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Background/Aim: Several observational studies showed a significant association

between elevated iron status biomarkers levels and sepsis with the unclear direction of

causality. A two-sample bidirectional mendelian randomization (MR) study was designed

to identify the causal direction between seven iron status traits and sepsis.

Methods: Seven iron status traits were studied, including serum iron, ferritin, transferrin

saturation, transferrin, hemoglobin, erythrocyte count, and reticulocyte count. MR

analysis was first performed to estimate the causal effect of iron status on the risk of

sepsis and then performed in the opposite direction. The multiplicative random-effects

and fixed-effects inverse-variance weighted, weighted median-based method and MR-

Egger were applied. MR-Egger regression, MR pleiotropy residual sum and outlier

(MR-PRESSO), and Cochran’s Q statistic methods were used to assess heterogeneity

and pleiotropy.

Results: Genetically predicted high levels of serum iron (OR = 1.21, 95%CI = 1.13–

1.29, p = 3.16 × 10−4), ferritin (OR = 1.32, 95%CI = 1.07–1.62, p =0.009) and

transferrin saturation (OR= 1.14, 95%CI= 1.06–1.23, p= 5.43× 10−4) were associated

with an increased risk of sepsis. No significant causal relationships between sepsis and

other four iron status biomarkers were observed.

Conclusions: This present bidirectional MR analysis suggested the causal association

of the high iron status with sepsis susceptibility, while the reverse causality hypothesis

did not hold. The levels of transferrin, hemoglobin, erythrocytes, and reticulocytes were

not significantly associated with sepsis. Further studies will be required to confirm the

potential clinical value of such a prevention and treatment strategy.
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INTRODUCTION

Iron is considered an essential nutrient for both humans
and pathogenic microbes. Iron limitation defends pathogenic
microbes as a key form of innate immune, termed “nutritional
immunity” (1, 2). Interestingly, iron overload-associated diseases,
such as hereditary hemochromatosis and β-thalassemia, were
also found increased infection susceptibility (1, 3). Recently,
several MR studies also gave evidence of a significant effect of
genetically high iron status on the susceptibility of skin and soft
tissue infections.

Sepsis is defined as life-threatening organ dysfunction caused
by a dysregulated host response to infection (4). Although
knowledge about sepsis is growing all the time, it is a depressing
fact that current efforts to develop new therapies have not been
successful (5). Early antibiotic therapy was a widely accepted
treatment for sepsis, which benefitted patients by improving
survival prognosis (6–8). The above references suggest that early
intervention is of great significance. The general consensus is
that early identification of risk factors is essential for the early
intervention of sepsis.

Several observational studies showed that patients with sepsis
had significantly elevated levels of serum iron, ferritin, and
transferrin saturation, but transferrin level was in the opposite
direction (9–11). Nevertheless, the evidence from conventional
observational studies always remains vulnerable to the threat
of confounding and reverse causation. Thus, the direction of
causality between iron status and sepsis remains unclear. As an
epidemiological approach, mendelian randomization (MR) uses
genetic variants as instrumental variables (IVs) to infer expose-
outcome causation from observational data, which is closely
analogous to the clinical randomized controlled trials (RCTs).

TABLE 1 | Mendelian randomization estimates for the causal effect of iron status biomarkers on sepsis risk.

Exposure Number of SNPs Methods Parameter OR or odds (95%CI) P-value Cochran’s Q statistic (P-value)

Serum iron 2

IVW-FE OR 1.21 (1.13, 1.29) 3.16E-04*** 0.43 (0.511)

IVW-RE OR 1.21 (1.09, 1.34) 4.33E-08***

Ferritin 3

IVW-FE OR 1.32 (1.07, 1.62) 0.009** 2.27 (0.320)

IVW-RE OR 1.32 (1.09, 1.60) 0.009**

WM OR 1.29 (1.03, 1.60) 0.023*

Transferrin saturation 3

IVW-FE OR 1.14 (1.06, 1.23) 5.43E-04*** 1.86 (0.395)

IVW-RE OR 1.14 (1.06, 1.23) 3.36E-04***

WM OR 1.13 (1.05, 1.23) 0.003**

Transferrin 8

IVW-FE OR 0.94 (0.86, 1.02) 0.023* 16.85 (0.018*)

IVW-RE OR 0.94 (0.89, 0.99) 0.142

WM OR 0.96 (0.90, 1.02) 0.212

MR-Egger OR 0.98 (0.86, 1.11) 0.753 14.94 (0.021*)

MR-Egger Intercept (odds) −0.01 (-0.04, 0.02) 0.415

OR, odds ratio; CI, confidence interval; IVW, inverse variance weighted; RE, random-effects; FE, fixed-effects; WM, weighted median. *, <0.05; **, <0.01; ***, <0.001.

