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There is converging and increasing evidence, but also uncertainty, for the role of abnormal
intestinal epithelial barrier function in the origin and development of a growing number
of human gastrointestinal and extraintestinal inflammatory disorders, and their related
complaints. Despite a vast literature addressing factors and mechanisms underlying
changes in intestinal permeability in humans, and its connection to the appearance
and severity of clinical symptoms, the ultimate link remains to be established in many
cases. Accordingly, there are no directives or clinical guidelines related to the therapeutic
management of intestinal permeability disorders that allow health professionals involved
in the management of these patients to carry out a consensus treatment based
on clinical evidence. Instead, there are multiple pseudoscientific approaches and
commercial propaganda scattered on the internet that confuse those affected and health
professionals and that often lack scientific rigor. Therefore, in this review we aim to
shed light on the different therapeutic options, which include, among others, dietary
management, nutraceuticals and medical devices, microbiota and drugs, and epigenetic
and exosomes-manipulation, through an objective evaluation of the scientific publications
in this field. Advances in the knowledge and management of intestinal permeability will
sure enable better options of dealing with this group of common disorders to enhance
quality of life of those affected.

Keywords: epithelial barrier function, intestinal permeability, nutrients, short chain fatty acids, prebiotics,

probiotics, mast cell stabilizers, mucoprotectants

INTRODUCTION

This manuscript belongs to a series of articles dealing with the role of intestinal barrier dysfunction
in the origin of chronic inflammatory disorders. Previous papers in this monography review
the anatomical, molecular, microbiological, immunological, and pathophysiological bases that
link intestinal permeability to the development of chronic conditions within the gastrointestinal
tract. Some studies also point to a prominent role of abnormal responses to food and microbial
antigens, and toxins, resulting from the alteration of the intestinal epithelial permeability, in the
generation of symptoms and signs common to functional diseases of the digestive tract. Although
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the theoretical basis for this hypothesis is apparently solid,
it is nonetheless true that translation from pathophysiological
alterations to clinical manifestations relies mostly on in vitro
and ex vivo studies and preclinical models. Therefore, more
evidence from clinical trials is needed to determine their role in
the management of these diseases.

Despite outstanding advances on the pathophysiology
and molecular mechanisms underlying barrier abnormalities,
currently we have no universal standards to accurately determine
the magnitude of the problem (see other papers in this
monography). In this sense, functional barrier parameters such
as lactulose/mannitol ratio and maybe certain blood markers
may be more indicative for intestinal barrier function than
secondary parameters such as levels of tight junction protein
expression. This lack of standardization generates confusion
impeding further actions of regulatory agencies and many
health-care professionals doubt the validity, usefulness and
clinical applicability of the different techniques used for the
determination of intestinal permeability.

Closely related to the scant clinical evidence linking
permeability alterations with inflammatory disorders of the
digestive system and other body systems is the insufficient
development of molecules or drugs aimed at controlling this
function. This is despite the large number of potential therapeutic
targets in which a regulatory role has been evidenced in both the
pore pathway and the leak pathway. In addition, the modulation
of the microbiota and its metabolites, through nutrition, can
also play an important role in the therapeutic armamentarium
of altered intestinal permeability.

There are hundreds of publications that have investigated
a huge number of molecules involved in intestinal barrier
homeostasis, though many data are derived from in vitro or
animal studies what may not well-represent the physiologic
situation in the human organism and may not correctly mimic
human pathology. In this article, we will review the evidence
related to the use of those molecules or products that offer greater
potential for the clinical management of diseases that have been
more consistently associated with intestinal epithelial barrier
(IEB) dysfunction. We will focus our review on the paracellular

Abbreviations: AMPK, AMP-activated protein kinase; Arg, Arginine; CD,
Celiac Disease; ClC-2, Chloride channel type 2; CLDN, Claudin; CRF,
Corticotropin-releasing factor; CRF-R, CRF Receptor; DF, Dietary Fibers;
DMM, Dexmedetomidine; DSCG, Disodium cromoglycate; DSS, Dextran
sodium sulfate; EcN, Escherichia coli Nissle 1917; EV, extracellular vesicles;
FODMAP, Fermentable oligosaccharides, disaccharides, monosaccharides, and
polyols; GC, Glucocorticoids; GI, Gastrointestinal; Gln, Glutamine; GLP-2,
Glucagon-like peptide 2; GLP-2R, Glucagon-like peptide 2 receptor; GOS,
Galactooligosaccharide; GT, Gelatine tannate; IBD, Inflammatory Bowel Disease;
IBS, Irritable Bowel Syndrome; IBS-D, Irritable Bowel Syndrome with Diarrea; IE-
IFG-1R, Epithelial insulin-like growth factor-1 receptor; IEB, Intestinal epithelial
barrier; IFN-γ, Interferon gamma; Ig, Immunoglobulin; IL, Interleukin; LBP,
Lubiprostone; LPS, Lipopolysaccharide; LRH-1, Liver receptor homolog-1; MC,
Mast cell; MiRNA, Micro-RNA; MLC, Myosin light chain; MLCK, Myosin
light chain kinase; NF-KB, Nuclear factor kappa B; NLRP3, NLR family
pyrin domain containing 3; OCLN, Occludin; SCFA, Short-chain fatty acids;
TEER, Transepithelial electrical resistance; TJ, Tight Junction; TLR, Toll-Like
Receptor; TNF-α, Tumor necrosis factor; UC, Ulcerative colitis; VDR, Vitamin
D receptor; Vit, Vitamin; XenomiRs, xeno-miRNAs; XG, Xyloglucan; Zn, Zinc;
ZO, Zonula Occludens.

route as the main target of the epithelial barrier breakdown
and as an early event whose loss of functional integrity likely
facilitates transepithelial antigen penetration, and the stimulation
of immunological responses, further increasing paracellular
epithelial permeability and promoting the development of low-
grade mucosal inflammation (Figure 1) (1).

The potential market for intestinal permeability regulatory
products is unknown but intuitively ample. However, it remains
to be established the mechanistic link between alterations in
intestinal permeability and specific diseases to estimate how
many patients could benefit from better therapies for intestinal
permeability and the direct and indirect cost derived from
attending these people.

Finally, this manuscript is not intended as a systematic
review of the literature concerning intestinal permeability and its
management. We just want to raise awareness on the potential
of targeting intestinal permeability to improve gut mucosal
inflammation and related clinical manifestations. However,
we also want to make clear that improving barrier integrity
does not mean that inflammation and immune activation are
interrupted because this deserves further evidence and possibly
complementary approaches to manage microbiome and immune
system defects.

APPROACH TO MANAGEMENT

Nutrients
Nutrition has a key role in shaping gut microbiota (2) whereas
processing of food by gut microbiota releases byproducts and
metabolites that influence the functioning of the intestinal barrier
and mucus layer integrity (2, 3) in health and disease (4, 5)
(Figure 2).

Dietary Fibers, Prebiotics, and Short-Chain Fatty

Acids
The international CODEX Alimentarius Commission defined
in 2009 dietary fibers (DF) as “carbohydrate polymers with 10
or more monomeric units which are not hydrolyzed by the
endogenous enzymes in the small intestine of humans” (6).
In terms of solubility, DF differ in their chemical properties
(7, 8). Insoluble fibers mainly contribute to stool bulk whereas
soluble fibers are metabolized by the host microbiota, also
contributing to maintain eubiosis (9). In fact, many of these
fibers can be considered as prebiotics because they are resistant
to the acidic pH of the stomach, not hydrolyzed by mammalian
enzymes, not absorbed in the GI tract, but fermented by
intestinal microbiota, and selectively stimulate the growth and/or
activity of the intestinal microbiota, particularly Bifidobacteria
and Lactobacilli (10, 11), to improve host’s health (12). This
may be relevant as bacterial dysbiosis is highly associated
with intestinal barrier dysfunction and related pathologies such
as Inflammatory Bowel Disease (IBD) (13) (see Table 1). In
addition, the outer mucus layer is degraded to glycans by the
glycan-consuming microbiota and glycans reused by bacteria in
the absence of sufficient DF, as shown in a gnotobiotic mouse
model, what may lead to erosion of the colonic mucus barrier,
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FIGURE 1 | Intestinal barrier anatomy and its components in normal and impaired conditions. The intestinal mucosa comprises a layer of polarized, columnar
epithelial cells next to a subepithelial region that contains the lamina propria, the enteric nervous system, connective tissue, and muscular layers. On top of columnar
cells there is the mucus layer. Normal mucus is 98% water, being the rest glycosilated proteins (mucins) and glycolipids. In the colon, mucus has an outer layer,
densely colonized by bacteria, fungus, virus, and able to retain toxins and allergens, and a mostly sterile inner layer where immunoglobulins (mostly secretory-IgA), and
defensins such as lysozyme are present. The inner mucus layer is dense and attached an ∼50µm thick and the outer layer is loose and unattached and about
100µm thick. The small intestine has only one single mucus layer, which is much thinner than the mucus layer in the large intestine. The lamina propria includes a
diffuse lymphoid tissue constituted by macrophages, dendritic cells, plasma cells, lamina propria lymphocytes, MCs, eosinophils and occasionally, neutrophils. (A) The
intestinal barrier in homeostasis, where cells are closely attached by intercellular junctions (TJs, adherens junctions, desmosomes and GAP junctions) represented in
detail in (A1). (B) Impaired intestinal barrier, with increased trans and paracellular passage of lumen contents. This increased transport activates the immune system
and cell recruitment and degranulation in the lamina propria. MC and PC are able to modulate the ENS interacting with SMP/MP neurons and with EGCs. (A1)
Representation of intercellular junctions. Intercellular junctions are primary responsible for nutrient absorption and water and chloride secretion. Intercellular junctional
complexes, including TJs, adherens junctions, gap junctions, and desmosomes, are dynamic structures that restrict the passage of molecules: 4–5 Å at the villus tip
to over 20 Å at the base of the crypt in the small bowel. The integrity and structure of epithelial cells are mostly modulated by the cytoskeleton, mainly by actin,
myosin, and intermediate filaments. Cells adhere to the basement membrane through hemidesmosomes. TJs are primarily made up of CLDNs, OCLNs, and JAM
proteins, which are connected through zonula occludens and cingulin to the cytoskeleton. Adherens junctions include cadherins such as E-cadherin, which binds
catenins (α and β) connected to the cytoskeleton. Desmosomes are mainly comprised of desmocollin and desmoglein, which interact with desmoplakin, in turn
connected to the intermediate filaments. AJ, Adherens junctions; BC, B Cell; CD4, Lymphocyte T helper CD4+; CLDN, Claudin; CM, Circular muscle; D,
Desmosomes; DC, Dendritic cell; EGC, Enteric glial cell; ENS, Enteric nervous system; IL-13, Interleukin 13; JAM, Junctional adhesion molecule; LM, Longitudinal
muscle; M0, Macrophages type 0; M1, Macrophages type 1; MC, Mast cell; MM, Muscularis mucosae; MP, Myenteric plexus; NK, Natural killer; NT, Neutrophil;
OCLN, occludin; PC, Plasma cell; SMP, Submucous plexus; TJ, Tight junctions; TNF-α, Tumor necrosis factor alpha; Treg, T regulatory lymphocyte.

promoting greater epithelial access, and lethal colitis by mucosal
pathogens (38).

