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The intestinal epithelial barrier (IEB) is one of the largest interfaces between the

environment and the internal milieu of the body. It is essential to limit the passage of

harmful antigens and microorganisms and, on the other side, to assure the absorption

of nutrients and water. The maintenance of this delicate equilibrium is tightly regulated

as it is essential for human homeostasis. Luminal solutes and ions can pass across the

IEB via two main routes: the transcellular pathway or the paracellular pathway. Tight

junctions (TJs) are a multi-protein complex responsible for the regulation of paracellular

permeability. TJs control the passage of antigens through the IEB and have a key role

in maintaining barrier integrity. Several factors, including cytokines, gut microbiota, and

dietary components are known to regulate intestinal TJs. Gut microbiota participates

in several human functions including the modulation of epithelial cells and immune

system through the release of several metabolites, such as short-chain fatty acids

(SCFAs). Mediators released by immune cells can induce epithelial cell damage and TJs

dysfunction. The subsequent disruption of the IEB allows the passage of antigens into

the mucosa leading to further inflammation. Growing evidence indicates that dysbiosis,

immune activation, and IEB dysfunction have a role in several diseases, including irritable

bowel syndrome (IBS), inflammatory bowel disease (IBD), and gluten-related conditions.

Here we summarize the interplay between the IEB and gut microbiota and mucosal

immune system and their involvement in IBS, IBD, and gluten-related disorders.

Keywords: intestinal epithelial barrier, mucosal immune system, gut microbiota, IBS, IBD, celiac disease, non-

celiac gluten sensitivity

INTRODUCTION

The gastrointestinal (GI) tract, with a surface area of about 40 m2, is one of the largest interfaces
between the environment and the internal milieu of the body (1, 2). The intestinal epithelial
barrier (IEB) is a structure that receives and reacts to several stimuli in a dynamic way (3), The
IEB is essential as the first line of defense, limiting the passage of harmful microorganisms and
antigens, and at the same time, it has to assure the correct absorption of nutrients, water, and
ions. This delicate equilibrium is reached through the interaction of several elements: the mucus,
the outer layer, followed by a single cell layer of epithelial cells and, finally, the lamina propria
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where immune cells, such as dendritic cells, plasma cells,
macrophages, lymphocytes, reside (1). The intestinal epithelium,
furthermore, includes five cell lineages: absorptive enterocytes,
the most abundant epithelial cells, the goblet cells producing
mucus (4), the tuft cells producing IL-25 (5), the enteroendocrine
cells producing hormones, and Paneth cells, which produce
antimicrobial peptides or lectins (4). The dysregulation of the
IEB is implicated in the pathogenesis of several intestinal
[e.g., celiac disease, inflammatory bowel disease (IBD), irritable
bowel syndrome (IBS), colon carcinoma], and extra-intestinal
diseases (e.g., chronic liver disease, type 1 diabetes, obesity). The
hypothesis is that, for all these disorders, the IEB dysfunction, and
consequent increase of intestinal permeability (i.e., a functional
feature of the IEB, measurable by analyzing flux rates across
the intestinal wall) (6), facilitate the entrance of antigens
and/or microorganisms into the lamina propria with subsequent
activation of the immune system and the initiation and/or
maintenance of inflammatory responses (7, 8).

In the present review, we will summarize current evidence
on the interplay between the IEB and immune system and
microbiota and their involvement in GI pathological conditions
including IBS, IBD, and gluten-related disorders.

THE INTESTINAL EPITHELIAL BARRIER

Mucus
The mucus layer covers the luminal surface of the GI tract
and is the first line of defense against mechanical, chemical,
and biological insults. It protects epithelial cells from bacteria,
digestive enzymes, and dangerous substances coming from the
outside including environmental pollutants, food antigens, toxins
(9, 10). In addition, it provides lubrication for food passage
and removes bacteria and debris by flowing them away in the
intestinal stream. Over then acting as a physical barrier, it is also
essential in the maintenance of intestinal homeostasis as small
molecules, gases, ions, and water diffuse through it to reach the
epithelium (11, 12). It is continuously secreted in the GI tract
principally by goblet cells, but also from epithelial cells and glands
(12). Interestingly, the density of goblet cells increases distally
within the GI tract and reaches the peak in the colon, likely in
parallel with the increase of microbiota (13, 14).

Mucus is made up of water (90–95%) (11, 15) proteins, lipids
(1–2%), and electrolytes (16). Proteins, principally produced by
goblet cells, include mucins, which lend the mucus its gel-like
properties. Mucus comprises also antimicrobial peptides and
immunoglobulin-A (IgA), giving the mucus a pivotal role in
innate defense (17–19). IgA are the most abundant isotype in
humans and are secreted in the lumen where they are essential to
prevent infections and to assure homeostasis with gut microbiota
(20). The mucins are responsible for the gel aspect of the

Abbreviations: IEB, Intestinal epithelial barrier; GI, Gastrointestinal; TJs, tight
junctions; IBS, irritable bowel syndrome; IBD, inflammatory bowel diseases;
MUC2, mucin 2; AJs, adherens junctions; JAM-A, junctional adhesion molecule-
A; ZO, zonula occludens; CD, celiac disease; NCGS, non-celiac gluten sensitivity;
PAR-2, Proteinase-activated receptor 2; SCFAs, short-chain fatty acids; TLRs,
Toll-like receptors; FGIDs, Functional Gastrointestinal Disorders; HLAs, human
leucocyte antigens; GFD, gluten-free diet; UC, ulcerative colitis.

mucus and are characterized by mucin domains, rich in serine,
threonine, and proline amino acids, that are abundantly O-
glycosylated (21, 22). This post-translational modification gives
these proteins the property to be soluble in water and to form
a gel. In addition, the carbohydrates hide the protein core,
preserving it from degradation. The glycan residues can bind the
lectin-like proteins of immune cells, giving the mucus an active
immunological role. In addition, mucin 2 (MUC2), the principal
gel-forming mucin in the intestine, can influence dendritic cells
and epithelial ones (23), contributing to oral tolerance [i.e.,
the unresponsiveness of the immune system induced by oral
administrated innocuous antigens, including that derived from
food (24) and gut homeostasis (25)]. Although mucus is present
throughout the intestine, it has peculiar properties in the different
tracts (26). In the small intestine, there is a single layer of mucus
that is more permeable than elsewhere to contribute to nutrients’
uptake (27). In addition, in this tract, mucus is discontinuous
to support the release of digestive enzymes (27–30), it is not
tightly attached to the epithelial cells, and it is mixed with
antibacterial substances (31–33) which contribute to avoiding the
contact between bacteria and epithelium (29, 34–36). In the large
intestine, the mucus is divided into two layers: the inner and
the outer ones. The inner layer is organized in lamellar layers
made up of MUC2 multimers anchored to the epithelium and
not accessible to bacteria (22, 27). In humans, at a distance of
200µm from the epithelium, the action of proteases changes the
structure of the inner mucus, producing the outer one. The outer
layer (i.e., non-attached to the epithelium) is less dense than the
inner mucus, has larger pores, and is the place where commensal
bacteria live (37–39).

Some years ago, Kamphuis et al., proposed a new model of
mucus. They characterized the colonic mucus barrier in rodents
by using histological and FISH techniques. They demonstrated
that in the distal colon, mucus covers the feces instead of
epithelial cells confining the microbiota to the feces. On the other
side, this organization is lost in the proximal colon, suggesting
that mucus organization depends on the presence of colonic
content (40).

The high polysaccharide content of the mucus represents a
source of energy for bacteria, although only a subset of gut
microbiota can hydrolyze mucus carbohydrates in physiological
conditions (41, 42). Interestingly, in the case of a diet poor in
fibers, there is a change in the microbiota composition, with
an increase in the abundance of mucus-degrading bacteria that
are capable to use glycosylated residues as a source of energy
(43). Gut microbiota and its metabolites have a key role in
the formation and correct folding of the mucus. As a matter
of fact, germ-free mice showed a similar organization of the
mucus layer to conventionally raised (Convr) mice, but the inner
mucus was more penetrable, and small intestinal mucus was
tightly attached to the epithelium. Following the colonization
of germ-free mice intestine with Convr microbiota, colonic
inner mucus became impermeable, and small intestinal mucus
acquired the typical characteristic of being easily detachable (44).
The mechanisms through which microbiota can influence mucus
production and properties are still a matter of study. One possible
way is that gut microbiota can influence mucin glycosylation
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(21) and the expression of glycosyltransferase. On the other
hand, the gut-microbiota composition is influenced by mucus
glycosylation pattern, which differs among species, establishing
an equilibrium that ensures nutrients to microbiota and avoids
mucus degradation (45). The role of mucus as a barrier is crucial
for the maintenance of health. Reduction or abnormalities in
the mucus production or in the glycosylation of the mucins are
associated with gut inflammation and ulcerative colitis (46, 47)
as well as in the colonization of the inner mucus by bacteria in
both patients with ulcerative colitis and in the murine model of
colitis (48). Qualitative and quantitative changes in the mucus
layer in response to inflammation, have been demonstrated also
in Crohn’s disease (49–52) and colorectal cancer (53, 54). Finally,
mucus is the first barrier for pathogens to enter the intestinal
mucosa and start an infectious (55). Lipopolysaccharide (LPS)
expressed on the outer membrane of Gram-negative bacteria,
lipoic acid on the membrane of Gram-positive bacteria and
flagellin, can activate MUC2 expression by the activation of toll-
like receptors (TLRs) as reported in animal studies and in studies
using cell lines, including goblet cell line and HT-29 (56–61). In
conclusion, on the basis of the above evidence, the integrity of
the mucus and the correct balance between mucus production by
goblet cells and mucus degradation by intestinal microbiota, are
essential for the maintenance of a health state.