This also presents an opportunity to promote drug repurposing
(12). Based on Mendel’s laws of independent assortment and
segregation, each allele is randomly transmitted to the offspring
with an equal probability, which is exploited as a way of
randomizing participants into different levels of the iron status
traits (13, 14). Besides, the unidirectional flow of biological
information from the parental generation to progeny can limit
the effects of reverse causation (15). Herein, we designed a
two-sample bidirectional MR study to identify the direction of
causal effects between seven iron status traits and sepsis, using
available public data from a large-scale genome-wide association
study (GWAS) for sepsis and two GWAS meta-analyses for iron
status traits.

METHODS

Study Design and Data Source
This study adhered to the STROBE-MR guidelines (16) and
the key principles of the Strengthening the Reporting of
Observational Studies in Epidemiology (STROBE) guidelines
(17). We designed a two-sample bidirectional MR study to imply
the direction of causality between iron status and sepsis, which
involved two sets of analyses. MR analysis was first performed to
estimate the causal effect of iron status on the risk of sepsis and
then performed in the opposite direction.

We retrieved and downloaded the summary data of
GWAS (Supplementary Table 1) for all exposures and outcomes
from the IEU OpenGWAS Project (https://gwas.mrcieu.ac.
uk/) (18). The genetic variations data associated with iron
status traits (serum iron, log10 ferritin, transferrin saturation,
and transferrin) were obtained from the Genetics of Iron
Status Consortium (GISC), which were the results of GWAS

Frontiers in Nutrition | www.frontiersin.org 2 November 2021 | Volume 8 | Article 747547

https://gwas.mrcieu.ac.uk/
https://gwas.mrcieu.ac.uk/
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Hu et al. Iron Status and Sepsis

FIGURE 1 | A plot showing the effect sizes of the single nucleotide polymorphism (SNP)-sepsis associations (y-axis), (A) the SNP-iron association (x-axis), (B) the

SNP-ferritin (x-axis), (C) transferrin saturation (x-axis), and (D) transferrin (x-axis) with standard error bars. The slopes of the lines correspond to causal estimates using

fixed-effects IVW (blue line), random-effects IVW (red line), MR-Egger (green line), and weighted median (light blue line) methods.

meta-analysis (n= 23,986, European ancestry) from 11 cohorts
(19). For the entire population from 11 cohorts, 55%were women
and 45% were men, the average age was 46.89 (SD = 17.84).
The summary-level GWAS data of the other three biomarkers
(hemoglobin, erythrocyte count, and reticulocyte count) were
available from a previous study, which was the re-analysis and
meta-analysis result (n= 172,952, European ancestry) from three
GWAS cohorts (20). Fifty-two percent were women and 48%
were men. Hemoglobin concentration, erythrocyte count, and
reticulocyte count were measured from the whole blood samples
using clinical hematology analyzers by the fluorescence or/and
impedance flow cytometry.

Summary-level data of GWAS for sepsis were obtained from
a re-analysis study, in which the subjects included 10,154 sepsis
cases and 452,764 controls from UK Biobank (21, 22). Women
constitute 54% and men represent 46%. The median age of all
participants was 58 years, and the median age of sepsis cases was
60 years. Sepsis was defined based on a previously published list
of explicit International Classification of Disease (ICD)-9 and
ICD-10 codes from the Global Burden of Disease (GBD) study
(23). Relevant details of the above GWAS study were reported
elsewhere (21, 22).

Genotype imputation and associated quality control
procedures have been previously described (19–22). To
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FIGURE 2 | Results of the single and multi-SNP analyses for the SNP effect of (A) serum iron, (B) Ferritin, (C) transferrin saturation, and (D) transferrin on sepsis.

control for population structure, all analyses were adjusted for
sex, age, and study-specific covariates such as genetic principal
components, as listed for each study in Supplementary Table 1.

Genetic Instrumental Variable Selection
Genetic instrumental variables were selected using the
TwoSampleMR R package (version 0.5.6). We selected single
nucleotide polymorphisms (SNPs) with a strong association
(p < 5 × 10−8) and independent inheritance (R2 < 0.005,
10MB window) without any linkage disequilibrium (LD) from
GWAS summary data of iron status or sepsis. The SNPs with
LD were identified and excluded by a clumping algorithm based
on the 1,000 genomes reference panel. We also removed the
SNPs with palindrome allele (A/T or G/C) to prevent strand
ambiguity issues.

