recruitment
and activation of macrophages to produce chemotactic growth
factors, fibroblast proliferation and angiogenesis (24). The
researchers also used Snakehead fish collagen, Queen Fish skin
collagen, Rhizostoma pulmo jellyfish collagen, andGiant Croaker
(Nibea japonica) swim Bladders Collagen Japan swim bladder
was used for wound healing experiment. Results show that the
snakehead ossein paste made of white male rats sewer rat wound
healing the best dose of 3% concentration (68), preparation of fish
skin collagen hydrogel promote epithelial regeneration, and no
water gel processing rat inflammatory cells angiogenesis, collagen
deposition and hexose amine content, epithelium and wound

contraction increased significantly (119). At the same time,
Jellyfish collagen promotes artificial wound formation on the
monolayer of human umbilical vein endothelial cells (HUVECs)
(44). Japanese loach swim bladder Acid-soluble collagen (ASC)
and pepsin soluble collagen (PSC) have good application in
wound healing of mouse in vitro scratches (72). The researchers
also found that oligopeptide compounds derived from marine
fish peptides (MFPs) have the potential to significantly increase
uterine scar tension, reduce the risk of uterine rupture, and
promote uterine wound healing in rats following cesarean section
(CS). It is speculated that its promoting effect may be related to
the formation of new capillaries in scar tissue, the growth and
repair of collagen fiber and smooth muscle tissue (118).

Oral Mucosa Regeneration
MDC also plays a role in the repair of oral mucosa. Researchers
prepared chitosan-collagen composite scaffolds (C3) to construct
oral mucosal equivalents (EVPOME-C) in vitro, and compared
EVPOME-C with oral mucosal equivalents (EVPOME-B) and
natural oral mucosa constructed with Alloderm R© (EVPOME-
A) and Biomend R©. The results showed that the C3 scaffold has
a well-developed fiber network and a small enough porosity
to prevent keratinocytes from growing in the scaffold after cell
inoculation. The C3 scaffold has potential application value
in epithelial tissue engineering, and provides a new treatment
method for oral mucosal regeneration medicine (33).

Corneal Tissue Engineering
MDC has also been used in corneal tissue, in which fish
scale-derived collagen matrix (FSCM) has been proposed as
a substitute for human donor corneal tissue. To assess its
biocompatibility, the FSCM was implanted as an anterior
lamellar keratoplasty (ALK), placed in the interlamellar
pouch (IL) and placed in the subconjunctiva (SC). The light
transmittance was found to be similar to that through the
human cornea. Implanting FSCM as an ALK resulted in only
mild blurring, not pupil blurring, despite the presence of
new blood vessels around the sutures; Interleukin placement
causes moderate haze, partial occlusion of the pupil, and (partial)
anterior lamella melting. The SC group showed local swelling and
sclerosis, which decreased over time. Histology showed mild to
moderate chronic inflammation in the ALK and IL groups, while
severe inflammation was found in the SC group. Despite the
technical difficulties, treatment of ALK with FSCM is feasible,
while IL placement can cause anterior lamina melt. Further
studies are needed to better understand its immunogenicity.
The light scattering and transmission data suggest that the first
version of the FSCM is comparable to human corneal tissue in
this respect (32).

MDC IN DRUG DELIVERY SYSTEM

MDC plays an important role in the drug delivery system,
as shown in Table 5. For example, the researchers report
a simple method of preparing collagenous peptide-chelated
calcium (CPCC) from marine fish scales and a novel CPCC-
loaded nanoparticle to supplement calcium. Their experiments
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TABLE 5 | Applications of MDC in drug delivery system.

Loaded drugs Forms Additive materials Biological evaluation model References

Antibiotic (ampicillin and tetracycline) Powder and film / / (64)

Lysozyme Microparticles / / (46)

Growth factor (bFGF) Scaffolds Chitosan/chondroitin sulfate/PLGA Rat full-thickness skin wound model (82)

Ion (Calcium) Nanoparticle Calcium alginate Rats’ femur (83)

Ion (Calcium) Injectable gel Chitosan Rats (60)

α-lactalbumin Microparticles / / (46)

Estrogen (17-beta-estradiol-hemihydrate) Nanoparticle / Postmenopausal women (27)

Gastroresistant tablets Enteric coating / (65)

