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The aim of this study was to determine the effects of long-term Nicotinamide

mononucleotide (NMN) treatment on modulating gut microbiota diversity and

composition, as well as its association with intestinal barrier function. In this study,

C57BL/6J mice were fed different concentrations of NMN, and their feces were collected

for detection of 16S rDNA and non-targeted metabolites to explore the effects of NMN

on intestinal microbiota and metabolites. The results revealed that NMN increased

the abundance of butyric acid-producing bacteria (Ruminococcae_UCG-014 and

Prevotellaceae_NK3B31_group) and other probiotics (Akkermansia muciniphila), while

the abundance of several harmful bacteria (Bilophila and Oscillibacter) were decreased

after NMN treatment. Meanwhile, the level of bile acid-related metabolites in feces from

the G1 group (0.1 mg/ml) was significantly increased compared to the control group,

including cholic acid, taurodeoxycholic acid, taurocholic acid, glycocholic acid, and

tauro-β-muricholic acid. In addition, long-term NMN treatment affected the permeability

of the intestinal mucosa. The number of goblet cells and mucus thickness increased, as

well as expression of tight junction protein. These results demonstrate that NMN reduced

intestinal mucosal permeability and exerts a protective effect on the intestinal tract. This

study lays the foundation for exploring NMN’s utility in clinical research.

Keywords: NMN, gut microbiota, colon, bacterial metabolites, intestinal mucosa

INTRODUCTION

As early as 1906, nicotinamide adenine dinucleotide (NAD+) was known to increase the
fermentation rate of yeast extract, which subsequently became a hot spot in biological research.
In recent years, the two intermediates of NAD+, NMN and nicotinamide riboside (NR), have
received renewed attention (1). NMN is synthesized by niacinamide (a form of water-soluble
vitamin B3) and 5′-phosphoribosyl-1-pyrophosphate (PRPP). This process is catalyzed by the
NAD+ biosynthetic rate-limiting enzyme nicotinamide phosphoribosyltransferase (NAMPT) (2,
3). Recent studies have shown that NMN increases concentrations of NAD+ in the pancreas, liver
and other tissues (4). In addition, long-term (1-year) oral administration of NMN (up to 300
mg/kg) did not cause any obvious deleterious or toxic effects (5). NAD+ depletion can lead to a
wide range of age-related problems, including neurodegenerative diseases, such as Alzheimer’s and
Parkinson’s, cardiovascular disease and muscle wasting (1, 6–8). In addition to this, NAD+ could
stimulate intestinal goblet cells to secrete mucus to maintain the integrity of intestinal mucosa,
proving that NAD+ could protect intestinal homeostasis to a certain extent (9).
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The human intestinal mucosa covers an area of up to 200–
300 square meters and contains 10 trillion different symbionts,
known as the “microbiota”. Microbial communities outnumber
somatic and germ cells by more than 10 to one. The genome of
the microbiome, known as the microbiome, is 150 times larger
than the human genome (10, 11). It not only plays a vital role in
the digestive function of the body, but also affects the operation
of other systems. In recent years, due to its importance and
potential value, the gut microbiota has become a hot topic. The
basic functions of the gut microbiota include facilitating the
decomposition of food, making it easier to absorb and digest (12),
synthesizing essential vitamins (13), removing toxic compounds
(14), resisting pathogens (15), maintaining the integrity of the
intestinal mucosa (16), and regulating immune function (17).
In addition, damage to the intestinal mucosa and imbalance in
the gut microbiota can cause invasion of microbial communities
into mucosal cells, change their circadian rhythm, and affect lipid
absorption and storage, inducing the development of metabolic
diseases, such as obesity, type 2 diabetes, and non-alcoholic fatty
liver disease (18, 19). Although specific effects and mechanisms
of these bacteria on lipid and glucose metabolism have not been
fully elucidated, they help maintain energy homeostasis in the
body. However, due to individual differences, the impact of the
gut microbiota on the human body is not clearly or specifically
understood (20).