Mendelian Randomization Analysis
The multiplicative random-effects (RE) and fixed-effects (FE)
inverse-variance weighted (IVW) were used to assess the causal
associations between iron status and the risk of sepsis. The
effect measures were the odds ratio (OR) of the risk of sepsis,
which was normalized to one SD increment in each iron status
biomarkers. In addition, we conducted weighted median (WM)-
based method and MR-Egger statistical sensitivity analyses to
ensure the robustness of pleiotropic IVs (24). A p-value < 0.05
was considered significant.

Sensitivity Analysis
The concept of “pleiotropy” refers to a phenomenon that a single
genetic variant could influence multiple traits, which violates the
fundamental assumption of being a valid IV (25). Two strategies
were used to address the issues of pleiotropy (24, 26). First,
associations of SNPs with risk factors of known sepsis were
assessed by searching the GWAS Catalog (https://www.ebi.ac.
uk/gwas/) (27) and PubMed (https://pubmed.ncbi.nlm.nih.gov/).
Second, a combination of the MR-Egger regression and MR
pleiotropy residual sum and outlier (MR-PRESSO)methods were
used to estimate the unknown directional pleiotropy. However,
MR-Egger and MR-PRESSO analyses typically require more than
3 IVs (28). The MRPRESSO R package (version 1) was applied
for MR-PRESSO analysis.

Cochran’s Q statistic was used to assess the heterogeneity of
the instrument variable. The random-effects IVW model was
used if the substantial heterogeneity was significant (24). We
also used leave-one-out plots for IVW estimates to confirm that
the effects were not unduly influenced by outliers potentially
representing pleiotropic pathways.

RESULTS

Independent SNPs were selected as genetic instrumental variables
based on independent and LD analyses, including two serum
iron-associated SNPs, three independent ferritin-associated
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TABLE 2 | Mendelian randomization estimates for the causal effect of sepsis on iron status biomarkers.

Outcome Number of SNPs Methods Parameter β or odds (95%CI) P-value Cochran’s Q statistic (P-value)

Serum iron 4

IVW (FE) β −0.02 (−0.15, 0.12) 0.832 5.56 (0.135)

IVW (RE) β −0.02 (−0.2, 0.17) 0.876

WM β −0.11 (−0.29, 0.07) 0.257

MR Egger β 1.43 (0.22, 2.64) 0.147 0.01 (0.996)

MR Egger Intercept (Odds) −0.12 (−0.22, −0.02) 0.143

Ferritin 3

IVW (FE) β 0 (−0.15, 0.14) 0.953 0.46 (0.796)

IVW (RE) β 0 (−0.07, 0.06) 0.902

WM β 0.01 (−0.15, 0.18) 0.883

Transferrin saturation 3

IVW (FE) β −0.01 (−0.16, 0.15) 0.936 7.69 (0.021*)

IVW (RE) β −0.01 (−0.31, 0.3) 0.968

WM β 0.11 (−0.1, 0.32) 0.302

Transferrin 3

IVW (FE) β −0.02 (−0.18, 0.14) 0.819 18.89 (7.91E-05***)

IVW (RE) β −0.02 (−0.51, 0.47) 0.941

WM β 0.07 (−0.2, 0.34) 0.603

CI, confidence interval; IVW, inverse variance weighted; RE, random-effects; FE, fixed-effects; WM, weighted median. *, <0.05; ***, <0.001.

SNPs, three transferrin saturation-associated SNPs, and eight
transferrin-associated SNPs (Supplementary Tables 2, 3).

The primary MR analyses by fixed-effects IVW showed a
significant causal effect of serum iron, ferritin, and transferrin
saturation on the risk of sepsis (Table 1 and Figure 1). The results
showed that the genetically predicted high levels of serum iron
(OR = 1.21, 95%CI = 1.13–1.29, p = 3.16 × 10−4), ferritin
(OR = 1.32, 95%CI = 1.07–1.62, p = 0.009), and transferrin
saturation (OR = 1.14, 95%CI = 1.06–1.23, p = 5.43 × 10−4)
were associated with an increased risk of sepsis. Results were
consistent across random effect IVW and WM (Table 1). The
above results were consistent and robust in all sensitivity analyses,
and no heterogeneity and pleiotropy were observed (Table 1).

Conversely, low transferrin levels were significantly associated
with increased risk of sepsis (OR= 0.94, 95%CI= 0.86–1.02, p=
0.023). Nevertheless, substantial heterogeneity among estimates
of individual SNPs was detected in the analysis of Transferrin
levels (IVW, Cochran’s Q Statistic = 16.85, I2 = 58.45%, p =

0.018; MR-Egger, Cochran’s Q Statistic = 14.94, I2 = 59.83%, p
= 0.021). Thus, the random effect IVW model was employed, of
which the results showed no significant association (OR = 0.94,
95%CI= 0.89–0.99, p= 0.142).