showed that core-shell CPCC significantly increased bone
mineral density and calcium content in the femur of rats, so
the CPCC and core-shell CPCC nanoparticles are ideal choices
for calcium supplementation (46). Acid-soluble collagen (ASC)
and pepsin soluble collagen (PSC) isolated and identified from
the waste skin of sea eel (Evenchely smacrura) can also be
used for in vitro drug release experiments (83). The naturally
keratinized sponges (Porous fungi, Dictyoceratida) are high in
glycosaminoglycan content. It can be administered topically as
a bio-based dressing and a biological active bionic carrier to
regulate the process of wound healing (84). There are also
spongy renal cartilages. A water-based gastric acid resistant
coating dispersion was developed using renal sponge collagen
15% (W/W) as film forming agent. The results showed that the
sponge collagen was resistant to drug for more than 2 h under the
action of 0.1Mhydrochloric acid and disintegrated within 10min
in the phosphate buffer solution of pH 6.8. The coated tablets had
good mechanical properties and could be stored for more than
6 months without loss of intestinal solubility (60). In hormone
replacement therapy, transdermal administration of estradiol
bypasses the liver system before metabolism, and therefore has
better side effects than oral estrogen. Renal cartilage sponge
collagen nanoparticles were used as an osmotic accelerator for
transdermal delivery of 17β-estradiol-hemihydrate for hormone
replacement therapy. The results showed that the hydrogels
containing estradiol collagen nanoparticles could prolong the
release time of estradiol and significantly improve the absorption
of estradiol. Therefore, sponge collagen nanoparticles are a
promising carrier for transdermal drug delivery (64).

The researchers mixed MDC with other biomaterials. The
chitosan and chum salmon skin MDC composite gel materials.
The compound gel was injected subcutaneously into the back of
rats. The specimens were collected for histological examination
and ELISA to detect tumor necrosis factor α (TNF-α). It was
found that the composite gel could be used as a carrier of tissue
filler and drug delivery system (65).

MDC also has potential as a microprotein delivery system.
The microgranular protein delivery system was developed using
collagen extracted from the jellyfish Catostylus tagi as a polymer
matrix. The researchers extracted collagen microparticles by
emulsification-gel-solvent, and the CMPs collagenmicroparticles
was cross-linked with 1-ethyl-3-(3-dimethylaminopropyl)
carbon diimine (EDC). In vitro experiments showed that

cross-linking also resulted in greater stability of CMP in water,
allowing for slow release of microgranular proteins. These show
the potential use of MDC in the production of microparticles for
the controlled release of therapeutic proteins (27).

MDC IN COSMETICS AND SKINCARE

MDC is a good moisturizer candidate, which has a wide range
of functions in cosmetics. The researchers used MDC from
the skin of salmon and cod as an ingredient in cosmetic
formulas. Then the experimental results showed that collagen
exhibited goodwater retention ability. Therefore, it is suitable as a
moisturizer for skin application. Molecular markers of irritation
and inflammation were analyzed that local exposure to collagen
in the reconstructed human dermis was found to have no
stimulating potential (85). The researchers also isolated collagen
from grouper swim bladders and turned it into nanoscale
collagen. To determine whether the chemical composition of
collagen meets the quality standards of cosmetic raw materials,
they did a lot of experiments. Finally, they found it have met the
quality requirements of collagen standards as a cosmetic material
based on Standar Nasional Indonesia (SNI) (87).

MDC IN FOODS AND HEALTH PRODUCTS

MDC is also widely used in the field of food science and health
products (Table 6). Currently, MDC or other-sourced collagen
can be used as an emulsion to modify food, such as fish oil.
Fish oil is rich in omega-3 unsaturated fatty acids and has
many important physiological functions and potential for disease
prevention. However, there aremany disadvantages about it, such
as its double bonds are too unstable to rupture, its fishy taste,
and poor water solubility. These limit the application. There is a
need to develop new formulations, food-emulsions are a practical
method, to encapsulate fish oils for protection, increase water
solubility and isolate the fishy smell.

There are many influence factors in the use of food-emulsions.
To improve the emulsion’s stability, researchers need to keep
our eyes on the temperature, pH, surface modification, storage
time and so on. Emulsion stability mainly depends on droplet
size and shell thickness (134). Higher storage temperatures (4–
37◦C) cause the fish oil emulsion to change from a liquid
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TABLE 6 | Applications of MDC in foods and health care products.

Applications Forms Functions References

Emulsion Gelatin Emulsion in food industry. (125)

Gelatin Fish oil-loaded gelatin-stabilized emulsions in food. (126)

Gelatin Optimal emulsion storage and transportation conditions in food. (127)

Gelatin and peptides Decrease the creaming stability (128)

Gelation Peptides Gelatins can increase the droplet stability and effect on the phase transition. (129)

Antioxidant Peptides GPEGPMGLE, EGPFGPEG, and GFIGPTE, might serve as potential antioxidants applied in

nutraceutical and pharmaceutical products.

(130)

Gelatin Antioxidative MCPs may increase life span and protection against tumor development. (131)

Peptides Peptides serve as natural antioxidants in food and cosmetics. (132)

Soft capsules Gelatin Electrospun nanofibers of MDC transport fish oi or nutrients to the stomach and intestines. (133)

form to a redispersible gel form. It shows that increased
temperatures decreased the creaming stability differences (128).
The pH of gelatin solution, the speed of homogenizer and the
homogenizing time also have important effects on the stability
of the emulsion. The gelatin solution pH, speed of homogenizer
and the homogenizing time also have important effects on the
stability of droplet sizes linearly decreased with increased of
solution pH and homogenizing times. Droplet sizes exponentially
decreased with increased of homogenizing speeds (135). There
are results demonstrating that Cooperative adsorption has better
emulsion stability than competitive adsorption. In the work, they
mainly explored the gelatin is combined with four surfactants
[soybean lecithin (SL), sodium dodecyl sulfate (SDS), Span
80 and Tween 80], which adsorb each other at the oil-water
interface, which can improve or decrease the stability of the
emulsion (136). These results are connected with the changes of
pH, too. The stability results of gelatin/surfactant co-stabilized
(Span 80 and SL) or competitive stabilized (Tween 80 and SDS)
were studied under different pH backgrounds (137).