Bile acid is a metabolite of cholesterol in the liver, and it
participates in the process of regulating the absorption and
metabolism of cholesterol. Primary bile acids are synthesized
in liver cells and enter the intestine with bile to promote the
digestion and absorption of lipids. Through the action of bacteria
in the lower intestine (the small intestine and large intestine),
secondary bile acids are formed. About 95% of intestinal bile
acids are reabsorbed by the intestinal wall, including active
reabsorption and passive absorption. Reabsorbed bile acids and
return to the liver via the portal vein, together with the new
synthesis of conjugated bile acid imported into the intestines.
This process is called the enterohepatic circulation of bile acids
(21). In addition, the antibacterial effect of bile acid can also
inhibit the excessive proliferation of bacteria, and has a regulatory
effect on the gut microbiota (22). The coordination between the
gut microbiota and bile acids plays a key role in maintaining the
homeostasis of the intestinal environment.

NMN has great potential for regulating metabolism. However,
it remains unclear whether and how NMN affects the gut
microbiota, related metabolites and colonic epithelial integrity.
The present study aimed to investigate the influence of NMN
on the diversity and composition of the gut microbiota and its
association with intestinal barrier dysfunction.

MATERIALS AND METHODS

Experimental Animals
All experimental procedures were implemented after approval
by the animal ethics committee of Jiangsu University. C57BL/6J
mice (female, 12-week-old) were purchased from the Laboratory
Animal Center of Jiangsu University (Jiangsu, China) and raised
aseptically an environment of 22± 3◦C and humidity of 40–60%

(23). After a week of adaptation,mice were randomly divided into
five groups of six individuals for a 15-week period. Mice in the
control group drank deionized water, and the other groups were
supplemented with different concentrations of NMN in their
drinking water, including 0.1 mg/mL (G1 group), 0.2mg/mL (G2
group), 0.4mg/mL (G3 group), and 0.6mg/mL (G4 group).

Mice in all groups were given free access to standard food. All
mice were sacrificed after 15 weeks. Blood samples were obtained
by orbital blood collection, and serum was collected after
separation by centrifugation at 3,000× g for 15min at 4◦C. Then,
mice were anesthetized with ether and sacrificed by cervical
ligation. The colon and liver tissues were separated, partly stored
in a −80◦C freezer, and partly fixed in 4% paraformaldehyde.
The feces in the intestines were removed and stored in liquid
nitrogen and then frozen in at −80◦C for subsequent 16S rDNA
sequencing and untargeted metabolome assay.

In vivo Intestinal Permeability (IP)
To determine the intestinal mucosal barrier permeability, mice
were given FITC-dextran 4 kDa (FD4: 500mg/kg BW; Sigma)
orally and anesthetized two hours later for in vivo imaging.
After 4 hours, blood samples were collected from the orbit and
serum was separated. The concentration of FD4 in serum was
measured by automatic Infinite M200 microplate reader (Tecan,
Austria) (Ex 485 nm; Em 525 nm). Paraffin sections of mouse
colon samples were dewaxed and dehydrated, and then the nuclei
were stained with DAPI and observed under a microscope.

Morphological Analysis and
Immunohistochemistry
The tissues fixed with 4% paraformaldehyde were washed with
phosphate buffer saline (PBS) and dehydrated with 70, 80, 90%
ethanol and anhydrous ethanol. After transparent treatment
with xylene, the tissues were embedded in paraffin and cut
into sections 5µm thick. The slices were then stained with
hematoxylin and eosin (H&E) (SolarBio, G1120) and Alcian Blue
(Leagene, DG0041).

The following antibodies were used for
immunohistochemistry: anti-claudin-1 (rabbit, polyclonal,
1:200, 13255S; CST, Massachusetts, America), anti-ZO-1 (rabbit,
polyclonal, 1/100, 61–7300, Invitrogen), anti-LC3 (rabbit,
polyclonal, 1/400, 4599S; CST, Massachusetts, America), and
secondary goat anti-rabbit Alexa Fluor 488 antibody (1/2000,
Invitrogen). Paraffin sections were incubated overnight with
primary antibody at 4◦C and then incubated with corresponding
secondary antibody at 37◦C for 20 min. According to the
instructions provided by the manufacturer, the nuclei were
stained with hematoxylin after incubated with the DAB. All
tissue sections were examined using light microscopy.