These dietary compounds mainly include inulin-type fructans
(inulin, oligofructose, and fructooligosaccharides), galactans,
galactooligosaccharides (GOS), and other heteropolysaccharides
such as chitosan, starch, alginate, pectin, or dextran, among
others. These products have been shown to positively impact
intestinal barrier function through different mechanisms
after their fermentation by non-pathogenic colonic bacteria.
Fermentation of DF by gut microbiota releases short-chain fatty
acids (SCFAs). SCFAs are carboxylic acids with aliphatic tails of

1–6 carbons, being the most abundant acetate, propionate, and
butyrate (39). SCFAs show a wide range of biological functions
including anti-inflammatory responses, modulation of colonic
contractility and maintenance of both mucosal immune cell
activity and integrity of the IEB, among others (see Table 2).
SCFAs, specially at low concentrations, increased transepithelial
electrical resistance (TEER) in T84 and Caco-2 cells, what
immediately enhanced barrier function of the colonic epithelium
through cholesterol-rich microdomain in the plasma membrane
and decreased inulin permeability (42, 54–56). These effects
seem to be mediated by AMP-activated protein kinase (AMPK)
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FIGURE 2 | Dietary components involved in the regulation of intestinal permeability. Effects of minerals, vit, nutraceuticals, amino acids, soluble DFs (prebiotics), and
SCFAs on the intestinal barrier. These dietary components are capable of affecting the microbiota by increasing α-diversity and the number of beneficial bacteria. DFs
also enhance mucus secretion from the IEB and increase the expression of TJs proteins. In the lamina propria, dietary compounds increase T reg population, but also
the production of anti-inflammatory cytokines restoring the Th1/Th2 balance. Fermentation of insoluble DF to SCFA (butyrate, acetate, and propionate) also increases
the expression of SCFA receptors. DC, Dendritic cell; DF, Dietary fiber; IEB, Intestinal epithelial barrier; M0, Macrophage type 0; MC, Mast cell; NK, Natural Killer; Th1,
T helper lymphocyte type 1; Th2, T helper lymphocyte type 2; Treg, T regulatory lymphocyte; SCFA, Short chain fatty acid; Vit, Vitamins.

activity and the accelerated assembly of tight junction (TJ)
proteins (43, 44).

In vitro studies have shown the ability of DF to attenuate
epithelial barrier dysfunction caused by bacterial infection (14,
15) (Table 1). Similar in vitro studies with SCFAs (Table 2)
indicate that main SCFAs, butyrate, propionate, and acetate,
modulate contractile activity (40), to maintain the circadian
rhythm (47). SCFAs are also able to inhibit cytokine production
(16, 49), activate Tregs (45), enhance IEB, by facilitating TJ
assembly via AMPK activation in Caco-2 cell monolayers
and through selective upregulation of claudin (CLDN) 3
and 4, and the activation of Akt/mTOR mediated protein
synthesis in IPEC-J2 cells (43), increasing TEER (41–44).
Interestingly, the activation of NLR family pyrin domain
containing (NLRP) 3 inflammasome induces the secretion of
proinflammatory cytokines (46), which is linked to intestinal

barrier dysfunction (57). In this regard, a study performed
in intestinal epithelium cells IEC-6 showed that propionic
acid inhibited NLRP3 inflammasome activation and preserved
intestinal barrier function (48).

The role of DF and SCFAs in modulating intestinal barrier
function and GI inflammation has been also tested in vivo in
several preclinical models and in multiple species (Tables 1,
2). In this sense, sodium butyrate has been shown to revert
colonic permeability in a rat model of Irritable Bowel Syndrome
(IBS) (50). In C57/BL6 mice submitted to chemotherapy-
induced mucositis, high fiber diet (pectin-based) decreased the
influx of immune cells, improved histopathological parameters
and decreased intestinal permeability, compared to those that
received the normal diet (58). In obese mice, prebiotics
exhibited lower plasma lipopolysaccharide (LPS) and cytokines,
and lower intestinal permeability and improved TJ integrity
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TABLE 1 | Dietary fiber role in the recovery of impaired barrier function.

Dietary fiber Sample Effect/Implicated mechanisms References

In vitro

β-galactomannan
Mannanoligosaccharide
Monosaccharide D-Mannose

Salmonella enterica-infected
intestinal porcine cells IPI-2I
(ECACC 93100622)

• Reduction secretion of pro-inflammatory cytokine
Salmonella-induced

(14)

β-galactomannan S. enterica-infected Caco-2 cells • Prevention epithelial barrier function induced disruption induced by
the pathogen

(15)

In vivo

5% Plantago ovata seeds HLA-B27 transgenic rats • Ameliorate development of colonic inflammation and
pro-inflammatory mediators

• Improve the intestinal cytoarchitecture
• Increase butyrate/propionate in intestinal content

(16)

High-amylose corn starch TNBS-induced colitis male
Wistar rats

• Protection against colonic injuries.
• Improvement in the SCFA production.
• Reduced colonic permeability.

(17)

Dietary pectin IBD IL10−/+ mice • Reduced inflammatory response in colon
• Modulation of pro-inflammatory cytokines and Ig.

(18)

Soluble fiber and corn starch IBD IL10−/+ mice • Amelioration of clinical disease and inflammatory ileal and colonic
lesions development.

• Suppression of gut inflammation by Treg cells, IFN-γ, and colonic
PPARγ expression

(19)

Dietary cellulose DSS-induced colitis neonatal
C57BL/6J male mice

• Induction of colonic microbiome shifts.
• Improvement of intestinal inflammation.

(20)

Psyllium fiber DSS-induced colitis ICR and
BALB/c mice

• Amelioration or resolution of the colonic damage and inflammation. (21)

GG and PHGG Chronic kidney disease male
induced ICR mice

• Restoration of colonic barrier.
• Up-regulation of TJ.
• Increase beneficial microflora composition.

(22)

Plantago ovata Broiler chickens • Increase body weight and small intestine length.
• Reduction amount of E. coli.

(23)

Grape peel powder Acute TNBS-induced colitis adult
male Wistar

• Reduction of colitis.
• Reestablishment intestinal barrier function.

(24)

Lemon peel powder DSS-induced colitis male
BALB/c mice

• Reduction of the intestinal damage.
• Protection of TJ barriers.
• Suppression inflammatory reaction.

(25)

GOS Barrier damage LPS-induced
mice

• Attenuation of the intestinal barrier damage.
• Reduction of inflammatory responses in the jejunum and ileum.
• Up-regulation of intestinal TJ.
• Down-regulation of pro-inflammatory cytokines.

(26)

Psyllium husk Chronic large-bowel diarrhea
induced dogs

• Decrease defecation frequency.
• Improvement stool consistency.
• Weight gain promotion.

(27)

AOS Weaned pigs • Increase TJ expression, cecal and colonic p-AMPKα, bacteria from
Bacteroidetes and Firmicutes phylum and fecal SCFA.

• Decrease pro-inflammatory cytokines and NF-κB

(28)

Sulfated polysaccharide BALB/c mice
DSS-induced colitis

• Inhibit colon shortening and oedema forming
• Down-regulation of TNF-α, IL-6, IL-1β

• Up-regulation of CLDN-1, ZO-1, MUC-2 and SCFA receptors

(29)

Clinical trials

Plantago ovata seeds IBD patients (12m) • Safe and effective.
• Maintenance UC remission.

(30)

FOS Active CD patients (3w) • Increase bifidobacteria.
• Enhancement of DC IL-10 production.
• Increase TLR expression in lamina propria.

(31)

FOS Active CD patients (4w) • Not show clinical benefit.
• No significant differences in fecal concentration of bifidobacteria and
F. Prausnitzii.

(32)

Wheat bran CD patients (4w) • Consumption was feasible. (33)

(Continued)
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TABLE 1 | Continued

Dietary fiber Sample Effect/Implicated mechanisms References

• No adverse effects.
• Improvement health-related QoL and GI function.

Low-FODMAP IBS-patients (3w) • Reduction GI symptoms. (34)

Non-digestible polysaccharides Elderly population with GI
symptoms (biopsies, ex vivo)

• Reduction colonic hyperpermeability. (35)

Controlled-fiber diet NAFLD patients (6m) • Reduction serum biomarker of permeability.
• Positive influence in NAFLD-associated parameters.

(36)

Low-FODMAP diet
Traditional dietary advice

IBS-D patients (4w) • Low-FODMAP improved symptoms and QoL. (37)

AOS, Alginate oligosaccharide; CD, Celiac disease; DC, Dendritic cell; DSS, Dextran Sulfate Sodium; FODMAP, Fermentable oligosaccharides, disaccharides, monosaccharides, and

polyols; FOS, Fructooligosaccharides; GG, Guar gum; GI, Gastrointestinal; GOS, Galactooligosaccharides; IBS, Irritable Bowel Syndrome; IBS-D, Diarrhea predominant Irritable Bowel

Syndrome; IBD, Inflammatory Bowel Disease; IFN-γ, Interferon gamma; Ig, Immunoglobulin; IL, interleukin; m, Months; NAFLD, Non-alcoholic fatty liver disease; PHGG, Partially

hydrolyzed GG; PPARγ, Peroxisome proliferator-activated receptor gamma; QoL, Quality of life; SCFA, Short-chain fatty acids; TEER, Transepithelial electrical resistance; TJ, Tight

junction; TLR, Toll-like receptor; TNBF, Trinitrobenzene sulfonic acid; Treg, Regulatory T lymphocyte; UC, Ulcerative Colitis; w, Weeks.

compared to controls (59). Dietary enrichment with psyllium
fiber (21), dietary cellulose (20), or lemon peel powder (25) also
ameliorated colonic damage and inflammation and decreased
TJ protein expression in the dextran sodium sulfate (DSS)-
induced colitis model in mice, particularly during the infancy.
Sulfated polysachharide not only reduced colonic inflammation,
but also but inhibited colon shortening and oedema in mice
model (29). In this model, DF also ameliorated intestinal barrier
dysfunction and inflammation (51). In specific pathogen-free and
germ-free mice given DSS, psyllium, pectin, and cellulose fiber
reduced the severity of colitis throughmicrobiota-dependent and
microbiota-independent mechanisms, including restoration of
intestinal permeability (60). Similar studies in rats have disclosed
the ability of high-amylose cornstarch diet to protect against 2,4,6
trinitrobenzene sulfonic acid (TNBS)-induced colonic injury,
and improve colonic permeability (17). In the same model,
high rich DF containing grape peel powder also reduced colitis
and reestablished intestinal barrier function in Wistar rats (24).
Moreover, apple-derived pectin has been shown to modulate gut
microbiota and CLDN-1 expression in obese rats submitted to
high-fat diet, to attenuate metabolic endotoxemia, inflammation,
and weight gain (61). In other rat models, the addition of
cellulose fiber to elemental diet could ameliorate barrier failure
in the ileum compared to total parenteral nutrition (62) and
pectin supplementation significantly reversed the methotrexate-
induced increase in permeability in the distal small bowel and
colon (63).