Tight Junctions
Beneath the mucus layer, there is a columnar monolayer
of intestinal epithelial cells that represents an additional
line of interface, between the outside environment and
intestinal mucosa.

Alterations of the IEB allow the excessive passage of food
andmicrobiota antigens which elicit immune activation involved
in the pathogenesis of the intestinal and systemic disease (e.g.,
diabetes, obesity, non-alcoholic liver diseases). The functioning
of the IEB depends on the presence of a series of intercellular
junctions composed by the apical junctional complex (AJC),
including tight junctions (TJs) and adherens junctions (AJs),
and desmosomes. Under physiological conditions, only water
and solutes like electrolytes can cross the epithelium through
the paracellular way. TJs, the principal regulators of paracellular
permeability (62), are a network of proteins located at the apex
of the lateral membrane of epithelial cells, including claudins
(63), tight junction-associated marvel proteins (TAMPs) such as
occludin (64), junctional adhesion molecule-A (JAM-A) (65),
and intracellular scaffold proteins, such as zonula occludens
(ZO), and tricellulin (66).

Claudins are transmembrane proteins that form two
extracellular loops interacting with their counterparts from the
neighboring cell (67, 68).

Claudins are a group of proteins with molecular weights
ranging from 21 to 34 kDa (68–70). Intestinal claudins exist in
two functionally different classes: sealing claudins, responsible
for the tightness, and pore-forming claudins (71). Sealing tight
junction proteins include claudins-1, -3, -4, -5, -7, -8, -11, -14,
-18, and -19 (68) and form a selective barrier to macromolecules
and ions, whereas claudins-2, -10a/-10b, -15, -16, and -17 form
selective pores to ions and water (72). Each pore-forming claudin

has different specificity for cations or anions as well as selectivity
for ionic size. The characteristics of each claudin are shown in
Table 1.

Occludin is a transmembrane protein with a molecular weight
of around 65 kDa. It presents a long C-terminal cytoplasmic
domain, two loops, and a short N-terminal cytoplasmic portion
(64). The carboxy-terminal of occludin contains the binding
site for zonula occludens (ZO)-1. Occludin is a phosphorylated
protein and it has been reported that its phosphorylation
correlates with the localization at the TJs (105). ZO-1 (∼220
kDa), ZO-2 (∼160 kDa), and ZO-3 (∼130 kDa) are scaffold
proteins, localized to the cytoplasm (106). ZO-1, -2, and -3 have
three PDZ domains and a guanylate kinase-like domain (GUK)
(107). PDZ1 binds the C-terminus of claudins (106) while the
GUK domain interacts with occludin (107). C-terminal regions
of ZOs interact with actin and serve as scaffolds linking TJ
strands with the cytoskeleton (108–110). The association of the
cytoskeleton with the TJ structure is crucial for the regulation
and maintenance of TJs function (111). Junctional adhesion
molecules (JAM, ∼40 kDa) are transmembrane molecules
localized to apical cell-cell contacts and associated with TJs.
They are members of the immunoglobulin superfamily and
include 3 transmembrane proteins JAM-A, -B, and -C (also called
JAM-1,−2, and−3) characterized by a short N-terminal portion,
two extracellular immunoglobulin-like loops, a transmembrane
portion, a short cytoplasm fragment containing phosphorylation
sites and a C-terminal PDZ domain involved in cell-cell adhesion
(67, 112). The latter domain is involved in the binding of ZO-1
and is fundamental for protein-protein interactions (112–114).
Among the JAM proteins, JAM-A is the best characterized in
the regulation of TJ barrier function. It’s expressed in intestinal
epithelial cells and has also been implicated in cell proliferation
and migration (115–118). The characteristics of ZO and JAM
proteins are shown in Table 2.

Cingulin is a cytoplasmic protein with a molecular weight
of 140–160 kDa. It has a structural role, binding ZOs and
cytoskeletal proteins (125), and a signaling one, being involved
in the control of epithelial proliferation (114, 126). TJs are
linked to microtubules and microfilaments of the cytoskeleton.
An important role in the regulation of TJ opening/closing is
attributed to the microfilaments of actin and myosin (127, 128).
Myosin is mainly involved in the regulation of TJ assembly
and tone (1, 129), while actin binds to the cytoplasmic scaffold
proteins (130). In addition, actin polymerizing proteins and
regulators of actin, are central in TJ changes (114).

The composition and stability of the IEB depend not only
on TJs but also on their interaction with AJs and desmosomes
(131, 132). AJs establish cell-cell contacts, which are essential
for TJs maturation and maintenance. E-cadherin is the main
transmembrane protein involved in AJ assembly (133). Its
intracellular domain is associated with p120, b-catenin, and a-
catenin, forming a complex that is bound to actin filaments (134).
Moreover, regulating the organization of the underlying actin
cytoskeleton, it establishes a hub for cell signaling and regulation
of gene transcription (135).

Desmosomes provide mechanical strength to the intercellular
cell-cell contact in the epithelium. Their composition

Frontiers in Nutrition | www.frontiersin.org 3 September 2021 | Volume 8 | Article 718356

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Barbara et al. Inflammation, Microbiota, and Permeability

TABLE 1 | Characteristics of claudins and their changes in intestinal diseases.

Claudin Size (kDa)

(68)

Localization Functions Ions

permeability

Interactions (68) Role in disease

1 22.8 Ubiquitary (63) Barrier forming ↓ Cations It plays a general role in

preventing the loss of water and

macromolecules

↓ In UC (73–75), food

allergy (76), liver cirrhosis

(77), and IBS-D (78)

2 24.4 Intestinal crypts (79),

Proximal renal tubule (80),

choroid plexus (81),

Human ovarian surface epithelium (82)

Pore forming ↑ Cations It is involved in the regulation of

Na+, Cl−, Ca2+ and water

↑ UC (83), celiac disease

(84), IBS-D (85)

↑↓ Crohn’s disease (86)

3 23.3 Human gallbladder (87)

Brain capillary endothelium (88)

Tighter segments of nephron (89)

Liver/intestinal epithelial cells (79)

Barrier forming ↓ Cations It is involved in the reduction of

paracellular permeability of large

molecules and in the formation

of the blood-brain barrier

↓ Crohn’s disease, acute

colitis (90)

↑ Celiac disease (84)

4 22.1 Kidney and lung (68)

Human gallbladder (87)

Stomach, small intestine and colon (91)

Barrier forming - It can act as a Na+ barrier or,

interacting with claudin-8, as an

anion (Cl−) pore. In the colon

strengthens tight junctions

↓ Acute colitis (73, 83)

↑ NCGS (92)

5 31.6 Endothelial tissue: endothelial cells (93)

and brain capillary (94)

Epithelial tissue: Human ovarian surface

epithelium (82)

Human colon epithelium (95)

Barrier forming ↓ Cations It is involved in permeability of

small molecules (≈800 Da)

↓ Acute colitis, Crohn’s

disease (86), Celiac disease

(84, 96)

7 22.4 Epithelial tissue: Duodenum, jejunum,

ileum, colon (97)

Human palatine tonsillar epithelium (98)

Nephron segments primarily at the

basolateral membrane (99)

Barrier forming ↓ Anions It plays a role in the regulation of

Na+, Cl−, K+ and water

↓ UC (83),

Celiac disease (84, 96)

8 24.8 Epithelial tissue: Duodenum, jejunum,

ileum, colon (100)

Distal nephron (99)

Barrier forming ↓ Cations It can act as a Na+ barrier or

Cl− pore, depending on the cell

type

↓ Crohn’s disease (86)

12 27.1 Brain endothelial cells (94)

Duodenum, jejunum, ileum, colon (97)

- ↑ Cations It increases permeability to

Ca2+
↑↓ Crohn’s disease (101)

15 24.4 Kidney endothelial cells (89)

Intestine (duodenum, jejunum, ileum,

colon) (97)

Pore forming ↑ Cations It can act as a Na+ channel or

Cl− barrier, depending on the

cell type; it is involved in

paracellular K+ absorption and

Na+ secretion

↑ Celiac disease (84, 96)

18-2 27.7 Stomach (102)

and bone cells (103)

Barrier forming ↓ Cations It acts as selective barrier

against Na+ and H+, protecting

the epithelium from low pH

↓ Gastric cancer (104)

TABLE 2 | Characteristics of zonula occludens (ZO) proteins and junctional adhesion molecules (JAM) and their changes in intestinal diseases.