DNA Extraction and PCR Amplification
DNA was extracted from samples using the E.Z.N.A. R© Fecal
DNA Kit (D4015, Omega, Inc., USA) according to the
manufacturer’s instructions and stored in a −80◦C Refrigerator
(24). Samples were sent to LC-Bio (Hang Zhou, China) for
PCR amplification. The V4 region of the 16S rDNA subunit
of prokaryotes (bacteria and archaea) was amplified by the
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modified primers 515F (5 ′-GTGYCAGCMGCCGCGGTAA-
3′) and 806R (5 ′-GGACTACHVGGTWTCTAAT-3′) and then
sorted the libraries on the NovaSeq platform with PE250.

Intestinal Microbiota Analysis
Samples were sequenced on Illumina NovaSeq platform
according to manufacturer’s recommendations and provided
by LC-Bio. Alpha diversity was applied to the analysis of the
complexity of the species diversity, through the five indicators,
including Chao1 and Observed species, Goods coverage,
Shannon, Simpson. All these indicators were used QIIME2
calculated. Beta diversity is calculated by QIIME2 and plotted by
the R package. The sequence was calibrated using Blast, and each
representative sequence was annotated by SILVA database. The
other diagrams were implemented using the R package (V3.5.2).

Fecal Sample Preparation for
Metabolomics Analysis
After thawing on ice, metabolites were extracted with 50%
methanol buffer. The extract was stored overnight in a
refrigerator at −20◦C. After centrifugation at 4000 g for 20 min,
the supernatant was taken and stored at−80◦C (25).

LC-MS/MS Data Acquisition
All chromatographic separations were performed using
an ExionLC system (SCIEX, Framingham, MA, USA). An
ACQUITYUPLC T3 column (100mm∗ 2.1mm, 1.8µm,Waters,
UK) was used for reverse phase separation. The metabolites of
column elution were detected by high resolution tandem mass
spectrometry (TripleTOF5600 plus) (SCIEX, Framingham, MA,
USA). See the references for specific parameter Settings (26).

Statistical Analysis
Data are expressed as means ± SEM. An unpaired two-tailed
Student t-test was used to assess differences between the two
groups. Data sets involving more than two sets were evaluated
using Kruskal-Wallis test. Correlations were analyzed using
Spearman Correlation Coefficient. Data were analyzed using
GraphPad Prism version 8.0 (GraphPad Software). At P < 0.05, a
result was considered statistically significant.

RESULTS

The Effect of Long-Term NMN Treatment
on the Body Weight of Mice
Mice were supplemented with NMN for 15 consecutive weeks.
Body weight was measured every 7 days, and the weight gain rate
was calculated. The results showed that there was no significant
difference in body weight or weight gain rate between the two
groups of mice (Figure 1).

The Effects of Long-Term NMN Treatment
on the Diversity of the Gut Microbiota
To analyze changes in the diversity of the gut microbiota in
each group, we examined several indicators of alpha diversity.
The chao1 index and observed species (Figures 2A,B) index
primarily reflect the number of OTU species, while the

Shannon and Simpson (Figures 2C,D) indexes are relative to
the average and homogeneity. The results showed that after
administration of NMN, the chao 1 index and other observed
species indexes were decreased and was negatively correlated
with the concentration of NMN. Surprisingly, NMN reduced
the diversity of intestinal species. Principal coordinate analysis
(PCoA) was performed to evaluate the comparability of microbial
communities among the five groups. PCoA results showed
significant differences between the G4 group and the CON group,
indicating a significant difference in microbial composition
(Figure 2E). These results indicated that 0.6mg/mL of NMN
had a significant effect on the microbial composition of mouse
feces. Figure 2B shows that the primary principal component
and secondary principal component account for 10.89 and 8.81%
of the overall analysis results, respectively.

Effects of Long-Term NMN Treatment on
Species Abundance in the Gut Microbiota
As the concentration of NMN increased, the diversity of the
intestinal flora gradually decreased, so we compared the G1
group (supplemented with 0.1 mg/ mL NMN) to the control
group. To compare differences in fecal microflora, Welch’s t-
test was performed for different classification levels. At the
phylum level, the abundance of Bacteroidetes, Verrucomicrobia,
Patescibacteria, Cyanobacteria and Elusimicrobia was higher in
the G1 group than in the control group, while the abundance of
Firmicutes, Proteobacteria, Epsilonbacteraeota, Deferribacteres,
Actinobacteria and some unclassified bacteria was lower in
the G1 group than that in the control group (Figure 3A).
Among them, only Proteobacteria (P <0.05) was significantly
different (Figure 4).