DF was able to restore colonic barrier integrity in a mice
model of chronic kidney disease (22) and GOS administration
attenuated intestinal barrier damage and inflammatory responses
induced by LPS in the jejunum and ileum of mice (26). In
other models, particularly in interleukin (IL)-10 knockout mice
with IBD, dietary pectin and cornstarch diets downregulated
the inflammatory response in colon, but its relation with the
regulation of intestinal permeability was not established (18, 19).

DF, such as Psyllium husk, was able to decrease bowel
movements, and improve stool consistency and weight gain in
dogs (27). Moreover, Plantago ovata showed effectiveness in
increasing body weight and small intestine length as well as in

reducing intestinal E. Coli in broiler chickens (23). Recent studies
have shown that alginate oligosaccharide is able to increase TJ
expression, Bacteroidetes, and Firmicutes phylum bacteria and to
decrease pro-inflammatory cytokines in weaned pigs (28).

Regarding SCFA, in a rat model of irritable bowel syndrome
(IBS) (50), sodium butyrate has been shown to revert colonic
permeability. Also in this model, mixed or alone SCFA have been
reported improving IBS symptomatology (52). In neonatal IBS-
micemodel, different concentrations of SCFAwere able to reduce
the colonic transit alteration in a dose-dependent manner (53).

In humans, conclusions derived from dietary interventions
with supplemental fiber have been often inconclusive and
weighted down by differences in the design and performance
of studies, as highlighted in a recent meta-analysis in IBD
population (64). Thus, pectin supplementation (15/day) or
daily supplementation (12 g/day) with the DF β-glucan
and wheat arabinoxylan did not affect baseline intestinal
barrier function in young and elderly healthy individuals
(65) or indomethacin-induced intestinal hyperpermeability in
vivo or gut microbiota composition in elderly, respectively
(66). Furthermore, oligofructose-enriched inulin (8 g/day) did
not improve intestinal permeability in children with diabetes
mellitus (67) as did not either oligofructose (6 g/day) in
patients with burn injury (68). Plantago ovata seeds have been
shown to maintain remission in UC (30), and FOS increased
bifidobacteria and IL-10 in CD patients (31), although it has
not been supported by further research (32). However, CD
patients were shown to achieve an improvement in their
quality of life and GI function after wheat bran intake (33).
In other study, healthy male volunteers who ingested inulin
for 8 weeks (69), had significantly lower lactulose/mannitol
(L/M) ratio and serum zonulin and higher levels of mucosal
GLP-2. However, it is important to note that the methods
used were suboptimal. On the contrary, a non-digestible
polysaccharide-enriched diet reduced colonic hyperpermeability
induced by mast cell (MC) activation, as determined in
Ussing chambers, in elderly suffering constipation or diarrhea
and elevated baseline colonic permeability (35). Similarly, in
patients with non-alcoholic fatty liver disease, 6-months of
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TABLE 2 | Short-chain fatty acids role in the recovery of impaired barrier function.

SCFAs Sample Effect/Implicated mechanisms References

In vitro

10 or 100mM mixed SCFA
10 or 100mM acetic, propionic or
butyric acids

Ex vivo male Wistar rats
Cecum and colon

• Modulation contractile activity. (40)

Butyrate and propionate THP-1 cells • Inhibition of TNF-α (16)

Butyrate 2mM [low]
Butyrate 8mM [high]

Caco-2 cells • [Low] promotion of intestinal barrier function, increase TEER and
decrease inulin permeability.

• [High] induce apoptosis, decrease cell viability.

(41)

Mixed SCFA: acetate –propionate
–butyrate
80:40:20, 40:20:10, and 20:10:5 (mmol/l)

ex vivo colon Sprague-Dawley rats • TEER: increase by physiological SCFA mixture and individual SCFA
(dose-dependent).

• Paracellular transport: dose-dependent reduced by mixed SCFA,
acetate and propionate.

(42)

80 acetate, 40 propionate, and 20
butyrate (mmol/l)

Caco-2 cells • TEER increase with acetate (40 and 80 mmol/l) and propionate (20
and 40 mmol/l).

80 acetate, 40 propionate, and 20
butyrate (mmol/l)
Formate, lactate and succinate (50 mmol/l)

T84 cells • Acetate + propionate: increase TEER dose/time-dependent manner.
• Butyrate and formate do not change TEER.
• Propionate, acetate and butyrate and lactate: TEER higher 30min

after (50 mmol/l).
• Succinate reduces TEER.

Butyrate 2mM Caco-2 cells • Increase AMPK activity.
• Accelerated TJ assembly.
• Increase TEER.

(43)

Butyrate at 2, 5, or 8mM
SB203580: p38 MAPK inhibitor

Caco-2 cells • 2 mM: does not modify intestinal permeability.
• 5- and 8-mM increase permeability.
• 5mM + SB203580 restore the permeability.

(44)

Butyrate, propionate, and acetate YAMC and Caco-2 cells • SCFA triggers Aryl hydrocarbon receptor-responsive genes.
• AhR plays an important role in GI health and in the gut inflammation

by the induction of Tregs.

(45)

Acetate, propionate or butyrate with or
without LPS

• Caco-2 cells • Reduction NLRP3 inflammasome and autophagy.
• Decrease intestinal barrier disruption.

(46)

Main fecal SCFA (acetate, propionate
and butyrate)

ex vivo C57BL/6J mice • Microbial SCFA are modulated by the circadian rhythm.
SCFA affects colon contractility.

(47)

Propionic acid (PA) Intestinal epithelium cells (IEC-6) • Promotion of cell migration.
• Inhibition of NLRP3 inflammasome.
• Activation and improvement of intestinal barrier function.
• Suppression of TLR4/NF-κB pathway.

(48)

SCFA produced by E. coli Cancer cell lines: colon (HT-29),
breast (MCF-7) and leukemia (THP-1)

• Lower cytotoxicity activity.
• Decrease production of inflammatory cytokines.

(49)

In vivo

Sodium butyrate Wistar rat
IBS model (WAS)

• Dose-dependent inhibition of allodynia and
colonic hyperpermeability.

(50)

GG and PHGG DSS-induced colitis BALB/c mice • Improved clinical score.
• Up-regulation of colonic TJ.
• High fecal SCFA

(51)

Mixed SCFA: Sodium acetate (3mM),
Sodium propionate (1mM), Sodium
butyrate (1mM)

Sprague-Dawley rat
IBS model (WAS)

• SCFA alleviated colonic spontaneous motility
• Fecal SCFA reduction in WAS
• Up-regulate SCFA colonic receptors in WAS.

(52)

Acetate, propionate, and butyrate at 0.5,
1, 5, 10, 30mM

Neonatal BALB/c mice-IBS model
rectal 1% acetic ac.

• Dose-dependent reduction colonic transit rate. (53)

AhR, Aryl hydrocarbon receptor; AOS, Alginate oligosaccharide; CLDN, Claudin; DSS, Dextran Sulfate Sodium; GG, Guar gum; IBS, Irritable Bowel Syndrome; IL, Interleukin; LPS,

Lipopolysaccharide; MUC, Mucin; NF-κB, Nuclear factor – kappa beta; NLRP3, NLR family pyrin domain containing 3; p-AMPKα, Phosphorylated AMP-activated protein kinase alpha;

PHGG, Partially hydrolyzed GG; SCFA, short-chain fatty acid; TEER, Transepithelial electrical resistance; TJ, Tight junction; TLR, Toll-like receptor; TNF-α, Tumor necrosis factor alpha;

Treg, Regulatory T lymphocyte; WAS, Water avoidance stress; YAMC, Young adult mouse colonic cells; ZO, Zonula occludens.

fiber intervention demonstrated a reduction in zonulin levels,
a purported serum biomarker of permeability (36), and GOS
supplementation reduced aspirin-enhanced colonic permeability

in obese patients independently of its prebiotic effect (70).
The combination of green banana and pectin showed good
antidiarrheal properties in children with persistent diarrhea,
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activity that was linked to the reduction in small intestinal
permeability (71).

SCFAs are also able to modulate intestinal permeability
in humans. Indeed, decrease in gut-derived plasma SCFAs
correlated with increased colonic permeability in shift workers
(72) and organoid studies based on human colonic mucosal
biopsies showed that fermentation of 2′ Ofucosyllactose which
led to an increase of Bifidobacteria and an increase of
SCFAs, in particular butyrate, resulted in CLDN-5 significant
upregulation (73).

A diet low in fermentable oligosaccharides, disaccharides,
monosaccharides, and polyols (FODMAP) is commonly used
in the management of patients with IBS and overall, 52–86%
of patients report significant improvement of their symptoms
(34, 37, 74). Moreover, this diet was more effective than
others (traditional dietary advice, modified National Institute
for Health and Care Excellence guidelines, gluten-free diet
and Mediterranean diet and a sham diet) and also non-
dietary interventions (gut directed hypnotherapy or yoga)
(75). Interestingly, this diet improved intestinal permeability
in patients with diarrhea-predominant IBS in relation with
increased circulating vitamin (vit) D levels (76). However, to date,
there is no further demonstration of how low-FODMAP diet may
interfere with intestinal permeability.

Recently, a combination of herbs and nutrients including
curcumin, aloe vera, slippery elm, guar gum, pectin, peppermint
oil, and glutamine (Gln) significantly improved the frequency
and severity of upper and lower GI symptoms by 60–80% in a
small sample sized study. This improvement was accompanied
by reduction of intestinal permeability, as measured by lactulose-
mannitol ratios, and by beneficial changes in microbiota
composition (77).

Other dietary factors such as the non-sugar prebiotics
soy protein hydrolysates have shown promising effects to
strengthen the epithelial barrier in response to several barrier
disruptors (78).

Vitamins
Vit A, and vit D are micronutrients involved in the regulation of
TJ molecule expression in the intestinal barrier (79) and mucosal
immune system, shaping the microbial populations in the gut
(80, 81). Both epithelial and immune cells in the GI tract, but not
themicrobiota, express receptors for vit A (retinoic acid receptor)
and vit D (vit D receptor, VDR) (4). VDR protects against
mucosal inflammation in experimental colitis and contributes
to systemic bile acid homeostasis by regulating expression of
fibroblast growth factor (82). Retinoic acid receptor enhances
Zonula Occludens (ZO)-2 expression by regulating Toll-Like
Receptor (TLR)-4 to improve IEB function in Caco-2 cells, as well
as in rat and mouse models, but not in humans (83).

The presence of vit D increased TEER and preserved the
structural integrity of the TJ in Caco-2 cells treated with
DSS (84). In a model of intestinal barrier permeability using
IPEC-J2 cells, vit A reverted LPS-induced barrier dysfunction
through the enhancement of TEER and TJ protein expression
(85). In Caco-2 cells treated with LPS, emulating the barrier
damage of necrotizing enterocolitis (NEC), the presence of

1,25-Dihydroxyvitamin D3 -active form of vit D- restored the
expression and localization of TJ proteins and reverted LPS-
induced down-regulated VDR expression (86). Likely, intestinal
damage caused by LPS in IEC-18 line cells and organoids was
improved after vit D treatment, restoring permeability and TJ
(87). Similar findings have been reported in a model of alcoholic
liver disease in Caco-2 challenged with ethanol (88). Moreover,
vit D deficiency may compromise mucosal barrier integrity,
raising susceptibility to develop IBD, as also shown in Caco-2
cells (89).

