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Background: Alzheimer’s disease is the most common neurodegenerative disorder in

our society, mainly characterized by loss of cognitive function. However, other symptoms

such as anxiety and depression have been described in patients. The process is

mediated by alterations in the synaptic and extrasynaptic activity of the neurotransmitter

glutamate, which are linked to a hypometabolism of glucose as the main source of brain

energy. In that respect, Ketogenic diet (KD) has been proposed as a non-pharmacological

treatment serving as an alternative energy source to the neurons increasing the fat

percentage and reducing the carbohydrates percentage, showing promising results to

improve the cognitive symptoms associated with different neurodegenerative disorders,

including AD. However, the association of this type of diet with emotional symptoms and

the modulation of glutamate neurotransmission systems after this dietary reduction of

carbohydrates are unknown.

Objective: The aim of this short review is to provide update studies and discuss about

the relationship between KD, anxiety, depression, and glutamate activity in AD patients.

Discussion: The main results suggest that the KD is an alternative energy source

for neurons in AD with positive consequences for the brain at different levels such as

epigenetic, metabolic and signaling, and that the substitution of carbohydrates for fats

is also associated with emotional symptoms and glutamate activity in AD.

Keywords: Alzheimer’s disease, ketogenic diets, anxiety, depression, glutamate

INTRODUCTION

At present, Alzheimer’s disease (AD) is the most prevalent form of dementia, appearing
mainly in the elderly and defined by a prematurely aging brain. To date there is no
cure, affecting more than 50 million people worldwide (1). This disease is characterized
by a progressive and irreversible memory loss. However, related to that aging brain,
neuropsychiatric symptoms are also very relevant in Alzheimer’s-type disorder; specially,
the presence of anxiety and depression (2), which have a direct impact on the quality
of life of patients (3). This is why, although they are not usually given as much
attention at the therapeutic level, an adequate treatment of these neuropsychiatric symptoms
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could considerably improve the quality of life, related at the
same time to a better prognosis of the disease (4). Anxiety
and depression in AD patients are treated pharmacologically.
Nonetheless, many problems linked to the use of these drugs have
been described in these patients, with even greater progression
and development of the disease (5–7), neuronal damage, and,
in addition, mature neurons becoming immature, which could
explain why antidepressants also induce apoptosis (8).

With this in mind, it is necessary to consider other non-
pharmacological options that do not pose risks to patients to
improve their symptoms. In this regard, KDs, rich in medium
chain fatty acids (MCFA), show promising results. This type of
diet is an alternative source of energy to glucose which could
improve the different symptoms of AD. By shifting metabolism
from carbohydrates toward fatty acids, it has been seen that KD
are able to stimulate the production of ketone bodies after hepatic
metabolism, which will be used as a new energy option by the
central nervous system (9). It seems that a diet based on high-fat
and low-carbohydrate content induces the body to a ketosis state
similar to the effect of fasting, generating a neuroprotective action
on aging brain cells, reducing brain inflammation, and improving
mitochondrial function (10). Specifically related to the energy
activity in mitochondria, it is known that in neurodegenerative
disorders there is a disruption of the brain’s energy metabolism,
therefore, ketone bodies can support brain energy and slow
the progression of different neurodegenerative disorders such as
AD (11). In fact, different current studies have evidenced the
mechanism of KD for AD treatment and prevention (12–14).
This activity promoted by KD intake could consequently justify
not only improvements in cognitive disfunctions (15, 16), but
also in mood state disorders using 3xTgADmouse models of AD
(17, 18).