At the order level, the abundance of Bacteroidales,
Lactobacillales, Verrucomicrobiales, Erysipelotrichales,
Saccharimonadales, Bacteroidetes_unclassified,
Selenomonadales, Gastranaerophilales, Rhodospirillales,
Mollicutes_RF39 and Rhizobiales was higher in the G1 group
than in the control group, while the abundance of Clostridiales,
Desulfovibrionales, Firmicutes_unclassified, Campylobacterales,
Betaproteobacteriales, Deferribacterales, Anaeroplasmatales,
Coriobacteriales, Corynebacteriales, Pseudomonadales,
Enterobacteriales, Aeromonadales, Bifidobacteriales, Bacillales,
Rickettsiales, Micrococcales, and Mycoplasmatales was lower
in the G1 group than in the control group (Figure 3B). In
addition, Aeromonadales (P < 0.05), Flavobacteriales (P <

0.05), Desulfovibrionales (P < 0.05), Mollicutes_RF39 (P <

0.05), Pseudomonadales (P < 0.05) and Bifidobacteriales (P <

0.05) levels were significantly different between the two groups
(Figure 4).

At the family level, the abundance of
Mollicutes_RF39_unclassified, Muribaculaceae,
Prevotellaceae, Lactobacillaceae, Bacteroidales_unclassified,
Akkermansiaceae, Erysipelotrichaceae, Saccharimonadaceae,
Bacteroidetes_unclassified, Acidaminococcaceae and
Christensenellaceae was higher in the G1 group
than in the control group, and the abundance of
Aerococcaceae, Moraxellaceae, Aeromonadaceae, Atopobiaceae,
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FIGURE 1 | The effect of long-term NMN treatment on body weight in mice. Long-term supplementation of NMN had no significant effect on body weight (A) or the

body weight change rate (B) between the two groups of mice.

FIGURE 2 | The effects of long-term NMN treatment on the diversity of intestinal flora. α diversity analysis of the feces from mice was performed, and the four indexes

were Chao1 (A), Observed (B), Shannon (C), and Simpson (D) (*P < 0.05, **0.001 < P <0.01). β diversity analysis of gut microbiota and PCOA analysis (E) of fecal

flora composition in each group (P = 0.001).

Bifidobacteriaceae, Lachnospiraceae, Ruminococcaceae,
Bacteroidaceae, Rikenellaceae, Clostridiales_unclassified,
Desulfovibrionaceae, Firmicutes_unclassified, Clostridiaceae,
Tannerellaceae, Helicobacteraceae, Marinifilaceae,
Burkholderiaceae, Streptococcaceae, Deferribacteraceae,
Peptococcaceae, and Eubacteriaceae was lower in the G1
group than in the control group (Figure 3C). Among them,
Mollicutes_RF39_unclassified (P < 0.05), Aerococcaceae
(P < 0.01), Moraxellaceae (P < 0.05), Aeromonadaceae (P
< 0.05), Desulfovibrionaceae (P < 0.05), Atopobiaceae (P
< 0.05), Bifidobacteriaceae (P < 0.05) were significantly
different (Figure 4).

At the genus level, the abundance of
Muribaculaceae_unclassified, Lactobacillus, Bacteroidales
_unclassified, Akkermansia, Lachnospiraceae_unclassified,
Muribaculum, Ruminococcaceae_UCG-014,

Prevotellaceae_UCG-001, Ruminococcus_1, Dubosiella,
and Prevotellaceae_NK3B31_group was higher in the
G1 group than in control group, and the abundance of
Lachnospiraceae_NK4A136_group, Bacteroides, Alloprevotella,
Clostridiales_unclassified, Firmicutes_unclassified, Clostridium,
Alistipes, Parabacteroides, Bilophila, F082_unclassified,
Rikenellaceae_RC9_gut_group, Ruminiclostridium_9,
Intestinimonas, Oscillibacter, Helicobacter, and Odoribacter was
lower in the G1 group than in the control group (Figure 3D).
A total of 17 genera were significantly different between
the two groups, including Ruminococcaceae_UCG-014 (P
< 0.01), Facklamia (P < 0.01), Paenalcaligenes (P < 0.01),
Coriobacteriaceae_UCG-002 (P < 0.01), Desulfovibrionaceae
(P < 0.01), Bilophila (P < 0.01), Peptococcus (P < 0.01),
Corynebacterium_1 (P < 0.05), Psychrobacter (P < 0.05),
Oceanisphaera (P < 0.05), Prevotellaceae_NK3B31_group
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FIGURE 3 | The effects of long-term NMN treatment on the structure of intestinal microflora. Abundance analysis of gut microbiota population, shown as heat maps