In specific-pathogen-free rats, the deficiency of vit A
aggravates the severity of diarrhea and intestinal mucosal
damage. On the contrary, during the clinical course of diarrhea,
supplementation with vit A relieves diarrhea and improves
intestinal damage, increasing the expression of TJ proteins (90).
When intestinal epithelial cells from VDR-deficient mice are
complemented with a human VDR-encoding trans-gene, the
integrity of the mucosal barrier prevents the hyperinflammatory
response that is otherwise seen in the lamina propria immune
cells of VDR-deficient mice (91).

In humans, several reports indicate insufficient levels of vit
D in many inflammatory conditions, including IBD (92, 93)
and IBS (94), with more than 50% of patients affected by
hypovitaminosis (95, 96). Vit D deficit has been also related
with clinical symptoms and quality of life, but the correlation
between the intestinal expression of VDR and CLDN2 remains
controversial (97–100). Patients with celiac disease (CD) in
remission received a supplementation of vit D -or placebo-
during 3 months. The supplemented patients showed higher
plasma levels of vit D, improved the results of quality-of-life
and kept intestinal permeability as it was at baseline, whereas
permeability increased in the placebo group (101). As previously
mentioned, a recent study assessed the relation between vit D
levels, intestinal permeability, and a 12-week intervention with
low-FODMAP diet in IBS with diarrhea (IBS-D). Those patients
with low vit D levels before the intervention, reduced small bowel
permeability, increased vit D levels and also improved clinical
symptoms (76).

Amino Acids
The pore pathway regulates, through IL-13-mediated expression
of CLDN-2, the selective paracellular transport of smalI-sized
(5–10 Å) ions (K+, Na+) and molecules (water) (102, 103).
In vitro studies in Caco-2 cells with deprived from Gln or after
Gln synthetase inhibition, reported reduced TEER, increased
permeability and lower TJ protein expression (104–106) which
could be reestablished after Gln addition. Gln, and to a lesser
extent arginine (Arg), also prevented methotrexate-induced
barrier disruption in Caco-2 cells (107). Gln improved intestinal
barrier function in a rat model of biliary obstruction (108),
and Gln and Arg prevented the mucosal injury in a model of
ischemia-reperfusion in rats (109, 110). Gln regulated TJ integrity
and distribution through calcium/calmodulin-dependent kinase
2 (CaMKK2)-AMP-activated protein kinase signaling in porcine
epithelial cells (111). Recently, Gln alleviated IL-13-induced
barrier dysfunction by increasing CLDN-1 expression, via
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disruption of the phosphatidylinositol-3-kinase/Akt signaling
pathway (112).

In humans, microRNA (miR)-29 has been shown to
regulate Gln synthetase, CLDN-1 expression, nuclear factor
kappa-light-chain enhancer of activated B cells (NF-κB) and
ultimately tumor necrosis factor (TNF-α), to regulate the
leak paracellular pathway in a series of elegant experiments
performed in colonic tissues of IBS-D patients (113). Moreover,
in a subsequent randomized, placebo-controlled trial, the same
authors showed that supplemental Gln (10 g/day) improved
intestinal permeability and major symptoms in post-infectious
IBS-D patients (114). In addition, although disputed, enteral
Gln supplementation has been shown to improve intestinal
permeability in severely thermally injured patients (115). A
small randomized trial also showed that Gln and whey protein
improved small intestinal permeability and morphology in
patients with Crohn’s disease (116).

Arg is a semi-essential amino acid that can be metabolized by
host arginases and nitric oxide synthases or be consumed by gut
bacteria (4). There are few studies related to Arg and protection
of the integrity of the epithelial barrier. In heat-stress conditions,
pre-treatment with L-Arg partly reverted the decrease on TEER
and increased paracellular permeability (117). In a model of
hypoxia in jejunal IPEC-J2 cells, Arg prevented the reduction
of TEER and increased inulin paracellular permeability (118). A
great compilation of the last 30 years of clinical trials performed
with Gln and Arg is also available (119), highlighting a reduction
of the infection rate and mortality by Gln and a decrease of
complications by Arg in surgical patients. Nevertheless, some of
these trials have methodologic flaws and many do not evaluate
intestinal permeability. Hence, further and well-designed trials
are needed for justifying the use of these amino acids.

Tryptophan is an essential amino acid also studied by its
potential link between imbalanced gut microbiota, impairment
of intestinal immunity and disease development. Recent evidence
underlines that the enzyme indoleamine 2,3-dioxygenase 1
expressed by the host is relevant to generate indole metabolites
(120), which are involved in the re-establishment of IEB
integrity in the context of intestinal inflammatory diseases and
metabolic syndrome.

A recent review on amino acid supplementation in weaned
piglets, disclosed that several of them (Arg, Gln, tryptophan,
sulfur-containing amino acids, and branched-chain amino acids)
may have a role in the maintenance and improvement of
intestinal morphology and function, increasing proliferation of
epithelial cells and preserving intestinal mucosal integrity (121).
In mice, radiation-induced intestinal barrier disruption was
ameliorated by an amino acid-based oral rehydration solution,
enhancing TJ protein expression and improving paracellular
permeability (122).

Minerals
Zinc (Zn) is an essential trace element [10% of the human
genome encodes Zn-binding proteins (123) that plays an
important role in diarrheal diseases and GI infections and
it is closely linked to mucosal integrity and IEB (124). Zn
deficiency leads to reduced expression of occludin (OCLN) and

ZO-1 proteins in Caco-2 cells (125). Depletion of Zn induced
OCLN-3 proteolysis and decreased CLDN-3 transcription
(126) while Zn supplementation increased TEER and ZO-1
expression and decreased CLDN-2 and CLDN-7 expression
(127, 128), facilitating OCLN and ZO-1 expression in Caco2
and HT29 cells (90). In mice with bacterial infections, Zn
supplementation enhanced protection against toxin-induced
intestinal dysfunction and leakage (129). The ZRT/IRT-like
protein 14, Zn transporter is expressed on plasma membranes
and mediates Zn influx into the cytosol. Mice lacking
ZRT/IRT-like protein 14 display increased intestinal permeability
associated with altered expression of CLDN-1 and CLDN-2
(130). Other studies have shown that Cu and Zn supplementation
improved intestinal integrity during the Eimeria spp. Infection
in broilers (131). Selenium has also been proposed as a good
candidate to prevent changes in intestinal permeability and
mitochondrial damage in several species (132, 133). In humans,
Zn supplementation is effective in the prevention of diarrhea
(134), and has been recommended by The World Health
Organization for the treatment of diarrhea (135). Zn also has a
beneficial effect on infectious diseases like shigellosis improving
IEB, nitrogen absorption, and symptoms (135–137). Finally,
zinc carnosine, a health food supplement, stabilizes small bowel
integrity and stimulates gut repair processes after indomethacin
treatment, as shown in a placebo-controlled trial (138).

Microbiota-Based Factors
Microbiota exerts many crucial functions (thoroughly reviewed
in other papers in this monography) including IEB maintenance
(139, 140).

Antibiotics
Antibiotics are recommended to treat bacterial infections.
Independently of the origin of the infection, antibiotic
administration has adverse effects on the gut indigenous
microbial community leading to mid to long term dysbiosis
(141) and mycobyosis (142), with some compositional effects
lasting for 6months (143), to ease colonization by pathogens such
as Salmonella or Cl. Difficile, and to increase antibiotic resistance
(144, 145). In addition, many antibiotics induce changes in
intestinal permeability that may be linked to alterations in
α-diversity and relative abundance of specific bacteria within
the gut microbiota as shown in rats (146). Moreover, changes in
intestinal permeability are accompanied by reduction of SCFAs,
and increased activity of NLRP3 inflammasome and autophagy
(147). Therefore, the use of some antibiotics in disorders
associated with barrier dysfunction may lead to additional
complications, though these findings should be translated to
the clinic. In addition, bioavailability of antibiotics seems to
depend also on the composition of microbiota and on intestinal
permeability as well (148).

However, some antibiotics may have a better profile for the
microbiota. Rifaximin is a poorly-absorbed broad spectrum oral
antibiotic prescribed for GI disorders such as IBS, IBD, small
intestine bacterial overgrowth, traveler’s diarrhea or diverticular
disease (DD) (149, 150). Rifaximin seems to exert eubiotic effects
on the microbiota, increasing Bifidobacterium, Faecalibacterium
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prausnitzii, and Lactobacillus abundance, with no major change
in the overall gut microbiota composition, what may represent
a therapeutic advantage in specific clinical settings (150, 151). In
addition, Xu et al. (152), showed how oral rifaximin prevented
mucosal inflammation, impairment to intestinal barrier function,
and visceral hyperalgesia by altering the composition of bacterial
communities in the ileum while other antibiotics were not
as effective.

Probiotics
Probiotics are live microorganisms which, when consumed in
adequate amounts, confer a health benefit on the host (153).
This benefit relates in part to the ability of probiotics to
modulate the IEB. A large amount of evidence has accumulated
to support the efficacy of probiotics to enhance IEB tightness
and integrity, and to modulate intestinal inflammation (154).
We will only review here the most representative evidence.
For instance, Bifidobacterium was able to adhere to mucus, to
inhibit and displace the adhesion of pathogenic bacteria (155)
and to increase TJ integrity, protecting them from Escherichia
coli O157:H7 (156). Incubation of T84 cell monolayers
with multispecies probiotic completely prevented LPS-induced
increase in paracellular permeability in a dose dependent
manner. This multispecies probiotic also prevented the epithelial
disruption induced either by intracolonic infusion of fecal
supernatant from IBS patients or by water avoidance stress
(WAS) in C57/Bl6 mice. In addition, these formula increased
the expression of OCLN and decreased TNF-α secretion in
response to LPS (157). Similarly, Lactobacillus rhamnosusCNCM
I-3690 prevented changes in intestinal permeability in Caco-2
cells stimulated with TNF-α and in a mouse model of increased
colonic permeability, to a similar degree that Faecalibacterium
prauznitzii A2-165 in the last (158). In a post-infectious IBS
mouse model, probiotic treatment promoted the expression of
major TJ proteins CLDN-1 and OCLN in the mouse ileon
(159). Similarly, Lactobacillus rhamnosus GG improves intestinal
barrier function in the immature murine gut through the
induction of CLDN 3 expression (160). In obese and type2
DM mice, Akkermansia. muciniphila treatment increased the
intestinal levels of endocannabinoids that control inflammation
and gut barrier (161).

Probiotics can also prevent intestinal barrier damage in IBD
conditions. Both LGG and a probiotic formulation containing
Lactobacillus acidophilus, Bifidobacterium lactis, Lactobacillus
plantarum, and Bifidobacterium breve reduced the disruption
of barrier function in DSS-induced colitis in mice (162, 163).
In a similar way, the administration of a probiotic mixture
prevented not only the decrease in TJ proteins expression,
but also the increase of epithelial apoptotic ratio induced by
acute colitis (164). Oral Bifidobacterium infantis conditioned
medium administration reduced colonic permeability in IL-10-
deficient mice in part through enhanced protein expression
of CLDN-4, ZO-1, and OCLN, and decreased expression of
CLDN-2 (165). Similarly, Escherichia coli Nissle 1917 has been
shown to inhibit leaky gut by enhancing mucosal integrity
through up-regulation of ZO-1 expression in murine DSS colitis
(166). Lactobacillus rhamnosus MTCC-5897 administration

before DSS-colitis induction improved intestinal barrier integrity
involving transcriptional modulations of TJ genes (ZO-1, OCLN,
CLDN-1) (167).