Despite the evidence about the positive effect of KD and
AD, further research is necessary on the etiopathogenesis of
this disease that causes known neurophysiological alterations,
in order to understand all the mechanisms through which this
type of diet achieves improvements. In this regard, the presence
and accumulation of β-amyloid (Aβ) proteins plaques seems to
be particularly noteworthy (19), since there is an association
between the emotional symptoms and the deposition of Aβ

associated with cognitive deterioration (20), and it is even
possible to see that the interaction of these variables with the
amyloid state can be used to predict the speed of cognitive
decline (21). As the origin of this increase in the deposition
of the amyloid protein as well as the genetic causes (22, 23),
alterations in the levels of neurotransmitters are also highlighted,
especially the decrease in the neurotransmitter acetylcholine (24)
and the increase in glutamate levels (25). Furthermore, metabolic
disorders are also considered important, especially those related
to insulin resistance in the brain, which would result in a misuse
of glucose by certain regions involved in the development of the
disease, even appearing to have a kind of insulin resistance in
the brain or “type 3 diabetes” (26). Several studies have remarked
the role the apolipoprotein E allele 4 (APOE4) as a common risk
factor for AD and type 2 diabetes. Metabolic profiling showed
that the APOE4 variant is specifically associated with one type of
AD related to decreased brain glucose utilization. In fact, one and

two APOE4 alleles have been used as biomarkers of AD, since
carriers of this alleles showed decreased brain glucose uptake
even years before the onset of clinical symptoms of AD (27–30).

Therefore, although several papers in recent years have
reported the role of KD on AD, it seems that the relationship
between this both variables (diet and brain disease) is
complex and influenced by several factors. As it has been
previously mentioned, mood disorders and alterations in
different neurotransmitters have been observed in AD patients.
However, very few articles have studied whether there is a
relationship between the KD, mood state, neurotransmission
brain systems, and AD. Thus, the aim of this short review is
to provide the most current scientific evidence that shows the
association between these variables in order to contribute to new
therapeutical strategies for AD.

IMPACT OF GLUTAMATE ON ANXIETY
AND DEPRESSION IN ALZHEIMER’S
DISEASE (AD)

As for the alteration of the activity of certain neurotransmitters,
excess glutamate seems to be directly related to the emotional
aspects of dementia like AD, specially outlining the perception of
anxiety and depression (31). This is due to the fact that in patients
with AD, as a result of excessive levels of this neurotransmitter
in the extrasynaptic space, there is hyperexcitability in neurons,
with overstimulation especially in NMDA ionotropic receptors,
leading to synaptic loss and cell death due to an increase
in the cytoplasmic concentration of Ca++ and the generation
of reactive oxygen species. This process is mainly due to a
lack of activity in the glutamate transporters in charge of
eliminating excess levels of the neurotransmitter, which is related
to the presence of amyloid plaques (32). In this respect, when
attempting to explain this relation, two mechanisms tied to
different glutamate receptors have always been observed in
the hippocampus.

On the one hand, a clear decrease in anxiety levels was
observed when postsynaptic group II metabotropic glutamate
receptors (mGluRs) were blocked in mice with AD, specifically
mGlu2 and mGlu3 (mGluR2/3), using as a model Dutch mice
APP (Alzheimer’s amyloid precursor protein E693Q), transgenic
rodents that accumulate Dutch amyloid-β (Aβ) oligomers. This
is due to high levels of glutamate, which have been observed
to activate these receptors in the hippocampus, increasing the
production of Aβ42 amyloid peptide and not Aβ40 with less
aggregation, increasing the proportion of Aβ42:Aβ40 and, in
turn, the ability to form amyloid beta plaques, which decrease
neurogenesis and promote the onset of anxiety and depression
(33). Moreover, Kim et al. demonstrated that APP transgenic
mice showed phenotype changes after treatment with BCI-838
(a drug that acts as a Group II mGluR antagonist metabolite)
for 3 months. In particular, it was observed that this treatment
was associated with reversal of transgene-related amnestic
behavior and reduced anxiety levels (33). On the other hand,
NMDA ionotropic glutamate receptors are abundantly expressed
throughout the whole brain, carrying out an essential function,

Frontiers in Nutrition | www.frontiersin.org 2 October 2021 | Volume 8 | Article 744398