of species abundance at phylum (A), order (B), family (C), and genus (D) levels.

(P < 0.05), Jeotgalicoccus (P < 0.05), Ruminococcus (P <

0.05), Aerococcus (P < 0.05), Candidatus_Stoquefichus (P <

0.05), Bifidobacterium (P < 0.05). The above results indicate
that NMN can regulate the diversity of gut microbiota and
improve its structure (Figure 4). The data presented in the
study are deposited in the SRA repository, accession number
PRJNA739491.

The Effects of Long-Term NMN Treatment
on the Concentration of Common
Metabolites in Feces
After observing the effects of NMN on gut microbiota, we
performed an untargeted metabolome assay. As species diversity

in the G1 group was relatively rich, and the abundance
of beneficial bacteria was the highest, the G1 and control
groups were selected for further analysis. Compared to the
control group, the content of bile acid-related metabolites was
significantly altered in the G1 group, with the content of
primary bile acids and secondary bile acids being significantly
increased in the G1 group (Figure 5A), including cholic acid
(CA) (P < 0.0001), taurodeoxycholic acid (TDCA) (P <

0.001), taurocholic acid (TCA) (P < 0.01), glycocholic acid
(GCA) (P < 0.01), and tauro-β-muricholic acid (TMCA)
(P < 0.01).

Based on the above sequencing and metabolite
results, we conducted a correlation analysis between
differential bacteria and metabolites (Figure 5B).
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FIGURE 4 | Cladogram indicating the phylogenetic distribution of microbiota correlated with each group (A). The differences in abundance between each group (B).

FIGURE 5 | The effects of long-term NMN treatment on the concentration of bile acid-related metabolites. The concentration of bile acid-related metabolites was

significantly increased (A) *0.01 < P < 0.05, **0.01 < P < 0.001, and ***P < 0.001. Correlation analysis of differential bacteria and metabolites (B).

The results showed that TCA and GCA were
positively correlated with Ruminococcaceae_UCG-014,
Candidatus_Stoquefichus, Mollicutes_RF39_unclassified
and Prevotellaceae_NK3B31_group and negatively correlated
with Facklamia, Paenalcaligenes, Coriobacteriaceae_UCG-002,
Desulfovibrionaceae_unclassified, Bilophila, Peptococcus,

Ruminococcus, and Bifidobacterium. In addition, TMCA
was positively correlated with Ruminococcaceae_UCG-014,
Candidatus_Stoquefichus and Prevotellaceae_NK3B31_group
and negatively correlated with Facklamia, Paenalcaligenes,
Coriobacteriaceae_UCG-002, Desulfovibrionaceae_unclassified,
Bilophila, Peptococcus, Corynebacterium_1, Psychrobacter,
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FIGURE 6 | The effects of long-term NMN treatment on other common metabolites. The concentration of some common metabolites was significantly increased (A),

others were not affected (B) *0.01 < P < 0.05, **0.01 < P < 0.001, and ***P < 0.001.

FIGURE 7 | Serum NAD+ content was significantly increased after long-term

NMN treatment (P < 0.01).

Oceanisphaera, Aerococcus, Jeotgalicoccus, Ruminococcus,
and Bifidobacterium.

Meanwhile, there were other differential metabolite levels
between the two groups, such as taurine (P < 0.0001), betaine
(P < 0.001), phenol (P < 0.01), and 5-hydroxyindoleacetate (P
< 0.05) (Figure 6A). These include some common metabolites,
such as butyric acid, which was not significantly different between
the two groups (Figure 6B).

Taken together, NMN was observed to increase the level of
bile acid-related metabolites and beneficial metabolites, such
as betaine, and decrease levels of phenol by affecting the
composition of the gut microbiota.