Stress clearly affects intestinal barrier function and
probiotics have been shown to prevent some of changes.
Weissella paramesenteroides WpK4 ingestion reduced intestinal
permeability and reduced anxiety-like and depressive-like
behaviors in stressed mice submitted to DSS (168). Lactobacillus
farciminis prevented stress-induced gut hyperpermeability
and mucus alterations in different animal models (169, 170).
In rats subjected to partial restraint stress fermented milk
containing Bifidobacterium lactis CNCM I-2494 prevented
stress-induced increase in intestinal permeability and restored
OCLN and JAM-A expressions to control levels (171). More
recently, Wang et al. have shown that Lactobacillus casei
Zhang significantly increased jejunum villus height, villus
height-crypt depth ratio, muscle thickness, and expression
of proliferating cell nuclear antigen and TJ proteins ZO-1
and OCLN in early-weaned piglets, and prevented E. coli
K88-induced jejunum damage (172). Similarly, Lactobacillus
fermentum CECT 5716 prevented maternal separation and
WAS-induced intestinal barrier dysfunction in newborn rats,
reducing small intestine permeability and increasing ZO-1
expression (173).

In humans, Lactobacillus plantarum WCFS1 administration
into the duodenum was associated with an increase in of
ZO-1 and OCLN in healthy subjects (174). In contrast,
Lactobacillus GG significantly reduced the alteration of gastric
(but not intestinal permeability induced by indomethacin
administration in healthy subjects suggesting that probiotics are
useful to enhance barrier function possibly in a location-specific
manner (175).

Bifidobacterium lactis CNCM I-3446 induced a significant
decrease of intestinal permeability in infants with NEC
(176). In IBD patients, particularly in those with severe
pouchitis, administration of a probiotic combination effectively
prevented flare-ups (177), combination that has been shown
to promote recovery from IFN-γ-induced intestinal barrier
dysfunction (178).

Recently, beneficial effects of probiotics have also been
shown to occur through the release of extracellular vesicles
(EV). EV contain a vast number of active compounds
and bacterial mediators that play a key role in bacteria-
host interactions, but also between probiotics and other
bacteria. In vitro, pretreatment with Akkermansia muciniphila-
derived EV decreased IL-6 production from colon epithelial
cells stimulated by pathogenic Escherichia coli EV (179).
Akkermansia muciniphila-derived EV (179) also protected from
DSS-induced colitis in C57BL/6 mice. Moreover, in high-fat diet-
induced diabetic mice, Akkermansia muciniphila-derived EV
administration enhanced tight junction function, reduced body
weight gain and improve glucose tolerance in association with
an increase in the expression of occludin, zonula occludens, and
claudin-5 (180). In fact, in the same study, more Akkermansia
muciniphila-derived EV were found in the fecal samples of
healthy controls when compared with type 2 diabetes patients
and Akkermansia muciniphila-derived EV treatment improved
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intestinal permeability in LPS-treated Caco-2 cells, by increasing
the expression of occludin.

Vesicles secreted by Bacteroides fragilis have been
shown to contain capsular polysaccharide, which induces
immunomodulatory effects on dendritic cells and prevents
experimental colitis through TLR2-signaling pathways
(181). In Caco2 cells, B. fragilis EV significantly decreased
TLR2 and slightly increased TLR4 mRNA levels along
with an increase in anti-inflammatory cytokines and
the inhibition of interferon (IFN)-γ (182). Stimulation
of bone marrow derived dendritic cells (BMDCs) with
EV originated from another Gram-negative probiotic,
Bacteroides vulgatus mpk, contributes to immune response
silencing through induction of a tolerant BMDCs
phenotype (183).

Escherichia coli Nissle 1917 (EcN) has also been shown to
restore barrier function in experimental models of increased
gut barrier permeability. Prophylactic administration of EcN
resulted in reduced inflammation, and preservation of intestinal
permeability in a DSS murine model of colitis (184). EcN
treatment significantly upregulated the colonic expression of
the tight junction proteins ZO-1 and occludin, preserving
the mucus- layer and restoring intestinal permeability.
Oral administration of purified EcN EV before DSS intake,
significantly reduced clinical symptoms and histological scores
in a DSS-induced colitis mouse model (185). Similarly, in
colonic cell lines, EcN EV promoted upregulation of ZO-1
and claudin-14, and induced IL-22 expression reinforcing the
intestinal barrier (186).

However, few studies have specifically addressed intestinal
permeability in vivo in humans. One study assessed the
efficacy of a probiotic mix in intestinal permeability, immune
function and in the prevention of multiple organ dysfunction
syndrome in critically ill patients. They found that patients
responded with a significantly larger increase in systemic
IgA and IgG concentrations and in most of them, intestinal
permeability decreased, compared to placebo or sonicates (187).
Mujagic et al. evaluated the effects of Lactobacillus plantarum
on small intestinal barrier function through the lactulose-
rhamnose ratio after intake of indomethacin, but there was
no significant effect. However, in small intestinal biopsies, L.
plantarum TIFN101 modulated gene transcription pathways
related to cell-cell adhesion with high turnover of genes
involved in tight- and adhesion junction protein synthesis and
degradation (188). A recent meta-analysis, evaluated the effect of
probiotics/synbiotics on serum levels of zonulin, as a measure of
intestinal permeability, showing favorable effects although results
should be interpreted with caution due to high heterogeneity
(189). Another recent meta-analysis highlights also the potential
beneficial role of probiotics in GI mucositis and the reduction of
intestinal permeability andmaintenance of themucus layer (190).

Taken together, all these data suggest that probiotics enhance
intestinal barrier tightness and integrity by several mechanisms,
and that mucosal restoration positively impacts the clinical
course of disease. However, specific studies measuring intestinal
permeability through a validated method are needed to achieve
more robust conclusions.

Bioactive Pharmaceutical Molecules and
Signaling Peptide-Based Therapeutic
Strategies
Glucagon-Like Peptide 2
Glucagon-like peptide 2 (GLP-2) (Figure 3) is an intestinal
peptide derived from proglucagon that exerts its function
through the GLP-2 receptor (GLP-2R), expressed predominantly
in the intestinal tract (191, 192). Endogenous GLP-2 promotes
intestinal growth after a fasting period or in response to enteritis
(193). Exogenous GLP-2 is exerts profound effects expanding
the crypt-villus epithelium through enhanced proliferation and
survival, to increase nutrient digestion, absorption, and blood
flow (192, 194, 195).

GLP-2 also improves intestinal barrier function in both
health conditions and disease models (59, 196, 197), reducing
paracellular transport of ions and small molecules, and
dramatically inhibiting endocytic macromolecules uptake
in mice (197). GLP-2 chronic administration enhances gut
barrier function and decreases epithelial barrier permeability.
In fact, GLP2 in mice model decreases the transcellular
passage of ions, 51Cr-EDTA and fluorescein-isothiocyanate
as well as the endocytosis of horseradish peroxidase (HRP),
a marker of transcellular permeability (198–200). Following
studies have demonstrated that this ability is GLP-2R-
dependent, in association with increased TJ expression,
most notably CLDN-3 and−7 (196, 199). In addition, rats
receiving subcutaneous exogenous GLP-2 exhibited less
intestinal structural damage, longer intestinal villi, and increased
immunoglobulin (Ig)A expression, in a model of obstructive
jaundice (201).

It has been widely reported the GLP-2 effect on increasing
microvillus length, however, how this is achieved is poorly
understood. Recently, Markovic et al. (202) demonstrated that
the increase in microvillus length with GLP-2 treatment requires
the intestinal epithelial insulin-like growth factor-1 receptor (IE-
IGF-1R) in mice. Villin, an actin-binding protein, is regulated
by the GLP-2-IE-IGF-1R pathway. Villin has a well-established
role in epithelial wound repair, with both insulin growth factor
1 and villin levels decreased in Crohn’s disease (203, 204).
These findings suggest a new mechanism by which GLP-
2 may attenuate Crohn’s disease and/or other inflammatory
pathologies. These results are consistent with previous research
which has already shown the effects of GLP-2 through the IE-
IGF-1R modulating intestinal TJ proteins (199). In this regard,
a study in pediatric patients with acute ileal CD showed that
these patients have decreased post-prandial GLP-2 release, and
increased intestinal permeability. Healing of CD was associated
with the normalization of post-prandial GLP-2 release and
intestinal permeability (205). More recently, an abnormal post-
prandial glucagon-like peptide 2 release has also been described
in adult patients with Crohn’s disease (206).

Finally, GLP-2 analog teduglutide has been successfully
introduced in clinical practice as a new treatment for parenteral
nutrition-dependent short bowel syndrome (207). It can
effectively increase the residual intestinal absorption capacity
through the induction of intestinal mucosa hypertrophy and
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FIGURE 3 | Molecules intended to regulate intestinal permeability and/or mucosal inflammation. Representation of a transversal section of the small intestine,
including epithelial and goblet cells. The mucus layer and the lumen are found inside; the lamina propria is outside. (A) Dexmedetomidine reduces epithelial cell death,
TJ damage and inflammation. (B) Larazotide is a zonulin antagonist, able to bind zonulin receptor and block its toxic effects. (C) Mucoprotectants cover the epithelial
cells surface forming a film barrier that helps to preserve intestinal permeability. (D) CRF antagonist binds to CRF receptors blocking the binding of stress-released
CRF and decreasing subsequent proinflammatory responses. (E) MC stabilizers are responsible for MC cell membrane stabilization inhibiting degranulation. (F)
Lubiprostone increases water flux to the intestinal lumen and bowel transit, enhancing the expression of TJ proteins. (G) Glucocorticoids inhibit the activation of the
immune system via transcription of anti-inflammatory genes. (H) miRNA exert different roles within the epithelial barrier regulation, being able to enhance the intestinal
permeability or reducing inflammation (I) Anti-IL-13 treatment inhibits IL-13 effects in the IEB, increasing cell survival and decreasing the expression of the
pore-forming TJ claudin 2. (J) Anti-TNF-α increases cell survival and TJ expression while decreases claudin 2 expression through TNF-α antagonism. (K) Anti-INF-γ
treatment inhibits INF-γ effects in the IEB, increasing the expression of TJs. (L) GLP-2 binds to GLP-2R, predominantly expressed in the intestinal tract, resulting in an
increase of cell survival and villi length, restoring Th1/Th2 balance. CRF, Corticotropin-releasing factor; CRFR, Corticotropin releasing factor receptor; GC,
Glucocorticoids; GLP-2, Glucagon-like peptide 2; GLP-2R, Glucagon-like peptide 2 receptor; IEB, Intestinal epithelial barrier; IL-13, Interleukin 13; INF-y, Interferon
gamma; LBP, Lubiprostone; MC, Mast cell; TJ, Tight junction; TNF-α, Tumor necrosis factor alpha.

hyperplasia, the increase of intestinal perfusion and the reduction
of intestinal motility and gastric acid secretion, achieving a
reduction of parenteral nutrition (208, 209). Several cases of
active Crohn’s disease and short bowel syndrome successfully
treated with teduglutide have been recently described (210–212).
Yet, there are no systematic data about off-label teduglutide

therapy in severely active CD since its fluctuating inflammatory
activity can be considered at greater risk (213).