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


de la Rubia Ortí et al. Ketogenic Diet and AD

not only at a cognitive level (34), but also regarding anxiety (35)
and depression (36) by having an impact on synaptic plasticity.
This could be explained, in part, by the amyloid-β peptide
inducing the liberation of astrocytic glutamate (through its cross-
interaction with nicotinic acetylcholine receptors and the entry of
Ca2+ needed for the release of glutamate), which at the same time
activates the extrasynaptic NMDA receptors (eNMDAR) in the
neurons. The action of these eNMDAR causes an inward current
in excess of Ca2+, which sequentially stimulates the neuronal
nitric oxide synthase (nNOS) generating high levels of NO, which
contributes to the loss of synaptic spines (37). Blocking these
receptors in animal models [adult male Wistar rats induced
with sporadic Alzheimer’s-like disease using microinjections of
streptozotocin (3 mg/kg/5 µl)], decreased the perception of
anxiety and depression. This was associated with a reduction
in inflammation mediated by inflammatory cytokines, such as
interleukins IL-6 and IL-1β, and tumor necrosis factor alpha
(TNF-α) (38). Therefore, regulating glutamate activity in this
brain area, will not only achieve cognitive improvements (39), but
it is also related to levels of anxiety and depression (40, 41), and
there is evidence that glutamate receptors can alter cognitive and
mood state both in humans and model animals, using transgenic
mouse models that have specific receptor subunits that can be
targeted in specific brain regions. However, these studies have
limitations since it is difficult to understand where glutamate
antagonists act to induce anxiolytic or antidepressant effects and
to assess the phenotypes in the animals.

Conversely, it should be noted that the glutamate role in its
binding to NMDA receptors at a synaptic level (sNMDAR) is also
essential for cognition and neuron survival (42, 43), and precisely
in AD there is glucose hypometabolism in certain brain areas,
possibly linked to an insulin resistance as aforementioned. This
hypometabolism implies that the glutamate neurotransmission
(GNT) at a synaptic level, which requires a glial-neuronal
process with oxidation of glucose and the glutamine-glutamate
cycle (44), consuming up to the 80% of ATP provided by the
metabolism of glucose (45), may be diminished, and that there is
no adequate synapse in its NMDA receptors. As consequence, it
can be concluded that in AD the activation of sNMDAR initiates
plasticity and stimulates cell survival, while the stimulation
of eNMDAR promotes cell death (46). Therefore, these two
different groups of glutamate receptors seem to be connected
with depression and anxiety (Figure 1A).

DISCUSSION

As it has been showed throughout this work, the importance
of non-pharmacological therapies in AD is essential to improve
symptoms and to learn about different novel treatments. Among
them, KD has demonstrated great results on the progression of
many neurodegenerative disorders (11). Specifically, in AD the
data is promising and several studies have evidenced the positive
effect of this type of diet in this disorder in both animals and
humans (47, 48).

The KD is actually a biochemical model of fasting. Glucose is
known to be the main energy source to the neurons. However, in

some conditions such as food deprivation or under fasting, brain
cells use other alternative energy sources, like ketone bodies.
Under these circumstances the human body starts to use fats
from its own deposits with a consequent ketosis (49). This
type of diet that replaces carbohydrates with fats has positive
consequences on the brain at an epigenetic, metabolic and
signaling level (50). On the other hand, some recent studies
have showed that the neuroprotective effects of KD might be
explained by indirect actions on neurons. It has been seen that
there are changes in the microbiome after following this type of
diet, related to an improvement in the gut-brain axis (51).

As far as the distribution of calories is concerned, in KD,
90% of the total calorie intake is from fat, while only 6% is
from protein and 4% from carbohydrates (52). This can be
achieved by a composition characterized by a macronutrient
ratio of 4:1 (4 g of fat every 1 g of protein and carbohydrates)
(50), reducing carbohydrates to ≤10% of the energy consumed
(53). Nonetheless, there are some alternatives that slightly
change the proportion of carbohydrates, such as de Atkins
diet in which these are limited to 5% of dietary energy (54)
obtaining interesting cognitive improvements (55). Besides, this
ketogenesis is more effective when the fats, instead of being long
chain fatty acids (LCFA) (which represents the classical version
of the diet) (54) are medium chain triglycerides (MCT) made
up of MCFA, as it increases the concentration of ketone bodies
in blood even if carbohydrates are present in diet, making it
a less restrictive diet and easier to follow (56). Precisely both
preclinical (57) and clinical studies including a diet enriched with
foods high in MCTs, such as coconut oil (58), has showed the
positive effect of this diet. These improvements, in particular
achieved with MCFA, could also be related to the metabolic
activity that has been evidenced in astrocytes, where especially
the administration of caprylic acid with 8C atoms (C8:0) does
not affect glycolysis, but clearly increases ketogenesis (59), so that
MCFA may have benefits through the modulation of astrocyte
metabolism, providing energy to neighboring neurons especially
through ketone bodies (60). Moreover, concretely in AD itself,
even without an extern MCFA source, it has been shown how the
gliosis derived from the disease causes the astrocytes themselves
to protect and repair the lesion by optimizing their metabolism
through the synthesis of ketone bodies (61).