The Effect of Long-Term NMN Treatment
on Serum NAD+ Concentrations
The serum NAD+ concentration of mice in the G1 group
was significantly higher than in the control group (P <0.05)
(Figure 7), indicating that NMN significantly increased the
concentration of NAD+.

The Effects of Long-Term NMN Treatment
on the Morphology of The Intestinal
Mucosa
As presented in Figures 8A,B, no significant difference in
morphology was observed in H&E staining. However, further
observation by Alcian Blue staining revealed that the number

of goblet cells and the thickness of mucus in the G1 group

were significantly increased compared to the control group

(Figures 8C,D). Thus, NMN increased the number of goblet cells

and promoted mucus secretion.

The Effects of Long-Term NMN Treatment
on the Intestinal Mucosal Barrier
Compared to the control group, the intestinal mucosal
permeability in the G1 group was decreased. In vivo imaging
system of small animals revealed that the leakage area of 4 kDa
FITC-labeled dextran (FD4) in the G1 group was significantly
less than in the control group (Figures 9A,B). As shown in
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FIGURE 8 | The effects of long-term NMN treatment on colon morphology. H&E staining (A,B) and Alcian Blue staining for colonic mucus and goblet cells (C,D), bar:

100µm.

FIGURE 9 | The effect of long-term NMN treatment on intestinal mucosal permeability in mice. Leakage of FD4 was observed by in vivo imaging (A,B). Colonic tissue

section observing the embedment of FD4 into colon epithelial tissue (C,D); scale bar: 100µm. Levels of FD4 in the serum (E).
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FIGURE 10 | The effect of long-term NMN treatment on the expression and localization of colonic tight junction proteins in mice. The expression of tight junction

proteins Claudin-1 and ZO-1 in the colonic epithelium of mice (scale bar: 100µm) (A) after treatment with NMN. Immunohistochemical results of Claudin-1 and ZO-1

were analyzed by Image-Pro Plus (B,C) *0.01< P < 0.05, and **0.001 < P < 0.01.

Figures 9C,D, FD4 colonic immunofluorescence revealed the
FD4 infiltration of colonic epithelial cells in the G1 group was less
than in the control group. In addition, the serum fluorescence
intensity test revealed that the concentration of FD4 in the
G1 group was higher than in the control group (P > 0.05)
(Figure 9E). Taken together, these findings indicate that NMN
reduces intestinal mucosal permeability and maintains mucosal
barrier integrity.

To clarify the mechanism of action, we detected the
expression and localization of Claudin-1 and ZO-1 in the
mucosal epithelium. Expression levels of these two proteins in
the G1 group were higher than in the control group, with
expression primarily localized in the cytoplasm of epithelial
cells (Figure 10A). Next, these immunohistochemical results
were analyzed using Image-Pro Plus. The results demonstrated
that NMN promotes expression of both Claudin-1 and ZO-1,
improving the integrity of the mucosal barrier, but its upstream
mechanism remains to be studied (P < 0.01) (Figures 10B,C).

The Effects of Long-Term NMN Treatment
on LC3
Expression levels of light chain 3 (LC3) in the G1 group were
significantly higher than in the control group, and it was
expressed in both the cytoplasm and nucleus (Figure 11A).
Image-Pro Plus analysis revealed the same results (P
< 0.01) (Figure 11B). These results indicate that NMN
promotes autophagy.

DISCUSSION

The sequencing results revealed that NMN increases
the abundance of butyrate-producing bacteria,
such as Ruminococcaceae_UCG-014 (27) and
Prevotellaceae_NK3B31_group. Compared to the control
group, the abundance of these two bacteria in the G1 group
was significantly increased. Ruminococcaceae is a beneficial
microorganism colonized in cecum and colon, which can
degrade various polysaccharides and fibers to produce short-
chain fatty acids (SCFAs) (28, 29). Butyrate is a short chain
fatty acid that produces ketones and carbon dioxide. It is a
major energy source for colon cells, and its absence can lead
to impaired intestinal barrier function (30). However, the
content of butyric acid did not increase. Recent studies have
shown that the abundance of Ruminococcaceae in actively
drinking alcohol-dependent subjects is decreased while intestinal
permeability is increased (31). Moreover, Ruminococcaceae also
has anti-inflammatory properties. Zhao et al. found that the
abundance of Ruminococcaceae in the feces of obese mice fed a
high-fat diet was significantly reduced (32). Taken together, these
data indicate that Ruminococcaceae protects intestinal health in
many ways.