Tight junction protein Size (kDa) Interactions Role in disease

ZO-1 ∼220 kDa Claudin, JAM-A, occludin, F-actin, ZO-2,-3, cingulin ↓ Crohn’s disease (119)

IBS-D (120), IBS-A (121)

Celiac disease (122)

ZO-2 ∼160 kDa Claudin, occludin, F-actin, ZO-1,-3, cingulin ↓ IBS-D (120)

ZO-3 ∼130 kDa Claudin, occludin, ZO-1, cingulin ↓ IBS-D (120)

JAM-A ∼40 kDa Occludin, JAM-A, ZO-1, cingulin ↓ In IBD (75, 83, 123)

IBS-D and IBS-A (124)

JAM-B ∼40 kDa JAM-C, ZO-1 -

JAM-C ∼40 kDa JAM-B, JAM-C, ZO-1 -

includes two subtypes of transmembrane cadherins,
desmogleins, and desmocollins. These proteins through
the binding with plakophilin and desmoplakin (136) can

bind intermediate filaments providing junction stability
to mechanical stress due to peristaltic movement of the
gut (137).
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FIGURE 1 | Schematic representation of the junctional complex in intestinal epithelium. Molecules can cross the intestinal epithelial monolayer through the intercellular

space (paracellular route) or through the cells (transcellular route). The junctional complex involved in paracellular pathway includes tight junctions, adherens junctions,

gap junctions and desmosomes. Tight junctions are composed of transmembrane proteins such as claudins, occludin, junctional adhesion molecule (JAM), and

zonula occludens proteins (ZOs). ZOs, act as scaffold proteins, connecting claudins and occludin to cytoskeletal actin.

Zonulin, the pre-haptoglobin 2, is an endogenous modulator
of intestinal permeability.

The binding of gliadin to the chemokine receptor C-X-C
Motif Chemokine Receptor 3 (CXCR3) on epithelial cells, likely
induces the release of zonulin through a MyD88-dependent
pathway. Zonulin disassembles tight junctions, through the
transactivation of EGF receptor via proteinase-activated receptor
2 (PAR-2) activation (138, 139). Interestingly, zonulin serum
levels are altered in conditions characterized by IEB alterations,
including celiac disease (CD), type 1 diabetes, and non-celiac
gluten sensitivity (NCGS) (138, 140, 141). It is to note that
zonulin belongs to a family of structurally and functionally
related proteins named “zonulin family peptides” that can
affect intestinal permeability. In addition, it cannot be excluded
that different members of this family could be detected by
commercially available enzyme-linked immunosorbent assay
(ELISA) kit (142).

Transcellular and Paracellular Pathways
Luminal solutes and ions can pass across the IEB via two main
pathways: the transcellular pathway (i.e., through the cells) or
the paracellular pathway (i.e., between the cells) (Figure 1).
The transcellular transport implicates the passage across the
cell membrane, which generically occurs by passive transport,
passive diffusion by efflux pumps, active transport, or endocytosis
(143). Apolar compounds like soluble lipids can pass through

the phospholipid bilayer by simple diffusion. Small hydrophilic
compounds and nutrients mainly use channels and transporters
located on cellular membranes to cross the cell membrane (144).
Some channels belong to the group of the ligand-gated channels,
which requires the binding of a ligand to the receptor region to
modify their conformation and be opened or closed (145, 146).
Carrier-mediated transport involves the binding of the target
molecules to the receptor portion of the transporters, which in
turn produces a conformational change in the carrier and allows
the translocation of the compound (147).

Larger molecules, such as proteins and bacterial products,
penetrate by the mechanism of receptor-mediated endocytosis,
which implies the invagination of the plasma membrane and the
subsequent formation of vesicles, as a consequence of proteins
or peptides binding to specific cell surface receptors (148).
The substances thus incorporated are transported through the
cytoplasm by transcytosis. This transport is essential for antigen
surveillance in the GI tract (149).

Endocytosis in epithelial cells occurs differently depending on
the substance interacting with the epithelium. Immunoglobulins
and viruses penetrate the epithelium via clathrin-mediated
endocytosis. This is a highly specific receptor-mediated process
in which molecules, after binding the receptor, are internalized
via clathrin-coated vesicles (150). Transcytosis is a mechanism
through which IgA can cross the IEB and arrives into the lumen.
In particular, epithelial cells express the polymeric IgA-receptor
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(pIgA-R) that binds IgA. The extracellular portion of pIgA-R
is cleaved at the apical side and released into the lumen with
IgA (151), and the so generated secretory IgA (SIgA) complexes
play multiple protective roles (152). Bacterial and food antigens
delivery across the intestinal epithelium takes place throughout
the transcellular pathway. At the level of Peyer’s patches, SIgA can
mediate antigens selective translocation, first binding them and
then promoting their apical-to-basal transepithelial migration via
M cells, dendritic cells, and T cells (20, 153–156). Whereas, the
food allergens translocation throughout the intestinal epithelium,
during the initial phase, involves transcytosis of IgE-allergen
complexes mediated by the CD23 IgE receptor in epithelial cells
(157, 158). Indeed, the IgE-allergen complexes binding to the
CD23, located at the apical side of polarized epithelial cells,
promote IgE-allergen-CD23 migration toward the basolateral
surface of the cells with AP2-dependent endocytosis via clathrin-
coated (159, 160).

Phagocytosis is another pathway that allows the uptake of
antigens. In particular, enterocytes are able to carry out TLR-
mediated phagocytosis to internalizing gram-negative bacteria
(161). Moreover, phagocytosis is a route through which bacteria,
viruses, and particles can enter enterocytes, after binding to
different receptors (162, 163). Through the non-specific process
of micropinocytosis, extracellular fluids are internalized, as well
as dissolved molecules, viruses, and apoptotic cell fragments.
Finally, there is the mechanism mediated by lipid rafts/caveolae,
that seems to be involved in the internalization of some
enterotoxins and viruses into enterocytes (151). This mechanism
involves the invagination of cholesterol-rich areas of the plasma
membrane that contain a coating protein, caveolin (164).

TJs are responsible for the sealing of the paracellular space
between cells and, therefore, strictly limiting the transport of
hydrophilicmolecules (165–167). TJs have the so-called “gate and
fence” function as they regulate the size and charge selectivity
of the paracellular pathway. Indeed, TJs allow the paracellular
transport of some medium-sized hydrophilic molecules, ions,
or positively charged molecules but prevent the transport
of proteins, such as antigenic macromolecules, lipids, and
microbial-derived peptides (168).

GUT MICROBIOTA-EPITHELIAL BARRIER
INTERPLAY

The human gut harbors a community of about 1014

microorganisms resulting from thousands of years of co-
evolution with the host, with an intricate and mutually beneficial
relationship (169). Indeed, gut microbiota participates in
digestive functions, shapes the host immune system (170, 171)
modulates host metabolisms, and influences local and systemic
processes, such as vitamin intake and nutrient transformation
(172, 173). The intestinal microbial population also protects
against pathogens, by competing with them for nutrient uptake
and regulating host immunity (174–178). To avoid aberrant
immune responses, the IEB separates microbes and immune
cells, leading to the establishment of host-commensal mutualism
(171). Despite this physical separation, gut microbiota can

deeply modulate epithelial cells and the immune system (38)
through the production of a series of metabolites. Microbial
metabolites can be classified as metabolites generated by the host
and then modified by the gut microbes into the lumen, such
as secondary bile acids, dietary product-derived metabolites,
such as compound K, or de novo synthesized metabolites
such as short-chain fatty acids (SCFAs). SCFAs including
butyrate, acetate, and propionate, profoundly influence aspects
of GI physiology, such as contractility, visceral pain, epithelial
proliferation, barrier function, host immunity, but also bacterial
pathogenesis (179–181).