However, the influence on this type of diet on other variables
of a different nature, such as neurotransmission systems or mood
variables, has not been studied. In this work it has been described
that the mood state and glutamate neurotransmission system
can be involved on the effect of KD in AD. Regarding mood
state, this work suggests that emotional improvements may be
a consequence of a direct action of ketone bodies in relation
to extrasynaptic glutamatergic receptors eNMDAR. It has been
observed that acetone and β-hydroxybutyrate (βHB) act as
glutamate inhibitors in NMDA receptor, specifically highlighting
the activity exhibited by βHB, which inhibits the effects of
agonists of these receptors at concentrations achieved in vivo
(62). This process could be related to the observed decrease in
glutamate availability in a neuron culture in which glucose is
replaced by βHB as an energy source (63). It must be added
that the improvements in anxiety and depression observed in
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FIGURE 1 | Interaction of glutamate activity on alterations in anxiety and depression levels characteristic of the disease. (A) Pathogenic mechanisms based on the

activity of the excitatory neurotransmitter glutamate both at synaptic and extrasynaptic levels, which could explain the elevated perception of anxiety and depression

described in Alzheimer’s disease (AD). At the synaptic level, in the animal model of the disease 3xTgAD mice the activation of mGluR2/3 receptors due to excess

(Continued)
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FIGURE 1 | glutamate (red dots), has been linked to the formation of β-amyloid peptides with 42 residues long (Aβ42), while at the extrasynaptic level, it has been

linked to high glutamate levels, which can increase the activation of its NMDA receptors (eNMDAR), producing an increase in inflammation. Both processes have been

linked to the presence of anxiety and depression. (B) Proposed mechanisms of action of a ketogenic diet (KD) in the improvement of perception of anxiety and

depression in patients with AD. (1) The production of ketone bodies derived from the intake of KDs act as glutamate inhibitors in the NMDA extrasynaptic receptor

(eNMDAR), decreasing the extrasynaptic activity of glutamate (red dots) and, as a consequence, the inflammation. (2) They are also capable of blocking the toxicity

derived from the formation of amyloid plaques, whose production is partly due to the activation of the mGluR2/3 glutamate receptors. (3) Moreover, they could improve

the activity of glutamate at a synaptic level because of a greater ATP contribution (with regard to glucose metabolism), which would have a positive impact on the

cognitive and emotional capacity. (4) Finally, the neuroprotector effect of ketone bodies (as a result of the improvement in the electron chain functioning) could lessen

the levels of oxidative stress and inflammation. All these processes achieve a decrease in the perception of anxiety and depression, characteristic of this pathology.

AD patients could also be related to the protection ketone bodies
seem to exert on cortical neurons against the β-amyloid induced
toxicity (64). This mechanism of action could suggest that, even
though ketone bodies have not been directly linked to changes
in the activity of mGluR receptors, it has been demonstrated
in animal models (using male 3xTgAD mice of the disease)
that these diets significantly decrease β-amyloid peptide in the
brain, which is in turn related in part to the activation of these
receptors (18).

Furthermore, ketone bodies acetoacetate and βHB, after
crossing the blood-brain barrier, can replace glycolysis. This
change would improve glutamate activity at a synaptic level,
with a better ATP efficiency; since the metabolites would act
as energy substrates of complex II of the respiratory chain,
bypassing complex I (which, together with complex IV, are the
ones altered in the majority of diseases of mitochondrial nature)
(65). Therefore, ketone bodies provide an energy source with
higher ATP yield than glucose (66), which may also improve
metabolic alterations due to a misuse of glucose, characteristic of
the disease caused by destruction of the locus coeruleus (67).