Except for butyric acid producing bacteria, Akkermansia was
increased in the G1 group compared to the control group, but
there was no significant difference. Akkermansia muciniphila (A.
muciniphila), an intestinal symbiotic bacterium that colonizes
the mucous layer, is considered a promising probiotic candidate
(33). Studies have shown that Akkermansia can degrade mucins
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FIGURE 11 | The effects of long-term NMN treatment on the expression and localization of colonic autophagy protein in mice. Expression of the autophagy protein

LC3 in colonic epithelium of mice (scale bar: 100µm) (A) after treatment with NMN. The immunohistochemical results of LC3 were analyzed using Image-Pro Plus (B)

0.001 <P < 0.01.

(34, 35). In fact, Akkermansia not only had the ability to degrade
mucin, but also promoted mucin synthesis, meaning that it could
promote mucin renewal (36, 37). In addition, some studies have
reported a decrease in the abundance ofA. muciniphila in various
diseases, including diseases of the digestive system, such as IBD
(38–41).

Intestinal mucus is composed of highly glycosylated proteins
secreted bymucous epithelial cells in the form of large aggregates,
composed of a bacteria-free inner layer and a thicker outer
layer with commensal bacteria (42). Mucins secreted by goblet
cells form a barrier that prevents external bacteria from directly
contacting the epithelial layer (42). Its main ingredient, mucins,
are asource of nutrients for gut bacteria, because it is made
up of amino acids and oligosaccharides. Alcian Blue staining
revealed an increase in the number of intestinal goblet cells and
the thickness of mucus. Combined with the above results, NMN
may protect the integrity of the intestinal mucosa by increasing
the abundance of Akkermansia.

In addition to increasing the abundance of certain beneficial
bacteria, NMN also reduced the abundance of certain harmful
bacteria, such as Bilophila. Compared to the control group,
the abundance of Bilophila in the G1 group was significantly
decreased. Bilophila was originally isolated from the appendix
tissue of patients with gangrene and perforating appendicitis

(43) and was subsequently isolated from clinical infection
specimens, such as sepsis and cholecystitis (44). This suggests
that this bacterium may be related to the occurrence and
development of disease. In 2012, Devkota et al. first demonstrated
that Bilophila is a cause of IBD (45). NMN is supposed to
play a role in improving enteritis. In addition to Bilophila,
the abundance of Oscillibacter also exhibited a decreasing
trend. Oscillibacter has been reported to be associated with
trimethylamino oxide (TMAO), which is a risk factor for
cardiovascular and cerebrovascular disease (46). This is also
strong evidence that NMN can alleviate cardiovascular disease.
Desulfovibrionaceae are Gram-negative bacteria that produce
endotoxin (47), primarily including lipopolysaccharides (LPS).
LPS is very likely to induce inflammation (48). The abundance
of Desulfovibrionaceae in the intestines of mice treated with
NMN was significantly reduced, indicating that NMN exerts an
inhibitory effect on inflammation.

The concentration of bile acid-related metabolites, including
CA, TDCA, TCA, GCA, and TMCA, was significantly increased
in the G1 group.Metabolites related to bile acid are closely related
to the gut microbiota, and bacteria with 7 α-dehydroxylation in
the gut microbiota can convert primary bile acids into secondary
bile acids (49). The product of CA, deoxycholic acid (DCA) and
its bacterial dehydrogenation have a strong inhibitory effect on
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the growth of bacterial, and the effect of DCA is 10 times that
of CA (22). Thus, gut microbiota faced strong survival selection
pressure from bile acids. This may explain why the diversity of
gut microbiota decreased after long-term NMN treatment.

Erin et al. demonstrated that adding TDCA to the diet can
maintain intestinal mucosal integrity by reducing apoptosis,
stimulating cell proliferation and increasing villi length (50). In
addition, some studies had found that TDCA could promote the
renewal of intestinal mucosa by mediating the up-regulation of
c-Myc expression by FXR (51). In other words, NMN maintains
the integrity of the intestinal mucosal barrier partly by increasing
the concentration of TDCA.