SCFAs can modulate the expression profile of epithelial
cells, enhancing the production of proteins involved in the
biosynthesis of mucin (182). Specifically, butyrate enhances
MUC2 expression both activating the MUC2 promoter and
enhancing histone acetylation by HDAC inhibition in cell
cultures (183). Moreover, the intestinal epithelial cells express
receptors activated by SCFAs. These are members of the G-
protein coupled receptors (GPR) and include GPR41, GPR43,
and GPR109a. The SCFAs binding to GPR41 and GPR43
stimulates colonic epithelium to releases chemokines and
cytokines (184). The butyrate depending activation of GPR109a
enhances IL-18 excretion in epithelial cells, protecting the colon
against inflammation and carcinogenesis (185). Other microbial
metabolites that significantly influence the maintenance of gut
barrier integrity include indole derivatives, bile acid metabolites,
conjugated fatty acids, polyamines, and polyphenolic derivatives.
Their role in regulating gut barrier function was recently assessed
in an extensive review (186).

TLRs are single-pass membrane-spanning receptors playing
a key role in the innate immune system (187). They are
expressed on the membranes of immune and non-immune
cells, including epithelial cells, and recognize molecules that are
broadly shared by microbes. In particular, TLR recognition of
microbial fractions improves the IEB function, the secretion of
mucus, and the production of antimicrobial peptides, promoting
immune tolerance toward the gut microbiota. The role of
epithelial TLRs in gut homeostasis and disease was recently
reviewed (188).

Bacteria-epithelial cell interactions play an essential role
in regulating epithelial permeability through the modulation
of TJs expression and assembly (189). Animal studies clearly
underlined the interplay between the intestinal microbiota
and the IEB homeostasis. Germ-free mice had a higher
colonic expression of claudin-1 and occludin as compared
with conventional mice, with lower paracellular uptake of
a standard probe, suggesting that commensal microbiota
controls colonic TJs proteins and paracellular permeability
(190). Interestingly, transplantation of fecal microbiota from
healthy humans restores the IEB features of conventional
mice within a week. In particular, colonization reestablishes
physiological colonic paracellular permeability, maturation of
colonic barrier structure, and reduces systemic microbial
antigen exposure (190). Altogether these data suggest that
gut microbiota is crucial in preserving the integrity of the
IEB, thus preventing the systemic spreading of potentially
harmful antigens.
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Specific gut microbiota components may differently modulate
the IEB permeability. For example, colonization of germ-free
mice with Bacteroides thetaiotaomicron (191) or Escherichia coli
Nissle 1917 (EcN) (192) led to up-regulation of genes encoding
for proteins such as small proline-rich protein-2 (sprr2a) and
ZO-1 involved in improving cellular adhesion. Interestingly,
we have recently demonstrated that the increase in paracellular
permeability elicited by supernatants obtained from patients
with IBS could be ameliorated by EcN (193). Furthermore,
EcN treatment abolished the correlations between increased
permeability induced by IBS supernatants with abdominal pain
and distension referred by IBS patients, paving the way to further
explore clinical applicability of this probiotic in IBS human
studies (193). In contrast, other bacteria had no impact on IEB
permeability or could impair the IEB. For the latter, not only
pathogens, such as enterohemorrhagic Escherichia coli (EHEC)
O157:H7 (194), enterotoxigenic Escherichia coli (ETEC) K88 and
Salmonella typhimurium SL1344 (195), but also non-pathogenic
commensal bacteria, such as Escherichia coli C25 (196), can
be involved.

Growing evidence indicated that microbiota dysbiosis,
occurring when the diversity, composition, and/or functions of
the intestinal microbiome are disrupted, could contribute to
the alteration of the IEB with implications in the development,
progression, and symptom flare-up of several diseases. Among
these, inflammatory conditions, such as IBD, and functional
bowel disorders, such as IBS, are both characterized by a well-
established microbiota dysbiosis associated with impairment
of intestinal permeability. The interplay between the host,
and in particular the semipermeable multi-layer ecosystem
where intestinal epithelial cells exert a critical role, and the
gut microbiota is constantly challenged by numerous factors,
including genetics, age, environment, food, and immunological
factors. A recent report of the Rome Foundation on the Intestinal
Microenvironment and Functional Gastrointestinal Disorders
(FGIDs) provided an excellent overview of the importance
of the environment, including food, diet, microbiota, and its
metabolic interactions, in the pathophysiology and symptom
generation of patients with FGIDs (197). Patients with IBD
display a loss of biodiversity (mostly Firmicutes) and stability,
while an increase of Proteobacteria such as Enterobacteriaceae,
Bilophila, and certain members of Bacteroidetes [for review,
see (198)]. In addition, Akkermansia muciniphila, a mucolytic
commensal, is generally reduced in the gut of these patients, with
a consequent increase of the overall mucosal bacteria population
(42). Furthermore, patients with IBD display a reduction in
SCFA-producing bacteria such as Faecalibacterium prausnitzii
(199) that is well-known to have anti-inflammatory properties
through its ability to produce butyrate, allowing for T regulatory
cell and T helper 17 regulation (200). Altogether, these changes
may lead to a loss or reduction of key functions necessary
for maintaining IEB integrity, potentially resulting in increased
immune responses and the diffusion of pathogens into the
intestinal tissues. In addition, bacterial translocation induces
the production of inflammatory cytokines, which promote the
disassembly of TJs, enhancing IEB permeability. However, if
these changes are a cause or consequence of these diseases,

this is virtually unknown at this time. Strategies to improve
the relationship between host and intestinal microbiota to
enhance epithelial mucosal permeability include the use of
probiotics and dietary interventions, although there is still
uncertainty on the potential benefits (6). In this context, we have
recently demonstrated that Lactobacillus paracaseiCNCM I-1572
modulates gut microbiota structure and function and reduces
intestinal immune activation in patients with IBS. Interestingly,
the most robust result was obtained for a marked reduction
of interleukin 15 (IL-15) that affects the integrity of the IEB,
suggesting that this probiotic may play an important role in the
restoration of mucosal integrity (201).

GUT IMMUNE SYSTEM-EPITHELIAL
BARRIER INTERPLAY

The integrity of the IEB depends on the delicate balance
between differentiation and renewal of intestinal epithelial cells,
the response to signals coming from the lumen including
microbiota and their end products, and nutritional factors
introduced with daily diet as well as signals coming from
the mucosal immune system (202). Several factors, including
cytokines, proteases, growth factors, gut microbiota, and dietary
components are known to regulate intestinal TJs opening (6).
Immune dysregulation in several disorders of the gastrointestinal
tract such as IBD, celiac disease, colonic cancer, and IBS is
often associated with impaired IEB integrity or dysfunction.
Indeed, the IEB may represent the target of mediators released
by inflammatory cells in the lamina propria. This elicits
epithelial cell damage and TJ dysfunction, mucus structural and
functional alterations, ultimately leading to increased intestinal
permeability (6). Disruption of the IEB would then allow the
passage of antigens, bacterial products in the mucosa leading
to further inflammation hence creating a self-maintaining
pathological inflammatory process (6). The involvement of
the immune system in conditions affecting the gastrointestinal
tract can be greatly different for magnitude as well as the
type of immune cells. Conditions characterized by mucosal
inflammation often show the involvement of both innate as well
as adaptive immunity.

Intestinal epithelial cells and mononuclear phagocytes sense
bacteria or their products mainly through pattern recognition
receptors such as TLRs (166). Downstream of activation of innate
responses is the production of cytokines, including the IL-1
family cytokines such as IL-1 and IL-18 which lead to pro-
inflammatory effects in the context of intestinal inflammation.
IL-1 can further promote Th17 cell differentiation and IFN-
γ production from T cells (203) and its two isoforms (IL-1α
and -β) seem to be involved in epithelial repair/regeneration
(204). IL-1R1 is a receptor expressed on different cell types of
the colon such as innate lymphoid cells (ILCs) and GREM+

mesenchymal cells (205). Cox et al. demonstrated that in a mice
model of DSS-induced colitis, the binding of IL-1α/β to IL-1R1
in ILCs induces the production of IL-22, a cytokine involved
in progenitor cell proliferation. Conversely, in a model of C.
rodentium infection, the activation of IL-1R1 occurs both in ILCs
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and in GREM+ mesenchymal cells, inducing the production
of R-spondin 3 (RSPO3), an intestinal stem cell self-renewal
activator. The IL-1R1-dependent response thus appears to reveal
a damage-specific reparative capacity, which opens the door to
IL-1-based therapeutic approaches (206).