Along these lines, improvements in the functioning of the
electron chain in oxidative phosphorylation mediated by ketone
bodies achieve cognitive and emotional betterments, given the
link established between the mitochondrial alterations and the
presence of this symptomatology (68); as a consequence of the
decrease in the level of oxidative stress and inflammation, related,
in turn, with the presence of anxiety and depression (69, 70).

All these processes are shown in Figure 1B.
In short, due to the negative effects associated to

pharmacological treatments for anxiety and depression in AD,
the increase of ketone bodies in blood after the administration of
KDs (based on the low levels of hydrates and high levels of fat),
could be an effective option for the treatment of both, not only
for their neuroprotective activity (71, 72) but for their interaction
in the pathogenic mechanisms of the disease mediated directly
or indirectly by the glutamate activity.

It should also be considered at what point in the disease the
KD could be more effective. Studies show how improvement
in episodic memory, and reported vitality occurs in patients
with mild cognitive impairment (MCI) on early AD after the
administration of the modified Atkins diet (MAD) (55). This is
in line with results in our laboratory, where the administration
of coconut oil rich in MCFA improved episodic orientation and
temporal and semantic memory, mainly in the mild-moderate
stage of the disease (58). The explanation for these results
may be due to the fact that energy hypometabolism begins
to occur even decades before the onset of clinical symptoms
progressing in the early stages of the disease, as we have

previously highlighted (73, 74). However, in the severe phase
of the disease, possibly as a consequence of the prolonged
bioenergetic deficits and the high oxidative stress derived from
these alterations, there is an increase in amyloid plaques (75) that
activate apoptotic pathways, aberrant mitochondrial biogenesis
and alteredmitophagy resulting in neuronal death (76). Thus, the
phase of the disease in which the diets are administered should
be considered to improve their efficacy. Therefore, it could be
therapeutically beneficial in the initial phases to combine diets
with other nutraceutical or pharmacological treatments aimed
at curbing the high oxidative stress associated with glucidic
hypometabolism (77) and, in advanced stages, the combination
of KDs should be given with drugs that treat the pathologic signs
of the disease, fundamentally related to the formation of amyloid
plaques. In this regard, the efficacy of different antioxidants that
prevent and reverse AD when combined with adequate diets has
been seen (78), highlighting vitamin C (79), α-lipoic acid (80) or
the polyphenols epigallocatechin gallate and resveratrol (which
can also prevent the neurotoxic effects of β-amyloid protein) (81),
while drugs such as donepezil, galantamine and rivastigmine,
which act as inhibitors of acetylcholinesterase derived from
the accumulation of β-amyloid, could be more effective in
advanced stages of the disease (82). Finally, and directly related
to anxiety and depression variables, main focus of our study,
the combination with glutamate inhibitors such as memantine or
lamotrigine could improve the effectiveness of the impact of this
diet on these variables, by completing the mechanisms related to
the neurotransmitter already analyzed (83–86).

To conclude, and despite the benefits discussed and analyzed
in this work, it is important to remark that in some studies
in which KD were followed, adverse effects could be observed,
mainly focused on gastrointestinal symptoms (constipation,
nausea, vomiting and decreased appetite) (87–89), which even
forced the interruption of the treatment (56) and transient
hyperlipidaemia (90), seeing an increase in fasting serum total
cholesterol, triglycerides and low-density lipoprotein (LDL) at
the beginning of the treatment (91). In addition, as for the
efficacy of KD, a recent review has highlighted the positive
cognitive assessments obtained in the short term, and there are no
published studies that have conducted follow-ups to determine
whether the improvements in variables such as anxiety and
depression are maintained over time, or even when the diet
is discontinued (92). It should also be noted that these diets
usually result in weight loss (93) and in that this loss is common,
detrimental and predictive of the cognitive state of Alzheimer’s
patients (94), so it should be assessed and considered throughout
the treatment. Therefore, more studies in this area are needed to
gain further knowledge of this disease and the variables involved.
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