All these findings support GLP-2 treatment as a possible
effective therapy for enhancing, maintaining, or recovering
normal barrier function in intestinal disorders. However, to
date, human studies evaluating the effect of GLP-2 on intestinal
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permeability do not exist. Nevertheless, teduglutide must be used
with caution and discontinued in case of intestinal neoplasia
because of its effect on intestinal epithelial proliferation.

Corticotropin-Releasing Factor
Corticotropin-releasing factor (CRF) is a signaling peptide
(Figure 3), secreted both in the central nervous system and in the
periphery, including the GI tract, which stimulates the secretion
of adrenocorticotropic hormone from the pituitary gland in
response to stress. CRF and related molecules such as urocortins
1, 2, and 3 have been extensively involved in the regulation of
stress-mediated motor, sensory and permeability changes in the
GI tract, in animal models and humans, acting via the G-Protein
coupled CRF receptors (CRF-R) 1 and CRF-R2 (214–217).

Many authors have described the effects of stress on
gut permeability. Studies in rats and pigs have shown
that CRF-induced changes over the barrier function were
equivalent to those triggered by stress. Among other alterations,
CRF induces mucus layer thickening, enhanced conductance
and transepithelial and paracellular macromolecular flux, TJ
reorganization and activation of the immune system in the small
intestine and colon (218–224). Consistent evidence indicates that
many of these mechanisms are predominantly driven by the
activation and degranulation of MCs (221, 223–225), although
recent studies lay stress on eosinophils as potential contributors
to the stress-mediated gut dysfunction, specifically in IBS-D
patients (226). Opposite effects of CRF-R1 and CRF-R2 are
observed on stress-mediated intestinal mucosal barrier function
in pigs, with CRF-R2 preventing permeability changes and CRF-
R1 enhancing them (227).

Interestingly, chronic stress has shown how barrier
impairment could be persistent if the stressor is repeated
(222, 228–230). Vicario et al. reported increased gut epithelial
permeability, hyperactivation of the hypothalamic-pituitary-
adrenal axis and reversible inflammation in rats submitted to
a repeated stress or CRF, developing visceral hypersensitivity
afterwards (230). Similarly, CRF and sauvagine, a stress-like
peptide, enhanced intestinal ion, and macromolecular flux,
which could be inhibited by astressin, a potent non-specific CRF
inhibitor, and doxantrazole, a MC stabilizer. The alterations
of intestinal permeability evoked by various stressors or CRF
are inhibited by peptide CRF receptor antagonists and selective
CRF-R1 antagonists (219, 221–224, 226, 228–232) [for further
review, see Taché et al. (217)]. Moreover, Nozu et al. have recently
reported in a rat IBS model that imipramine dose-dependently
inhibited visceral hypersensitivity, colonic hyperpermeability,
and other GI effects of CRF or repeated stress through
α2-adrenoceptors, dopamine and opioid receptors (233).

In healthy humans and IBS patients, functional studies
also demonstrated that peripheral CRF largely reproduces the
increased colonic motility, intestinal permeability, MC activation
and visceral hypersensitivity observed in animals (224, 234).
Changes in intestinal and colonic permeability were mediated by
MC activation and reversed by disodium cromoglycate, another
MC stabilizer (235). Nonetheless, despite raising high expectation
early on, and several clinical assays performed with several CRF
antagonists (236–240), unfortunately, to date, this has not been

translated in clinical practice for the management of stress-
induced IBS.

Humanized Antibodies Against Tumor Necrosis

Factor-α
Tumor necrosis factor-α (TNF-α) (Figure 3) and myosin-
light chain kinase (MLCK) are the main regulators of the
leak paracellular pathway (102). TNF-α is a multifunctional
pro-inflammatory cytokine that has wide effects on cells
and structures related to the intestinal barrier function.
One of the barrier-deteriorating effects likely comes from
TNF-α’s ability to induce apoptosis (241). However, TNF-
α was found to deteriorate paracellular integrity even in
the presence of an apoptosis blocker, suggesting additional
mechanisms involved. Indeed, in vitro studies found that
TNF-α modulates TJ structure by breaking strands of ZO-
1 and thus modifying the structure of the epithelial barrier
(242). TNF-α stimulation could also increase permeability by
inducing the expression of the pore-forming TJ protein CLDN-
2 (243). There is also evidence for TNF-α increasing paracellular
permeability by activating long MLCK transcription, expression,
enzymatic activity, and recruitment to the actomyosin ring
(244–247). MLCK activation triggers perijunctional actomyosin
ring contraction that leads to molecular reorganization of TJ
structure, including OCLN endocytosis.

The use of monoclonal antibodies against TNF-α has shown
mixed results, some proven successful in inducing remission
in cases of IBD (248), but also at the cost of adverse events
and high number of non-responders over time (249, 250).
Few but promising evidence suggest targeting TNF-α can
improve specific parts of the intestinal barrier function and
endoscopic signs on the mucosal tissue, collectively termed
mucosal healing (251).

Adalimumab is a monoclonal antibody against TNF-α shown
to improve both IEB and clinical features in IBD patients (252–
256). Human colonic cell culture showed that simultaneous
use of both TNF-α and interferon (IFN-γ) disrupted the
epithelial barrier, leading to a significant drop in TEER (257),
appearance of irregularities in the TJ structures, disruption
of OCLN and increase phosphorylation of MLC. All of these
effects were reversed upon administration of Adalimumab.When
subjecting a 3D Caco-2 cell model to plasma from patients with
active Crohn’s disease, paracellular permeability increased via
breakdown of ZO-1 and OCLN (258).

Infliximab, a chimeric monoclonal antibody against both
membrane bound and soluble TNF-α, has shown successful
results in both patients with Crohn’s disease and UC (256, 259–
261). Crohn’s disease patients display an increased baseline
permeability compared to healthy controls, that was normalized
after 7-days course of infliximab, for a final 10-fold decrease of
the lactulose/mannitol ratio. The effect of Infliximab on barrier
functionwas also investigated bymounting non-inflamed colonic
biopsies from Crohn’s disease patients in Ussing chambers and
in Caco-2 cells. The results showed a significant decrease in
paracellular permeability and normalization of transmucosal
permeability to near control levels for adherent invasive
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Escherichia coli (262). Efficacy of infliximab has not been well-
studied for other conditions characterized by intestinal barrier
dysfunction. However, anti-TNF-α therapy is a common rescue
medication for diarrheal conditions refractory to steroid therapy,
including immune-related diarrhea after immune checkpoint
inhibitor therapy (263) or microscopic colitis (264). A case-study
of a refractory CD patient showed improvement in symptoms
and intestinal histology after Infliximab treatment, suggesting a
possible effect on the barrier function (265).

Inhibition of MLCK expression or enzymatic activity results
in systemic toxicity making these molecules unsuitable as
therapeutic targets for barrier control. However, recently a new
molecule, termed divertin prevents MLCK1 recruitment to the
acto-myosin ring without inhibiting enzymatic function. In this
way, divertin restores TNF-induced barrier dysfunction and
prevents disease progression in experimental chronic IBD (266).

Collectively, these results indicate that mucosal healing and
clinical remission in IBD patients may be strongly related
to the immunomodulatory effects from blocking TNF-α, with
improvements to the intestinal barrier function occurring as a
secondary effects that synergistically improve the outcome.

Interferon-Gamma (IFN-γ)
Interferon type II (IFN-γ) is widely known as a pro-inflammatory
cytokine with potent effects on intestinal barrier function
(267) (Figure 3). Studies performed in vitro have found IFN-
γ to influence paracellular permeability by affecting structural
properties of the epithelial barrier. It has been shown in colonic
T84 cell lines that IFN-γ can internalize the TJ proteins OCLN,
CLDN-1, CLDN-4 and junctional adhesion molecule A, thereby
decreasing TEER and increasing the passage of paracellular
markers (268, 269). The internalization process was found to
involve cytoskeletal contraction in aMLCK-independentmanner
(269), which separates it from the mechanisms of TNF-α through
more direct effects on barrier integrity, even though the end
result is similar. Modern in vitro techniques using intestinal
organoids (3D cell culture models) have further verified the
ability of IFN-γ to disrupt the epithelial barrier function through
TJ protein degradation and delocalization (270). A number of
studies show a synergistic deleterious effect on intestinal barrier
function from the combination of IFN-γ and TNF-α (267, 271).
One of the mechanisms behind this synergistic effect could come
from IFN-γ’s ability to increase the expression of TNF receptor-2,
as shown by restoration of barrier function when blocking TNF
receptor-2 but not TNF receptor-1 (272). Viceversa, TNF-α has
also been demonstrated to increase the IFN- receptor expression
in vitro (16426148). IFN-γ is seen increased in many intestinal
conditions that also are characterized by gut barrier dysfunction,
such as IBD and IBS (273, 274). Despite several attempts to create
antibodies for IFN-γ or its receptors (275), clinical applicability is
difficult due to its ubiquity in cells and organs and its pleiotropic
effects. Anyhow, a monoclonal antibody against IFN-γ, AMG
811, is under development (276).

Humanized Antibodies Against Interleukin-13
IL-13 is a cytokine extensively involved in inflammatory reactions
and mainly produced by T helper-2 cells, MCs, eosinophils, and

natural killer cells (277) (Figure 3). The effect of IL-13 on barrier
function has not been widely studied but in vitro experiments
using colonic epithelial cell lines have shown upregulation of the
pore-forming TJ protein CLDN-2 together with an increase in
paracellular permeability (278, 279). Activation of MLCK can
lead to an increased production of mucosal IL-13 together with
an upregulation of CLDN-2 in mice (279). Further on, IL-13 also
shares with TNF-α the ability of inducing epithelial apoptosis and
this effect can be enhanced by the stimulation of both cytokines
simultaneously, hinting at a possible synergistic effect (280).

An increased expression of IL-13 has been found in the lamina
propria mononuclear cells from Crohn’s disease and ulcerative
colitis (UC) patients (281). In the same study, stimulation with
IL-13 displayed a decreased TEER in a cell culture model of HT-
29/B6 cells and by an increase in the pore-forming TJ CLDN-
2, while levels of both ZO-1 and OCLN were unaffected. In
addition, they also found significantly increased permeability
of the sugar probes lactulose and mannitol, and higher rate
of apoptosis in vitro (281). Although information on mucosal
IL-13 levels in patients with IBS is scarce, there are results
showing serum levels of IL-13 being significantly increased in UC
patients with IBS-like symptoms (282). However, the role of IL-
13 in the pathophysiology of inflammatory intestinal disorders is
controversial as later clinical studies with monoclonal antibodies
against IL-13 (tralokinumab, anrukinzumab) in UC fail to report
convincing results (277, 283). These studies did not investigate
any direct parameters of intestinal barrier function such as
permeability or TJ gene/protein expression, thus it’s possible that
the anti-IL-13 agents could have had affected such parameters,
mimicking the in vitro studies, but to an ineffective degree. The
anti-IL-13 agent lebrikizumab seems to have positive effects on
patients with atopic dermatitis, a chronic inflammatory skin
condition characterized by skin-barrier defects. Even though
the mechanisms behind improvement could speculatively be
linked to restoration of skin barrier function, to our knowledge,
no studies have yet elucidated such mechanisms (284, 285).
It is likely the anti-inflammatory effects from inhibiting IL-
13 indirectly also could help to maintain barrier integrity to
some extent. However, these results do not seem to suggest
targeting only IL-13 is an effective option in treating conditions of
intestinal barrier dysfunction. Since multiple cytokines can have
deleterious effects on the barrier function, it’s possible inhibiting
several cytokines at the same time would have stronger effects.