Other important cytokines in the orchestration of innate
immunity-related intestinal inflammation, include IL-6, IL-33,
TNF-α (202). The release of TNF-α and IFN-γ in the intestinal
mucosa has been associated with IEB disruption in patients with
IBD (207–210) as well as IBS (211). In line with this concept,
incubation of intestinal epithelial cell monolayers with TNF-α
and IFN-γ elicits profound changes of claudins, occludin, ZO-
1, JAM-A, leading to increased epithelial permeability (212).
During intestinal inflammation, TJs show strand breaks, and
changes in TJ proteins composition and function as well as
impaired structure and remodeling of apical junctions (213).

During inflammatory processes neutrophils, mast cells, and
macrophages release proteases (214). Besides degrading the
extracellular matrix and proteins, proteases act as signaling
molecules via specific receptors (215). Proteases may deeply
influence the integrity of the IEB either through excessive
proteolysis determined by direct cleavage of intercellular junction
proteins, or by a functional TJ opening elicited by the
activation of protease-activated receptors (216). Mast cells are
very proficient producers of proteases and mast cell activation
has been proposed as underlying pathogenetic mechanisms in
different gastrointestinal disorders, including IBS (217, 218).

CLINICAL IMPLICATIONS

Irritable Bowel Syndrome
Differently from IBD and celiac disease, IBS is not associated
with overt mucosal inflammation, and evidence supporting
the potential role of cytokines in these patients has been so
far controversial (Figure 2) (219–221). However, we previously
reported that IBS is associated with a marked increase in IFN-γ
gene and IFN-γ protein expression in the colonic mucosa (211),
a finding also supported by evidence of increased IFN-γ release
in the lumen (222). As IFN-γ is known to increase paracellular
permeability through disruption of TJs (223). This cytokine
could well be involved in increased paracellular permeability
described in patients with IBS (224). In addition to IFN-γ, other
players could be of relevance in the dysregulation of TJs. IL-9 is
abundantly produced by mast cells as well as innate lymphoid
cells and T helper cells. Evidence suggests that IL-9 amplifies
intestinal mastocytosis involved in several inflammatory diseases
of the gastrointestinal tract (225). Recently, it has been shown that
IL-9 modulates IEB function, modifying TJs proteins expression.
In particular, IL-9 increases intestinal permeability through the
upregulation of claudin-2 expression in an experimental model
of ulcerative colitis (226). This concept is further supported by
recent studies showing that in murine models of colitis, the
TJ protein claudin-1 showed lower expression levels in IL-9
knock-out mice (227).

We have previously shown that the permeability of colonic
biopsies was significantly higher in patients with IBS compared
to healthy subjects (228). Tryptase, a key serine protease released

by mast cells upon degranulation, was abundantly increased
in mucosal biopsy supernatants of patients with IBS compared
to healthy controls (229–231). Interestingly, the application
of mucosal biopsy supernatants of IBS patients elicited a
marked increase in paracellular permeability in Caco-2 epithelial
cell monolayers (193). The importance of proteases in the
pathogenesis of IEB dysfunction described in IBS is further
supported by the evidence that transfer of fecal supernatants
from patients with diarrhea-predominant IBS evoked increased
mucosal permeability in mice and mucosal factors obtained
from IBS evoked IEB dysfunction and TJ disruption in isolated
epithelial monolayers (228). The effect of fecal supernatants on
the epithelial barrier was absent in mice lacking PAR-2 (232).
These results suggest that mucosal or luminal mediators impact
negatively IEB by increasing epithelial permeability through a
protease, PAR-2-dependent pathway and open new avenues for
therapeutic intervention (232).

Contrary to the long-lasting belief that IBS is not associated
with organic changes, there is now growing evidence supporting
that structural, although subtle, changes may be found in the
gastrointestinal tract of large subgroups of these patients (197).
The observation that IBS can develop after an episode of acute
infectious gastroenteritis further supports the organic as opposed
to the functional nature of this condition (233). Many studies
showed that the intestinal mucosa of IBS patients contains larger
numbers of immune cells and evidence of a higher state of
activation of the immune system (218). Interestingly, growing
evidence supports the concept that IEB dysfunction may be key
in the initiation and progression of immune activation and that
this may eventually contribute to brain-gut axis dysfunction and
symptom generation (228, 234). Accordingly, this evidence has
generated a new dogma in the pathophysiology of IBS. More in
detail, microenvironmental factors (e.g., food, microbiota, bile
acids) would permeate in excess through a leaky IEB, allowing
amplification of signaling from the lumen to deeper mucosal and
muscle layers, including overstimulation of the mucosal immune
system (197). These factors may determine abnormal signaling
to neural circuits (intrinsic primary afferent nerves and extrinsic
primary afferent nerves), which in turn may affect intestinal
physiology and sensory perception (197).

Nonetheless, evidence indicates that there is a poor correlation
between pathogenetic mechanisms and symptom generation
in IBS. More likely, only the combination of peripheral (i.e.,
intestinal) factors, in conjunction with central nervous system
mechanisms is necessary for the full expression of symptom
perception. For this reason, IBS, like many other functional
gastrointestinal disorders, is now better defined with the new
term of Disorders of Gut-Brain Interaction (DGBI). On the
same line, a single phenomenon is insufficient to explain
the complexity of the protean symptom experience of IBS.
One example in line with these concepts was our previous
demonstration that the number of mucosal mast cells was
increased in the colonic mucosa of patients with IBS (229).
However, this phenomenon alone was not correlated to any
symptom experienced by the patients. Nonetheless, when
this parameter was associated with the presence of activated
mast cells in close proximity with nerve endings in the
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FIGURE 2 | Alteration of IEB in irritable bowel syndrome, inflammatory bowel disease and celiac disease. (A) In irritable bowel syndrome (IBS), tryptase, histamine, and

interferon-γ (IFN-γ) are increased and can contribute to TJ disruption. In addition, IL-9 is produced by innate lymphoid cells, T helper cells and mast cells. This latter

(Continued)
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FIGURE 2 | cell population has a key role in IBS pathophysiology, and can modify TJ protein expression. In addition, immune mediators, including histamine,

serotonin and proteases evoke sensory afferent over-stimulation and contribute to symptom generation. In celiac disease (CD), intestinal epithelial cells recognize

gluten peptides through CXCR3, which increases IEB permeability through zonulin release and its transactivation of epidermal growth factor receptor (EGFR) and

protease activated receptor 2 (PAR-2). Transcytosis of gluten peptides occurs after peptide recognition by secretory immunoglobulin A (SIgA). A reduction in the

expression of E-cadherin and β-catenin was found in intestinal biopsies of CD patients. Active tissue transglutaminase2 (tTG2) deamidates gluten peptides,

contributing to the development of a cell mediated pro-inflammatory immune response. (B) Genetics, environment, diet, immune system dysregulation and dysbiosis

represent some of the complex mechanisms responsible for inflammatory bowel diseases (IBD). Inflammation down-regulates TJs proteins contributing to IEB

alteration. In IBD patients has been reported an upregulation of the pore-forming claudin-2 and downregulation of occludin. Channel-forming claudins are

up-regulated by cytokines including TNF-α and IL-13, leading to an increased permeability for ions and water. Occludin is down-regulated by inflammatory processes

(e.g., TNF-α and IFN-γ), leading to increased paracellular permeability for macromolecules. Moreover, it has been shown a downregulation of claudin-5 and -8 in

Crohn’s disease and claudin-4 and -7 in Ulcerative Colitis (UC). In Crohn’s disease, the stimulation of NOD2, a sensor of Gram-positive bacteria, induces the

production of pro-inflammatory mediators, which concur to IEB dysfunction. Differently from UC, in Crohn’s disease the mucus layer is thicker, suggesting an increase

in MUC2 expression and goblet cells hyperplasia. In patients with Crohn’s disease, intestinal epithelial cells (IECs) failed to produce thymic stromal lymphopoietin

(TSLP), with consequent inability to control IL-12, produced by dendritic cells and involved in the development of Thelper 2 cells, resulting in alteration of intestinal

homeostasis. Compared to UC, in which the antimicrobial peptides (AMPs) system seems to be adequately induced, Crohn’s disease is characterized by lower levels

of AMPs. Contrasting evidence are available on the role of smoking in UC and Crohn’s disease.

mucosa of the intestine, we found a stringent correlation with
abdominal pain (229). In addition, there is wide redundancy
in pathogenetic mechanisms, and the different pathogenetic
mechanisms influence each other and therefore should be always
considered in context. For example, on one hand, changes in
gut microbiota can promote IEB dysfunction which can lead
to mucosal inflammation. On the other hand, inflammatory
mediators can increase mucosal permeability and influence gut
microbiota. This generates a vicious and integrated circle that
cannot be separated into fully independent compartments.