Gelations can be modified by different surface modifications.
Bovine and fish gelatins were modified by octenyl succinic
anhydride (OSA) (125). TheDS increase of OSA-modified bovine
bone gelatins increases the droplet stability, but theDS increase of
OSA-modified fish skin gelatins can only increases of the droplet
stability and effects on the phase transition and creaming index
of fish oil-loaded emulsions is very weak. The new formulation
of oat β-glucan (OG)-MDC peptide mixed gels was researched.
It has guiding significance for the formulation of low-fat meat
products and is beneficial to improve food safety and nutritional
value (129).

Collagen peptides may be used as a potential antioxidant in
nutritional and pharmaceutical products. Prious research has
shown that collagen peptides can serve as natural antioxidants
in a variety of applications, such as food and cosmetics (138).
Antioxidant Peptides from Gelatin Hydrolysate of Skipjack Tuna
(Katsuwonus pelamis) might serve as potential antioxidants
applied in health food industries (130). Antioxidant peptides
from collagen hydrolysate showed that collagen peptides might
serve as potential antioxidants applied in nutraceutical and
pharmaceutical products (131). Previous studies have shown
that MDC-prepared skin has two effects, namely extending the

life span of rats and inhibiting the spontaneous occurrence
of tumors. This result indirectly proves that the antioxidant
properties of MCPs may be the cause, regarding the extension of
life and protection of tumor development (132).

CONCLUSION AND OUTLOOK

Marine-derived collagen (MDC) has good biocompatibility and
biodegradability. In recent years, scientists have made extensive
exploration in food emulsions and biomedical applications.
MDC can be extracted from fish waste products, which is an
economical and sustainable source of collagen and can be used as
an alternative to land-based collagen. Land-based collagen carries
the risk of transmission of zoonotic diseases such as bovine
sponge encephalopathy and hand, foot and mouth disease. For
religious reasons, pig-derived collagen cannot be used in some
foods. MDC protein has a very important application in food.
MDC can be used as a food emulsion to encapsulate fish oil for
protection. It has guiding significance for the formulation of low-
fat meat products and is beneficial to improve food safety and
nutritional value. In nutraceutical and pharmaceutical products,
MDC might serve as potential antioxidants, even can inhibit the
development of tumors.

Similar to materials such as polyhydroxyalkanoate (PHA)
(139), PLGA (140), MDC is widely used in medical tissue,
especially in bone tissue engineering, cartilage tissue engineering
and functional repair of skin tissue. Good biocompatibility
makes it the best template for cell growth. At the same time,
scaffolds made of MDC can enable cells to live in 3D space
(141, 142), thus improving the efficiency of culture, and collagen
can induce cell differentiation in some specific environments,
so as to produce specific functions. In addition, due to its
biodegradability, MDC can be a good drug encapsulation and
sustained-release system (141, 143) to improve the effectiveness
of drug delivery. Of course, MDC also has some drawbacks.
MDC is not strong enough, which makes its scaffold mechanical
properties inadequate. In 2015, tilapia was proved to have good
biocompatibility and can effectively induce skin regeneration
(25). In order to explore the potential clinical application value
of gill dolphin collagen materials, gill dolphin collagen extracted
from gill dolphin skin was compared with tilapia collagen (144).
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The gill dolphin collagen and tilapia collagen were dissolved in
0.5 mol/L acetic acid to form the membrane by casting method.
The morphological structure, aqueous solubility and mechanical
properties of gill dolphin and tilapia collagen membranes were
characterized. The degradability and biocompatibility of the
two materials were tested by subcutaneous implantation and
cell culture (145, 146). The samples were detected at the
experimentally specified time, and the application potential of
the gill dolphin collagen membrane was evaluated by contrast
with the tilapia collagen membrane. However, MDC also has the
characteristics of low mechanical strength and rapid degradation
in vivo, which can be solved by crosslinking with other natural
or synthetic polymers. Therefore, 25% glutaraldehyde cross-
linking can improve the mechanical strength and degradation
characteristics of collagen membrane (147, 148). The residual
glutaraldehyde after crosslinking was treated with glycine (149).

Based on this review, there are not many kinds of MDC
available in the market at present, but there are abundant
kinds of marine organisms with excellent physical and chemical

properties. Therefore, the application prospect of all kinds of

MDC is broad. As a new type of biomaterial, MDC egg has been
widely recognized and attracted more and more attention from
researchers in clinical, medicine, food and other fields.
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