Larazotide
Larazotide acetate, also known as AT-1001, is a synthetic peptide
derived from the Vibrio cholerae zonula occludens toxin (ZO-T
or zonulin) which behaves as a zonulin antagonist and proposed
as permeability regulator (286) (Figure 3). Zonulin is released
by intestinal epithelial cells after diet or microbiota stimuli.
Zonulin-mediated detachment of the ZO-1 protein from the
TJ protein complex has a direct effect in increasing intestinal
permeability (287). Larazotide prevents TJ opening, being able
to block zonulin receptors locally, by joining the receptors
itself, decreasing TJ detachment and promoting TJ assembly
and structural filaments rearrangement (288). Larazotide was
developed for the treatment of CD (289) and later tested in
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type 1 diabetes, inflammatory bowel disease, Kawasaki disease,
respiratory diseases (290), collagen-induced arthritis (291) and
intestinal ischemic injury (292, 293).

Four clinical trials using larazotide acetate have been
published, all in CD (289, 294–296). These studies confirmed its
safety and efficacy for reducing gluten-induced symptoms as well
as an interesting inverse dose effect, that is, greater reduction
of symptoms with lower doses. Nevertheless, positive results
cannot be linked to a reduction of small bowel permeability,
measured by the lactulose-mannitol test, due to huge variability,
leading to controversial results. A phase 3 trial is ongoing
(ClinicalTrials.gov Identifier: NCT03569007) to test larazotide
in lower doses in CD patients on a gluten-free diet. Hence,
although some clinical benefit has been observed, a more
accurate evaluation of larazotide effect on intestinal permeability
is needed, not only in CD but also for other pathologies with
paracellular intestinal barrier dysfunction.

Lubiprostone
Lubiprostone (LBP) is a prostaglandin E1-derivative able to
bind and activate the chloride channel type 2 (ClC-2) located
in the luminal side of the epithelium, improving bowel
frequency and stool consistency in constipated-IBS patients
(297–301) (Figure 3). Moreover, LBP has been reported to
enhance intestinal barrier function, reversing IFNγ-induced
decrease in TEER and the increase in fluorescein labeled-
dextran permeability and enhancing the expression of CLDN-1
in vitro (302).

LBP reduced the severity of colitis as well as intestinal
permeability in both DSS and TNBS-induced colitis in murine
models (303). Alternatively, when LBP was administered to
ClC-2 knockout mice, the protective effect against DSS colitis
was limited, suggesting a central role of chloride channels in
the restoration of barrier function and TJ architecture driven
by LBP (303). LBP also reduced mannitol flux in ischemia-
injured intestine in ex vivo porcine models (304), and decreased
chronic water avoidance stress-induced visceral hyperalgesia in
rats, partly by down-regulation of OCLN and also up-regulation
of CLDN-2 in rat colon crypts (305, 306). The potential of LBP to
prevent small intestinal injury and increased permeability related
to non-steroidal anti-inflammatory drugs has been reported in a
rat model (307).

One study assessed the effect of LBP on human intestinal
barrier function after administration of diclofenac, showing a
significant reduction of lactulose-mannitol ratio compared to the
control group (308). Unfortunately, the three randomized trials
that support the use of LBP in IBS with constipation did not
evaluate intestinal permeability as an endpoint.

Dexmedetomidine
Dexmedetomidine (DMM) (Figure 3) is a highly selective 2-
adrenoreceptor agonist, used as a sedative and anesthetic
adjuvant. Interestingly, it also shows a protector role against
barrier dysfunction and intestinal injury. However, the exact
mechanisms are not completely elucidated, although it is able
to accelerate intestinal wound healing by increasing intestinal
epithelial cell proliferation (309). Pretreatment with DMM

reduced intestinal injury in a rat model of intestinal ischemia
(310), and also improved intestinal microcirculatory dysfunction
and barrier dysfunction in endotoxemic rats (311) in association
with a reduction of OCLN cleavage and bacterial influx into
the spleen. After traumatic brain injury, GI system dysfunction
and impairment of barrier function are common features (312).
DMM was able to reduce systemic inflammatory cytokines and
barrier dysfunction, and to improve villus structure in a rat model
of brain injury (313). DMM has also proved to protect against
heat stroke-induced inflammatory response and multi-organ
dysfunction (314). DMM also demonstrated capacity to reverse
burn-induced intestinal epithelial hyperpermeability by reducing
inflammation and enhancing the expression and distribution of
the TJ proteins ZO-1 and OCLN (315).

In humans, a randomized, double-blinded trial using either
perioperative DMM or placebo in patients who underwent an
hepatectomy not only showed a decrease in clinical relevant
biomarkers of intestinal injury but also a reduction of intestinal
failure scores at 72 h after surgery (316). In another randomized,
double-blinded prospective study, DMM enhanced the recovery
of GI and reduced intestinal injuries and permeability, reflected
by decreased serum diamine oxidase and intestinal fatty acid-
binding protein expression (317). A recent randomized double-
blinded prospective study, suggests DMM as a more suitable
anesthetic for patients undergoing GI surgery as it is associated
with a decrease in TNF-α, and D-Lactate along with an increase
in the activation of α7nAChR (318).

Mast Cell Stabilizers and Flavonoids
Intestinal mast cells (MCs) (Figure 3) play an essential role in
barrier function regulation and gut homeostasis as shown both
in vitro, in animal models and in humans as reviewed elsewhere
(216). MC activation leads to the release of a wide variety of
proinflammatory and regulatory mediators, andmany of them all
have an effect on intestinal barrier as well as modulating immune
response and enteric nervous system. Though the inhibition
of MC activation has been extensively investigated, and many
different approaches are possible (319–321), the use of MC
stabilizers has gained some consideration in the management
of several intestinal disorders in humans, mainly because its
beneficial role in the regulation of IEB is based on a solid and
vast literature in preclinical models (228, 322–332). Among MC
stabilizers, only ketotifen and disodium cromoglycate (DSCG),
have been translated to the clinic.

There are few studies exploring the effect of MC stabilizers
in modulating IEB in humans. In one study, ketotifen was
able to reestablish GI permeability in a small group of food
allergy patients (333). In a trial with IBS patients, ketotifen
reduced several IBS symptoms, although barrier function was
not explored (334). Although preliminary, ketotifen has also
shown significant benefits for the treatment of post-operative
ileus (335), a condition that seems to be also related with
dysfunction of IEB (336). DSCG reverted the increase of
intestinal permeability triggered by CRF or stress in healthy
volunteers (224). Previously, DSCG pretreatment reduced milk-
induced in intestinal permeability, in children with cow’s milk
allergy (337, 338) or food allergy (339), and in patients with
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dyshidrotic eczema (340) but nor in atopic eczema (341),
although these studies were performed in small groups. Several
other studies have shown the potential utility of DSCG for IBS
treatment (342–344), but again, little clinical evidence is available
to support its use as a possible modulator of the IEB.

Flavonoids are natural substances with variable phenolic
structures commonly present in fruits, vegetables, tea, wine,
grains, bark, roots, stems, and flowers (345). Flavonoids present
a natural antioxidant, antimicrobial, cytoprotective, and anti-
inflammatory activity (346). Multiple in vitro studies show
the ability of several flavonoids, including 8-prenylnaringenin,
anthocyanins, berberine, puerarin, genistein, kaempferol,
naringenin, quercetin, and luteolin, among others, to restore
barrier dysfunction, predominantly in a Caco-2 cells (347–
354). Moreover, it has been described their ability to increase
the expression, assembling and production of different TJ
proteins such as ZO-1 and 2, OCLN and CLDN 1, 3, and
4 through the activation of AMPK and the inhibition of
NAPDH oxidase /NF-γB and MLCK and MLC phosphorylation
(244, 352, 353, 355–357). In vivo studies in rat, highlight the effect
of flavonoids in the upregulation of several pathways involved in
the expression of several TJ proteins 1 (351, 357, 358) In humans,
we are awaiting for ongoing clinical trials to determine the role of
natural flavonoids in the management of IEB dysfunction (346).

Glucocorticoids
Glucocorticoids (GCs) (Figure 3) play an important role
in maintaining homeostasis through anti-inflammatory and
immunosuppressive actions (359), mediated mostly through
GC receptors (360) GCs synthetic derivatives are essential
in the clinical treatment of inflammatory and autoimmune
diseases (361).

GCs are released after barrier disruption, in part to neutralize
the effect of TNF, via inhibition of MLCK activity (362). In the
same in vitro model, GCs triggered a time and dose-dependent
increase in TEER in a GC receptor-dependent manner although
no changes were observed in TJ architecture (362). GCs also
regulated CLDN expression viaMKP-1 in cell lines (363), but also
in human and rat colon mucosal crypts (364). In addition, it has
been described that GCs modulate the expression of several other
molecules related with TJ polarization and development (365).
An interaction between GCs and IL-10 p38 MAPK improved
barrier integrity after TNF-α challenge in a Caco-2 model (366).
GC receptor deficiency aggravated barrier integrity in an animal
model of colitis (367).

GCs reduced intestinal permeability in a large number of
patients, mostly in Crohn’s disease (368, 369), but also in the
rectum of collagenous colitis patients (370). In addition, the
effect of GCs on permeability is not restricted to IEB because
similar modulatory effects have been shown in lung epithelia
(371) and the blood brain barrier (372). In addition, the use
of GCs for treating intestinal inflammation during sepsis has
been proposed to reduce intestinal barrier dysfunction (373).
Finally, UC patients display decreased levels of the liver receptor
homolog-1 (LRH-1) in the colon (374, 375). LRH-1 is involved
in the replacement of the adrenal steroidogenic factor 1 and GC
synthesis in the adrenal medulla (376). A recent study has shown

how LRH-1 restoration reestablished epithelial integrity inmouse
and human organoids as well as its overexpression protectedmice
from developing colitis (377).

Mucoprotectors
Mucoprotectants are compounds of different nature (insoluble
salts, hemicellulose, tannic acid, gelatins. . . ) with the ability
of enhancing the intestinal barrier by creating a film-forming
barrier over the intestinal mucosa (Figure 3), helping to reduce
the effect of pathogens and to improve the function of the
intestinal barrier (378). These compounds work intraluminally
to modify enteric contents and may represent an alternative
or complementary therapy for dealing with acute and chronic
diarrheal disorders (379, 380).