With all the above considerations in mind, one of the
most common observations in the studies evaluating the gut
IEB and IBS relates to the correlation between increased
intestinal permeability and abdominal pain (234). The link
between epithelial permeability and pain likely reflects the
abovementioned redundancy of the system involving the gut
microbiota overstimulating the immune system through a leaky
IEB, leading to the release of immune mediators, such as
histamine, tryptase, serotonin, polyunsaturated fatty acids (12-
hydroperoxyeicosatetraenoic acid, 15-hydroxyeicosatetraenoic
acid, 5-hydroxyeicosatetraenoic acid, 5-oxoeicosatetraenoic acid,
and leukotriene B4) (235, 236) known to evoke sensory afferent
over-stimulation and pain (230).

Although some tantalizing findings have been reported, the
final proof to demonstrate the key role of increased intestinal
permeability in IBS has yet to be provided. There is a need
for longitudinal studies that include assessment of the IEB
function over time and its correlation with symptoms in
well-characterized IBS populations. In addition, further studies
assessing the role of IEB modulation in IBS are now needed. In
this perspective, a recent study using a medical device containing
xyloglucan, pea protein and tannins from grape seed extract, and
xylo-oligosaccharides, acting together to protect and reinforce
the IEB, effectively controlled diarrhea and alleviated clinical
symptoms in patients with IBS-D (237).

Gluten-Related Disorders
Gluten-related disorders comprise distinct clinical entities,
including celiac disease (CD), wheat-associated allergy, and
NCGS, characterized by distinct pathophysiological pathways,

with altered permeability following gluten ingestion as a possible
common shape.

CD is a chronic systemic disorder triggered by the abnormal
response of human immunity to gluten ingestion in genetically
pre-disposed individuals (238). The activation of the immune
system against gluten peptides begins after their transfer to
the lamina propria where they are deamidated by the tissue
transglutaminase enzyme and subsequently bounded to human
leucocyte antigens (HLAs) expressed by antigen-presenting cells
(APCs), which activate the inflammatory cascade (Figure 2) (239,
240). However, the presence of gluten and genetic background
does not fully explain CD pathogenesis. Indeed, in studies on
twins, in one-fourth of cases, only one twin developed CD
(241). Mounting evidence suggests that CD onset is favored
under the influence of triggering environmental factors, such as
viral infections and dysbiosis (242–247) which activate innate
immunity leading to IEB disruption (248). Several studies suggest
that the primum movens for CD onset depends on an increased
intestinal permeability, which leads to gluten passage from
the lumen to the mucosal layer and innate cytotoxic immune
activation on epithelial cells further enhancing gluten migration
(249). Although the IEB has been extensively investigated
in the context of CD pathogenesis, to date is still unclear
whether the IEB impairment is a cause or consequence of
CD. On the other hand, in the last decades a novel clinically
entity has been defined in patients without CD complaining
extraintestinal and gastrointestinal symptoms referring to a clear
benefit by avoiding gluten from their diet and/or symptom
worsening upon gluten reintroduction, namely NCGS (141). The
pathophysiology of NCGS is incompletely known, although some
evidence suggests a role for permeability alterations, microbiota
changes, and immune activation (141). The Salerno criteria are
the gold standard to diagnose NCGS. These criteria imply a
double-blind placebo-controlled gluten challenge (250), which
is cumbersome and unfeasible to perform in clinical practice.
In addition, there are no available biomarkers for NCGS. For
all these reasons, diagnosis is currently based on self-reported
symptoms by patients. There is a great overlap in symptoms
between NCGS and IBS which makes a challenge the differential
diagnosis between these two conditions. We have recently
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reported that zonulin serum levels are significantly increased
in NCGS compared to IBS. In addition, the combination
of zonulin levels, gender, and abdominal symptoms, can
differentiate NCGS from IBS with a diagnostic accuracy of
89% (141).

Studies carried out using epithelial cell lines and animal
models showed that gliadin was able to induce apoptosis
of intestinal epithelial cells through a direct toxic effect
(251), including enterocyte atrophy, villi shortening, decreased
epithelial disaccharidase activity, increased expression of HLA
molecules, and intraepithelial inflammatory activation. Among
other effects, gliadin fraction p31-43 is able to mimic epidermal
growth factors in human intestinal epithelial cell lines, finally
leading to barrier defects (252). This peptide is usually detoxified
during the transport in healthy subjects, whereas in active CD
patients most of these peptides are transported intact in the
serosal compartment; this process may be explained by the
binding between gluten peptides with anti-gliadin secretory IgA
finally forming large complexes in the intestinal lumen which
in turn bind the CD71 receptor, namely the endocytic receptor
for transferrin, thus activating the transport across enterocytes
escaping lysosomal degradation (156). It is unclear whether
this process is involved in CD development since it has been
postulated that the entrance of IgA-gliadin complexes may break
local immune tolerance (253). However, it is more likely that this
process may perpetuate the immune reaction against gluten once
the disease started. Besides, the effect of gliadin on the enterocyte
actin cytoskeleton was studied on rat intestinal epithelial (IEC-
6) cell cultures, finding that it was able to reversible stimulate
tyrosine phosphorylation of actin filaments resulting in filaments
polymerization, cytoskeleton reorganization, and tight junction
opening (254). Other authors suggested that gliadin was able to
bind the mono-sialic ganglioside 1 (GM1) or the receptors for
the proinflammatory chemokine 3 (CXCR3) in mouse models,
leading to the release of zonulin which in turn decreases electrical
resistance of epithelial layers, finally resulting in increased
epithelial permeability (139, 255). Indeed, zonulin release can
induce cytoskeleton reorganization and zonula occludens-1 and
occludin downregulation (139, 256). More interestingly, the
receptors for the proinflammatory chemokine CXCR3 were
also activated by the overexpression of its chemokine ligand
10 (CXCL10), which in turn is upregulated in vitro by viral
infections (256).

Macroscopic alterations in intestinal permeability have been
studied since the 60s (257) using tests able to measure the
absorption of two inert probes of different dimensions by the
IEB (257). The first probe was mannitol, which was taught to
get through the IEB freely; the second was lactulose, which
was able to get through the IEB only when its integrity was
lost. An increased ratio between urinary lactulose/mannitol
concentrations 6 and 12 h after oral administration indicated
increased intestinal permeability, which has been extensively
reported in CD patients (258–260). These alterations were
also correlated to villus atrophy and intraepithelial lymphocyte
count. Indeed, a further study showed that permeability increase
was dependent on the release of IFN-γ by intraepithelial
lymphocytes (207).

Structural changes consisting of dilatation, destruction, and
reduced number of TJ strands were found in CD patients
from ancillary (261) to more recent studies using transmission
electron microscopy of duodenal biopsies (262). In CD has
been widely reported an increased expression of pore-forming
proteins such as occludin and claudin-2, together with a decrease
of pore-sealing proteins such as claudin-3 and -4 and ZO-1
(84, 262–264). Claudin-2 expression is also induced by TNF-
α, which in turn is upregulated in CD (86) and responsible
for increased transcellular permeability in CD. These alterations
are simultaneous to the loss of the penta-laminar ultrastructure
and dilatation of TJs found in CD (262). As matter of fact, the
overexpression of pore-forming and under-expression of pore-
sealing TJ proteins is responsible for the dilatation of TJs (262).

CD patients have been found to have also alterations in
adherence junction protein expression. A reduction in the
expression of E-cadherin and β-catenin was found using
transcription analysis in both intestinal biopsies of CD patients
and Caco-2 cells (265). Moreover, an impaired interaction
between ZO-1, mostly not phosphorylated in CD patients,
and β-catenin has been reported, finally, leading to an absent
connection between β-catenin and occludin in CD patients
(263). On the other hand, β-catenin has been reported to be
highly phosphorylated in CD, thus not binding E-cadherin
which in turn is free to bind intra-epithelial lymphocytes
responsible for inflammatory activation (263). Together with
barrier impairment, epithelial polarization may also affect
permeability since it regulates the function of proteins partition
defective-3 (PARD-3) and protein phosphatase-2 (PP-1) which
are involved in tight junctions formation (266).

Although these alterations are not specific for CD and
may merely depend on mucosal inflammation, tight junctions’
abnormalities have been found even in asymptomatic and first-
degree relatives of CD patients, thus underlying a possible genetic
background for permeability defects in CD (267). Supporting this
hypothesis, polymorphisms in tight junctions encoding genes,
such as PAR-3, membrane-associated guanylate kinase WW, and
PDZ domain containing 2 (MAGI-2) and myosin IXb (MYO9B)
have been found in CD patients (268–270). A subsequent
study did not confirm a direct causal relationship between
genetic polymorphisms and increased intestinal permeability
(271). However, more recent studies evaluating CD loci showed
a possible role of other genes involved in barrier functions and
cell-cell adhesion (272–274).