Why was the level of bile acids in the feces significantly higher
in response to NMN? First, taurine can promote the proliferation
of Bilophila (52). The primary source of taurine in the body is
bezoar-bound bile acids. Concentrations of TCA and TDCA in
the G1 group were significantly increased, while the abundance
of Bilophila was decreased, which is inconsistent with the results
of previous studies. Thus, we speculate that the increase in fecal
bile acid concentration is not caused by the increase in bile acid
synthesis, but by the decrease in ileal reabsorption. Bile acids can
be reabsorbed in the small intestine in a variety of ways. The
distal ileum is the main site for bile acid reabsorption because the
apical sodium-dependent bile acid transporter (ASBT) is mainly
expressed here (53). Out et al. found that ASBT-dependent ileal
bile acid reabsorption was inhibited in intestinal Gata4 specific
knockout mice, which is related to changes in gut microbiota in
an ASBT-dependent pathway through Gata4 (54). However, due
to the lack of relevant experimental data, the above conjecture
needs further research to confirm.

In addition to bile acid-related metabolites, the concentration
of other metabolites was also changed. Basically, microbial
fermentation in colon mainly includes saccharification
fermentation and proteolytic fermentation (30). It is generally
believed that saccharification fermentation is beneficial to
the host, while proteolytic fermentation is presumed to be
detrimental and may be involved in the metabolites (55). The
primary product of carbohydrate fermentation (i.e., SCFA) has
beneficial functions (56), and there was no difference between G1
and the control group. The metabolism of tryptophan bacteria
leads to the production of a variety of indolic compounds (57).
The concentration of 5-hydroxyindoleacetate was significantly
increased. In vitro studies, indolic compounds had been shown
to improve intestinal mucosal barrier function and reduce
the expression of pro-inflammatory factor IL-8 (58, 59). The
concentration of phenol in the G1 group was significantly
decreased compared to controls. Some in vitro experiments
had confirmed the damage of phenol to intestinal epithelial
cells (60, 61). Phenol may transiently affect the lipid bilayer
of the cell membrane, thereby destabilizing the microdomains
containing tight junctions, suggesting that phenol is a potential
driver of alterations in the gut barrier. Taken together, these
results demonstrate that NMN increases the permeability of the
intestinal mucosal by decreasing the concentration of phenol.

The increase of the FD4 leakage area and the expression of
the tight junction protein show that long-term NMN treatment
reduces intestinal permeability. Tight junctions limit flux of

the paracellular pathway, which is generally more permeable
than transcellular pathways. Therefore, tight junctions are the
rate-limiting step of transepithelial transport and the primary
determinant of mucosal permeability (62).

The increased expression of LC3 indicates that NMN
promotes intestinal autophagy. Recent studies have shown that
the integrity of the intestinal epithelial barrier is regulated by
autophagy (63, 64). By establishing a starvation model, it was
found that autophagy could induce the enhancement of tight
junction, but only the paracellular flux of smallsized molecules
decreased, and the transepithelial flux of large-sized paracellular
probes was not affected. At the same time, it was found that
the protein level of Claudin-2 was significantly down-regulated
in the above experiments, and the localization was transferred
from the membrane to the lysosome in the cytoplasm. It can be
seen that autophagy enhances tight junctions by inducing the
degradation of Claudin-2 under starvation (63). This suggests
that NMN maintained mucosal barrier integrity by promoting
autophagy to a certain extent.

Taken together, these results show that NMN maintains the
integrity of the intestinal epithelium by strengthening tight
connections and promoting mucus secretion. In conclusion, this
study reveals that NMN can regulate the structure of the gut
microbiota, increase the abundance of probiotics, and reduce
the abundance of harmful bacteria. At the same time, it can
also increase the concentration of bile acid-related metabolites
in feces and decreases the concentration of phenols. NMN can
also strengthen tight connections and promote mucus secretion.
In this study, it exerted a protective effect on the intestinal
mucosa, which had a positive effect on intestinal health. This
study indicates a new direction for the use of NMN. However,
the mechanism by which NMN regulates the gut microbiota has
not yet been clarified, and further research is needed.
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