Xyloglucan
Xyloglucan (XG) is a water-soluble, high molecular weight
branched polysaccharide hemicellulose. XG helps to reduce
permeability changes, preserving TJ, and invasion by E. coli
in Caco2/Goblet cells (381), and binding to MUC1, in mice
exposed to DSS (382). XG is non-toxic and resistant to digestive
enzymes, reaching the colon unaltered, where it is partially
broken down to oligosaccharides by bacterial endo-ß-glucanases,
followed by bacterial fermentation of oligosaccharides (383, 384).
The molecular structure of XG is known to possess mucomimetic
and mucoadhesive properties (382). XG is often combined with
gelatin or gelose to prolong its availability within the intestine,
but showing similar protective effects as XG alone on barrier
function in rats after Salmonella enterica and Enterococcus
hirae infections (385). The combination of XG, pea proteins,
tannins from grape xylo-oligosaccharides also offered protection
against stress-induced visceral hypersensitivity and intestinal
hyperpermeability in rats (380).

In humans, several clinical trials have shown the efficacy of
XG in the treatment of acute diarrhea in children (386, 387)
and adults (388), and also in chronic diarrhea in IBS patients,
improving the majority of symptoms (389, 390). So far, these
findings have not been linked to its ability to regulate IEB, and
additional trials are needed to support this concept.

Gelatine Tannate
Gelatine tannate (GT) is a complex of tannic acid and gelatin
which forms electrostatic bonds with mucin to create a protein-
based biofilm over the intestinal mucosa (391, 392). Gelatin is
a collagen derivate, which is ingested as an insoluble powder
at acidic pH, that becomes a gelatin at pH > 5.5 (393). In
the intestine, this complex increases the epithelial resistance
against E. coli, contributing to restore the normal physiology
of barrier function in Caco and Goblet cellsTM (394). GT also
helps to restore the mucus layer and to modulate the intestinal
microbiota in the DSS model of murine colitis (395), and in
Caco-2 cells, where it prevents the release of TNF-α induced by
LPS (396). Furthermore, tannins allow the precipitation of pro-
inflammatorymolecules from the intestinal mucus and their fecal
elimination (396). Together, these observations may explain the
protective effect of GT on intestinal barrier function.
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Several clinical trials have been performed with GT for acute
diarrhea in children, and adults, with mixed results (379, 397,
398). The combination of GT and tyndallized probiotics has
been claimed as highly effective in the treatment of moderate
and prolonged diarrhea, but clinical evidence awaits the results
of an ongoing clinical trial (ISRCTN63068134). Similar to XG,
additional evidence is needed to link the positive effects to the
protective effect on IEB.

Diosmectite
Diosmectite is a medicinal clay (aluminum and magnesium
silicate) frequently used as an adjuvant therapy in children and
adults with acute diarrhea (399, 400), to reduce stool output, to
provide symptomatic relief and to prevent dehydration (398).
The mechanism of action is complex, but partly related to
modifications of the rheological characteristics of the GI mucus
barrier, to reduce penetration of toxins, adsorptive properties,
reduction of intestinal permeability by increasing the expression
of OCLN, CLDN-1, and ZO-1, and increased MUC2 expression.
These mechanisms have been replicated mainly in Caco-2 and
HT-29 cell lines, and in rodent and piglets animal models in
response to TNF, acetic acid or TNBS (401–405).

Diosmectite has been shown to improve acute and chronic
diarrhea, based on a number of open and randomized double-
blind, placebo-controlled clinical trials, performed mostly in
children with acute diarrhea, and highlighted in a recent
Cochrane review (398). Nonetheless, the clinical benefit has not
been associated with its barrier protective characteristics.

Epigenetic and Exosome-Mediated
Regulation of Intestinal Barrier Function
In the last decade, exosomes (food and host-derived) and
enclosed micro-RNA (miRNA)s’ role as modulators of immune
responses and IEB function has been widely reported. miRNAs
are small (21–23 bp) non-coding RNAs that regulate gene
expression either by binding to the 3′ untranslated region of
their target mRNAs or via endonucleolytic mRNA cleavage,
promoting post-transcriptional repression and influencing
intestinal homeostasis (406, 407). miRNAs have been implicated
in several GI physiologic and pathophysiologic mechanisms and
studied widely in intestinal immune and inflammatory diseases,
including IBS and IBD, though studies are highly heterogeneous.

Both in vitro and in vivo assays have recently shown that
after IL-1β administration both Caco-2 cells and enterocytes
from mice with colitis display increased small intestinal TJ
permeability, a rapid increase in miR200C-3p and reduced levels
of OCLN mRNA and protein, meanwhile the antagomiR-200c
prevented OCLN and permeability changes (408). Moreover,
colon tissues and organoids from patients with UC had increased
levels of IL-1β mRNA and miR200C-3p compared with healthy
controls. In other studies, transfection of miR-21 in Caco-2 cells
also resulted in the loss of TJ as well as ultrastructural changes
enhancing intestinal permeability through the degradation of
RhoB and PTEN (409, 410). An increase of miR-21 and miR-
126 has been also observed in colon, feces and blood of UC, and
CD patients (409, 411). In addition, increased expression of miR-
122a has been also noticed in Caco-2 cells after TNF-α exposure,

increasing barrier permeability through the degradation of
OCLN mRNA (412).

By inactivating the endonuclease RNase Dicer, enzyme
responsible of the pre-miRNAs cleavage and the following
maturation to functional miRNAs (413), McKeena et al. showed
altered expression of Cadherin 1 and Cathepsin B. Dicer1
mutants also displayed impaired epithelial barrier function, most
probably due to the disorganization of the epithelial layer and
the junctional complexes (414). Hence, the role of miR-144
in downregulating OCLN and ZO-1 expression and enhancing
intestinal permeability has been reported in a rat model od
IBS-D (415).

Other miRNAs, such as miR-93 and miR-29a/b seem to offer
protective effects on barrier function. miRNA-93 is responsible
of PTK6 downregulation in YAMC cells, reversing the effects
in permeability caused by TNF-α and IFN-γ (416). miR-29a
and miR-29b prevented inflammation in mice after DSS-induced
colitis when delivered with supercarbonate apatite nanoparticle
(417). Increased levels of miR-29a have also been found in
blood, small bowel and colon in IBS and colon in IBD patients
(113, 418, 419), but, as a matter of fact, its role is sometimes
contradictory (420). miR-29a overexpression increased epithelial
permeability by targeting glutamine synthetase gene (GLUL),
alteration that has been previously associated with increased
membrane permeability (113). Moreover, in IBS-D patients,
increased levels of miRNA-29a and miRNA-29b have been
described together with a reduction of CLDN1, ZO-1 and nuclear
factor-kB repressing factor, while increased levels have also been
observed in mice models of IBS or colitis (113, 419).

After showing a correlation between differential mRNA
expression and ultrastructural changes in the epithelium of IBS-
D patients (421), the same group reported the ability of miR-16
and miR-125b to modulate barrier function in the jejunum of
these patients through the regulation of claudin-2 and cingulin
expression, respectively (422). In a recent study, Martínez et al.
reported several regulated miRNAS in the rectal mucosa of post-
infectious-IBS patients along with downregulation of their target
mRNAs involved in barrier function (423). Finally, Mahurkar-
Joshi et al. (424) have reported decreased levels of miR-219a-5p
and miR-338-3p in sigmoid biopsies in IBS, particularly in IBS-
C. Inhibition of miR-219a-5p resulted in altered expression of
proteasome/barrier function genes and enhanced permeability of
intestinal epithelial cells. Additionally, inhibition of miR-338-3p
in cells caused alterations in the mitogen-activated protein kinase
(MAPK) signaling pathway genes (424).

Not only host miRNA but also plant and bacterial-derived
miRNAS have gained special attention for their potential role,
yet disputed, as cross-kingdom gene expression regulators,
influencing plant interactions with animals and microorganisms
to regulate a number of physiological functions (425). In
humans, diet would be a primary source of plant miRNA
uptake, whereby have been termed as xeno-miRNAs (xenomiRs),
moreover, effective detection and quantification of dietetically
absorbed plant microRNAs in human plasma (426). Several
mechanisms, including transmembrane miRNA carriers,
receptor-facilitated endocytosis, phagocytosis, macropinocytosis,
clathrin-mediated, caveolin-mediated, and clathrin and
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caveolin-independent endocytosis, paracellular diffusion,
and luminal immune cell capture have been proposed to
explain xenomiRs uptake by intestinal epithelial cells, though,
to date, still unresolved (425, 427). Later, xenomiRs could
be packaged into microvesicles (426) or associated with
proteinase K-resistant complexes (428) to be transported
and released into the bloodstream to reach out target
tissues. It has been shown that absorption of more stable
xenomiRs, such as miR-2911, could be promoted when intestinal
permeability is enhanced, which may be of use for engineering
delivery of dietary miRNA (429). Moreover, gut microbiota
could be responsible for enhancing xenomiRs absorption,
increasing their bioavailability by degrading the exosomes
components (430).

Despite the well-known role of xenomiRs in shaping
microbiota and modulating inflammation and immune
activation (410, 430, 431), including the down-regulation of TNF
receptor (432), direct regulation of the epithelial barrier has not
been reported (430). However, given TNF-α ability to modulate
barrier permeability, xenomiRs could be indirectly involved in
the regulation of IEB. In addition, several studies have shown the
ability of plant-derived exosomes, enriched for diverse miRNAs,
to contribute to intestinal barrier integrity (410, 433–435),
though, again, a direct link could not be established and the effect
on barrier function could be dependent on other non-xenomiR-
related mechanisms. Because some plant xenomiRs modulate the
expression of enterocyte transporters (436), cytokines involved
in barrier function such as TNF-α or IL-1β, and activate Wnt/β-
catenin pathway (437), it remains plausible that xenomiRs could
act as regulators of intestinal barrier permeability. Furthermore,
gut microbiota, by enhancing xenomiRs absorption, may also
regulate the expression of different miRNAs in IECs (438).

Therefore, considering miRNAs promising role on
modulating intestinal barrier function, miRNA based therapeutic
strategies are moving from bench to the bedside. Although with
several limitations, regulation of miRNAs expression can be
achieved by administering synthetic miRNAs or miRNAs
expressing vectors or by anti-sense nucleotides (439). Their
therapeutic application for barrier function and intestinal
inflammation and cancer is under development though further
research is needed (440–442).

SUMMARY AND CONCLUSIONS

This is an exciting time for intestinal permeability. We have gone
from not recognizing the importance of intestinal permeability,
no more than 30 years ago, to express now that most digestive
and extradigestive disorders have something to do with it.

Probably, the truth lies somewhere between these two extremes.
What is certain is that pathophysiological, functional and
molecular knowledge has advanced enormously in that period
of time, and with it, the search for better therapeutic options to
manage intestinal permeability disorders. In this review, we have
discussed the most relevant therapeutic approaches to improve
intestinal permeability and barrier dysfunction. To move
forward, more clinical trials, new molecules intended directly
to fine tuning of intestinal permeability, differential treatments
according to the affected intestinal segment, according to sex,
according to age, and to many other variants are needed. In
addition, it is important to recognize the role of other factors,
such as immune activation and microbiota-related regulation of
barrier defects in order to deal better with chronic inflammation
in the gastrointestinal tract because presumably targeting only
the barrier may not be sufficient to change the natural history of
many of these conditions. The advancement in our knowledge
of the intimate mechanisms and the inducing and predictive
factors of changes in permeability will lead to the development
of a better therapeutic approach in several digestive and also
extradigestive diseases.
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