To date, the only effective treatment for CD is a gluten-free
diet (GFD). GFD is able to partially restore TJs abnormalities
found in CD since TJs numbers remained low in crypts (261).
Other studies found a normalization of ZO-1 (264) expression
after gluten removal in vitro and of claudin expression (262)
after 6 months of GFD. In parallel, in vitro models showed
that β-catenin and E-cadherin alterations were reversible after
gluten removal (265, 275). These microscopic findings were
further confirmed by the recovery of a normal lactulose/mannitol
ratio after histological mucosal healing due to long-term GFD
(276). This evidence additionally confirmed that most intestinal
permeability alterations were reversible, thus excluding the
previous hypothesis of a causal role for genetic background.
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Additional or alternative therapeutic options to GFD focused
on the reduction of intestinal permeability have been proposed
for CD patients. Gluten detoxification through proteolysis or
gliadin sequestrants has been proposed for overcoming the
gliadin-related toxic effect across the epithelium (277, 278). A
randomized controlled trial carried out in 2007 aimed to improve
intestinal permeability using larazotide acetate (AT-1001), which
is an inhibitor of paracellular permeability derived from a protein
secreted by Vibrio cholerae and analogs of human zonulin
(279). The authors concluded that larazotide acetate reduced
IEB permeability assessed by lactulose/mannitol permeability
test, proinflammatory cytokine production, and gastrointestinal
symptoms in CD after gluten exposure (279). Two further phase
II trials (280, 281) with larazotide acetate failed in finding an
improvement in intestinal permeability, whereas the last trial
published (282) underlined possible usefulness in refractory
CD, defined as malabsorption and continued villous atrophy
on duodenal biopsies despite strict avoidance of gluten for a
minimum of 12 months (283). Another promising approach for
reducing intestinal permeability is the use of probiotics, which
however deserve further studies (244, 284).

Inflammatory Bowel Diseases
Dysfunctional IEB has been implicated as a pathogenic factor
in IBD in the last 30 years (285, 286). IBD includes a spectrum
of disorders such as Crohn’s disease and ulcerative colitis
(UC), representing chronic remittent or progressive conditions
determined by non-specific inflammation and intestinal
tissue damage. It has been characterized by exaggerated and
inappropriate mucosal immune responses that can involve
the entire mucosal wall, as in Crohn’s disease, or be confined
to the submucosa, as in UC (287). The pathogenesis of IBD
is complex and multifactorial and it is not fully understood,
involving a complex dysregulated interaction between different
factors (Figure 2). Particularly genetic pre-disposition, gut
microbiota, and innate and adaptive immune responses
represent fundamental elements (288). Some authors suggest
that the alteration of the balance between these three components
would be responsible for the triggering of the inflammatory
environment needed to induce IBD (289). Otherwise many
researchers reported that many other factors are involved in
the pathogenesis of IBD such as dysfunction of intercellular
transport mechanisms (290, 291), associated with factors
responsible for the exacerbation in IBD (i.e., cigarette smoking,
diet, stress, microbial dysbiosis, and food additives) (292–297).
In fact, urbanization of societies is associated with changes in
diet, antibiotic use, hygiene status, microbial exposures, and
pollution, which have been implicated as potential environmental
risk factors for IBD (298). Although these factors have been
explored, the data available are still inconclusive (299). It is still a
matter of debate the role of smoking in IBD. Evidence reported
in literature shows smoking is associated with opposing risks in
Crohn’s disease and UC (300–302).

A meta-analysis focused on the effects of smoking behaviors
and IBD has demonstrated that different races may have varying
degrees of susceptibility to IBD (300). Smokingmay play differing
roles in the development of Crohn’s disease compared with

UC. Studies that involve Israeli populations, for example, have
consistently failed to demonstrate a positive association between
smoking and Crohn’s disease, yet these same studies have shown
a protective relationship between smoking and the development
of UC (300). Conversely, a recent paper showed current smokers
compared to never-smokers had an ∼2-fold risk of UC and
Crohn’s disease (303).

Another study analyzed systemic concentrations of key
chemokines and cytokines in IBD patients with a different
range of disease activity compared to levels found in healthy
donors (304). The result shows that there was a significant
increase of chemokines including macrophage migration factor
(MIF), CCL25, CCL23, CXCL5, CXCL13, CXCL10, CXCL11,
MCP1, and CCL21 in IBD patients as compared to normal
healthy donors. Further, has been reported an increase in
the inflammatory cytokines IL-16, IFN-γ, IL-1β, and TNF-
α in IBD patients when compared to healthy donors (P <

0.05). These data clearly indicate an increase in circulating
levels of specific chemokines and cytokines that are known
to modulate systemic levels through immune cells, results in
affecting local intestinal inflammation and tissue damage in IBD
patients (304). More recently it has been studied the role of
antimicrobial peptides (AMPs) in IBD patients. Between this
group of molecules, the most important ones are produced
in the gut epithelium and are α-defensins HD5 and HD6,
produced by the small-intestinal Paneth cells, and ß-defensins
(constitutive HBD1 and inducible HBD2 and HBD3), mostly
in the gastric and colonic epithelium (305). The changes in
the microbiome composition and the bacterial contamination
of the mucosa as well as the inner layer of the mucus may
well be mediated by defects in this chemical defense (306).
Compared to ulcerative colitis, in which the AMP system seems
to be adequately induced, colonic Crohn’s disease is characterized
by low HBD1, regulated by peroxisome proliferator-activated
receptor gamma (PPARγ), and a compromised induction of
HBD2 and HBD3 (307, 308). Considering the important role
played by the intestinal epithelium, which establishes a tightly
regulated barrier, its integrity defects are frequently reported
during intestinal inflammation (309). Microscopic analysis of
intestinal tissue from IBD patients reveals a decrease in goblet
cells (50), reduction thickness of mucus layer, and defective
defensin production (310), with an altered composition of some
components such as mucins and phosphatidylcholine (311). The
alteration of the mucus protective barrier plays a key role in
the onset of IBD (312). A recent case-control study reported
that mucus abnormalities contribute to UC pathogenesis,
demonstrating how core mucus structural components were
reduced in active UC (313). These alterations were associated
with attenuation of the goblet cell secretory response to microbial
challenge and occurred independently of local inflammation.
Another important mechanism involved in the alteration of the
mucus protective barrier in IBD is the invasion by bacteria
directly in contact with the epithelium and their penetration
into the crypts and epithelial cells (314). This mechanism has
been demonstrated in mice lacking MUC2 mucin (27). In these
animal models, bacterial invasion induces the response of the
colonic immune system resulting in inflammation, spontaneous
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colitis, diarrhea, rectal and colon prolapse, rectal bleeding, and
an increased risk of colon cancer development. Differently from
UC, in Crohn’s disease, the mucus layer is thicker, suggesting
an increase in MUC2 expression and goblet cells hyperplasia.
Nevertheless, the structure of MUC2 is altered due to a reduction
in the oligosaccharide chain length by 50%, leading to a loss
of mucus viscoelastic properties and consequently a loss of
protective function (315). Furthermore, indirect data suggest
that barrier defect might precede the onset of disease (316)
and up to 40% of first-degree relatives of patients with Crohn’s
disease demonstrate an altered small intestinal permeability
(317). Moreover, it was shown that patients that had increased
intestinal permeability were at greater risk of successive disease
relapse (318, 319).

The mechanisms involved in the proper functioning of the
IEB include the transport of molecules across the intestinal
mucosa through two distinct mechanisms: paracellular diffusion
through TJs between adjacent intestinal epithelial cells and
transcellular transport involving the transcytosis of materials,
eventually mediated by membrane receptors. In IBD patients
has been observed increased paracellular permeability with
abnormal TJ structure and a down-regulation and redistribution
of many TJ proteins or other adherents junctions (320,
321). Both paracellular hyperpermeability [demonstrated by
abnormal TJ expression and upregulation of myosin light
chain kinase (MLCK) activity (86, 322–324)] and transcellular
hyperpermeability [represented by bacterial internalization to
epithelia (325)] were documented in mucosal biopsies of patients
with Crohn’s disease and UC. Disruptions of TJ proteins could
lead to an alteration of the IEB, allowing entry of luminal
bacteria. In fact in IBD has been reported an upregulation of
the pore-forming claudin-2 and down-regulation of occludin,
particularly claudin-5 and -8 in Crohn’s disease and claudin-4
and -7 in UC (83, 86, 326). Increased expression of claudin-
2 determines an increased number of pores responsible for the
paracellular movement of small molecules, characteristic of both
UC and Crohn’s disease (1). This rupture in the IEB can result
in inflammatory infiltrate resulting in a production of cytokines
and other mediators that can further contribute to the impaired
functioning of the IEB. Different proinflammatory cytokines are
implicated in IEB dysfunction through the increased intestinal
permeability along paracellular pathways (327). In particular
cytokines such as TNF-α, IL-4, IL-13, interferon-γ (IFN-γ),
IL-1β, IL-9, and IL-6 increase intestinal permeability, whereas
has been shown that IL-10 has a protective role, maintain IEB
function (321, 328–330). This is supported by the fact that
IFN-γ and TNF-α are elevated in the mucosa of IBD patients
contributing to a pro-inflammatory cascade and IEB disruption
(75, 331).

Regarding the important role of genetic susceptibility in IBD
patients, most genetic loci that confer susceptibility to Crohn’s
disease and UC, have been linked to defects in IEB function (332–
335). The first Crohn’s disease susceptibility gene identified was
NOD2/CARD15 (336). It was demonstrated that patients with
a mutation of NOD2 have altered cell-cell epithelial contacts
(337). Furthermore, epithelial cells with mutated NOD2, have
an inappropriate response to a sensor of a cell wall component

of Gram-positive bacteria (muramyl dipeptide, MDP) whose
stimulation determines the production of pro-inflammatory
mediators (338–341). Moreover, it was shown that mutations in
the NOD2 gene increased susceptibility to intestinal permeability
in the healthy relatives compared to control subjects (342).

The intestinal microbiota has an important role as a regulator
of epithelial–immune cell communication and patients with IBD
often show dysbiosis (309). In fact in IBD have been documented
changes in the commensal gut microbiota, represented by
reduced complexity of commensals bacteria that are beneficial
for the host or a greater representation of a specific phylum
(343). Currently, it is not clear if these disorders are the cause
or consequence of the manifestation of IBD. The cause of
this condition seems to be disturbances in the recognition of
pathogensmicroorganisms in the human intestine determined by
alterations in the expression of pathogen recognition receptors,
which include the already mentioned NOD2 (336, 340) and
also TLRs and Rig-I like receptors. Intestinal epithelial cells
(IECs) and innate immune cells, such as dendritic cells and
macrophages, are equipped with these receptors to distinguish
between components of pathogens and beneficial commensals
(344). IECs have also the role to produce thymic stromal
lymphopoietin (TSLP), IL-2 cytokine member, in response to
commensals, such as Gram-negative Escherichia coli or Gram-
positive Lactobacillus rhamnosous (345). Interestingly it was
shown that in patients with Crohn’s disease, IECs failed to
produce TSLP, with consequent inability to control IL-12,
produced by dendritic cells and involved in the development of
Thelper 2 cells, resulting in alteration of intestinal homeostasis
(346). These dysregulated epithelial-immune cell communication
support the evidence of disturbed microbiota in patients with
IBD (309).

Despite the involvement of immune intrinsic and barrier
intrinsic dysfunction in the pathogenesis of IBD, none of these
mechanisms alone would be able to explain all the characteristics
of IBD. At the same time, data available in the literature,
do not fully support defect in the IEB as a primary etiologic
factor leading to the manifestation of IBD and it is unclear
whether increased intestinal permeability is a consequence of the
inflammatory process (347, 348) or anticipates and contributes
to intestinal inflammation (317). Considering that current
anti-inflammatory therapy (steroids and immunosuppressant
drugs) remains unsatisfactory due to substantial side effects and
uncontrolled relapses (349), understand the interaction between
gut microbiota and IEB, particularly at the early subclinical
phase of inflammatory disease, could be used to identify novel
therapeutic approaches in chronic intestinal inflammation.

THERAPEUTIC IMPLICATIONS

Although several dietary factors, such as gluten, bile acids,
fructose, ethanol, and emulsifiers are well-known agents
damaging the IEB, other dietary components, such as fibers,
SCFAs, glutamine, and vitamin D, may improve the IEB.
Similarly, prebiotics, symbiotics, and probiotics may act on IEB
function fortifying it. Recent extensive reviews have analyzed
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the effects of nutrients and supplements on IEB function (350,
351). Now, we will focus on nutritional approaches exerting
a protective effect on the IEB, in particular on those that are
better defined and studied such as glutamine, vitamin D, and
SCFAs, particularly butyrate. Interestingly, these approaches have
been proposed in the management of patients with IBS or IBD,
conditions characterized by altered IEB function.

Glutamine is an essential amino acid in humans and one of
the main energy sources for rapidly dividing epithelial cells of
the gastrointestinal tract (352). Its depletion during illness or
infection leads to intestinal epithelial cells atrophy resulting in
increased intestinal permeability (352). Pioneer studies assessing
the effect of enteral supplement with glutamine granules on
intestinal IEB function in severely burned patients, showed that
this compound can improve intestinal mucosal permeability,
decrease plasma endotoxin levels, reduce hospital stay and costs
(353, 354). A recent randomized controlled trial (RCT) assessing
the efficacy and safety of oral glutamine supplementation in
patients with post-infection IBS with diarrhea and increased
intestinal permeability, showed that this treatment significantly
improves all IBS symptoms and IEB function (355). However,
due to the small sample size and the suboptimal experimental
study design with significant methodological limitations, these
results require caution and need to be replicated in larger well-
performed clinical trials.

Vitamin D is a group of fat-soluble secosteroids responsible
for increasing intestinal absorption of electrolytes including
calcium, magnesium, and phosphate (356). Among the many
other biological effects, vitamin D may activate the innate
and modulate the adaptive immune systems with antibacterial,
antiviral, and anti-inflammatory effects (357, 358). Vitamin D
receptors are expressed by both epithelial and a large number of
immune cells in the gastrointestinal tract (357, 358). Although in
vitro studies showed that vitamin D is involved in the regulation
of IEB function throughout the modulation of the expression
of TJ molecules (357, 359, 360), few randomized controlled
intervention studies have investigated its clinical efficacy or
mechanisms of action in gastrointestinal diseases. Low levels of
vitamin D are associated with IBD. A recent systematic review
and meta-analysis of vitamin D therapy in patients with IBD
and vitamin D deficiency has shown that this supplementation
is effective not only for the correction of vitamin D levels
but also for improving scores of clinical disease activity and
biochemical markers (361). Although the mechanism of action is
virtually unknown at this time, preliminary clinical data suggest
that vitamin D supplementation in Crohn’s disease patients in
remission may have a prominent role in intestinal permeability
maintenance over time (362).

SCFAs are essential molecules involved not only in host
metabolism and immunity but also in IEB function (180, 363,
364). In addition, they are an energy source for intestinal
cells and serve as signaling molecules with a beneficial role
in intestinal homeostasis (180, 363, 364). Among SCFAs,
butyrate is considered the most beneficial. Butyrate can be
produced by a wide variety of bacteria and the most important
butyrate-producing microorganisms in the human gut belong
to the genera Faecalibacterium (in particular the species

Faecalibacterium prausnitzii) and Roseburia (in particular the
species Roseburia intestinalis) (365, 366). Sources for butyrate
production include sugars, lactate, acetate, and amino acids,
such as lysine (367). Although a lack of dietary fibers and
SCFAs production can compromise both IEB integrity and
mucus production, altering gut permeability, the role of SCFAs
in DGBI pathophysiology is controversial (368). Similarly,
although in vitro studies suggested that butyrate can improve
paracellular permeability (183, 185), its role in restoring human
intestinal permeability in clinical practice is very poorly defined.
Preliminary data suggest that supplementation of sodium
butyrate may improve IBS symptoms, particularly abdominal
pain (369). In a recent proof-of-concept study performed in 40
patients with IBS, we showed that Lactobacillus paracasei CNCM
I-1572 improves IBS symptoms through a significant reduction in
genus Ruminococcus associated with a reduction of IL-15, linked
with the modulation of IEB, and a significant increase in the
fecal SCFAs acetate and butyrate (201). However, if nutritional
butyrate exerts a protective effect on the IEB and may be effective
in the management of patients with common gastrointestinal
disorders, this should be demonstrated in ad hoc studies.

CONCLUSIONS

IEB dysfunction is a common element of numerous intestinal
and extra-intestinal diseases. Several factors can alter IEB
including gut microbiota metabolites and immune system
mediators. The intricate relationship among all these elements
is still a matter of study. If IEB dysfunction is a cause
or a consequence of the pathogenesis of common diseases
including IBS, IBD, CD and the emerging NCGS is a challenge
for the researcher. Solving this dilemma and deciphering the
underlying molecular mechanisms will open the way to the
development of new therapies and the optimization of the
diagnostic process.
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