Single-SNP MR analyses showed that SNPs rs1800562 (HFE)
and rs855791 (TMPRSS6) were associated with a significant effect
of serum iron or transferrin saturation on sepsis, while SNPs
rs1800562 (HFE) and rs2413450 (TMPRSS6) were significantly
related to the causal effect of ferritin on sepsis (Figure 2). Using
the leave-one-out analyses, we found that one independent SNP
(rs1800562) could drive a significant effect of ferritin on sepsis.
The significant associations of ferritin and sepsis did not remain
after removing rs1800562 (Supplementary Figure 1).

The second set of MR analyses aimed to assess potential
causal effects of sepsis on iron status (Supplementary Tables 4,
5). Results showed no significant causal relationship between
sepsis and iron status (Table 2 and Supplementary Figure 2). As
described in Table 2, we observed high statistical heterogeneity
in the fixed-effects IVW MR analysis of transferrin saturation
and transferrin, therefore, the random-effect IVW model was
adopted as a sensitivity analysis, of which the results still showed
no significant association.

Iron is needed mainly for hemoglobin and erythrocytes
production, therefore, we wondered whether the levels of
hemoglobin, erythrocytes, and reticulocytes could affect the risk
of sepsis and whether sepsis could influence the level of this
biomarker. The results of MR analysis suggested no statistically
significant effects on whether the sepsis served as exposure or
outcome, which agreed with the results of sensitivity analyses
(Supplementary Figures 3, 7 and Supplementary Table 6). A
random-effects model was applied to estimate the causal effects
of sepsis on the above three biomarkers due to the high
heterogeneity level. Moreover, no pleiotropy was found in
all analyses.

DISCUSSION

In this bidirectional MR study, we investigated the association
of iron status biomarkers with the risk of sepsis, of which
genetic variants that proxy the effect were identified from publicly
available large-scale GWAS data. Our findings showed evidence
that genetic predisposition to higher levels of serum iron, ferritin,
and transferrin saturation was causally associated with a higher
risk of sepsis. Genetic predisposition to sepsis did not appear to
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influence any of the studied iron status markers concentration
(serum iron, ferritin, transferrin saturation, and transferrin).

In contrast with the previous MR studies of iron status (29,
30), the number of IVs in our study was more conservative.
Previous research confirmed that rs1800562 and rs855791 were
the primary determinants of variation associated with HFE and
TMPRSS6 in serum iron status (31, 32). Searching the GWAS
Catalog and PubMed, we found that rs1800562 and rs1495741
were associated with low-density lipoprotein cholesterol (LDL-
C), total cholesterol (TC), or triglyceride (30, 33), but there is
currently no evidence to confirm the above lipid metabolism
biomarkers as risk factors for sepsis susceptibility (34, 35).

The results from thisMR study were fundamentally consistent
with recent observational studies (9–11), except for transferrin.
Increased ferritin and serum iron concentrations were also
associated with greater severity (36) and a poor prognosis
(37, 38) for sepsis. As an important form of host defense,
nutritional immunity presents with limiting the availability of
iron to pathogens (1, 39, 40). One such example is anemia of
inflammation (41), but it does not contradict our idea that iron
status parameters were causally positively associated with the
risk of sepsis. High iron status may enhance susceptibility for
sepsis via dysregulated host-pathogens interaction (39), which
is a disorder of iron homeostasis. An important fact from the
perspective of pathogens is that iron accumulation favors the
growth and survival of the pathogens on the host (42–44).
Besides, from the host perspective, high iron status could affect
the innate immune functions and promotes the synthesis and
release of inflammatory factors (2, 3, 45). The evidence of pre-
clinical studies supported iron chelators as a potential therapeutic
agent of sepsis (46–49). Therefore, targeting high iron status
was a potential therapeutics and promising direction for the
prevention and treatment of sepsis.

There are several limitations that we could not overlook
in this study. First, population limited to European ancestry
hampered the generalization of findings to individuals of other
ancestries. Second, we could not determine whether there were
non-linear between iron status biomarkers levels and the risk of
sepsis, such as threshold effect or U-shaped relationship. Third,
this study did not adequately investigate all indicators for the

assessment of human iron status traits, such as hemoglobin and
transferrin receptors.

In summary, this present bidirectional MR analysis suggested
the causal association of high iron status with an increased risk
of sepsis, while the reverse causality hypothesis did not hold. The
levels of transferrin, hemoglobin, erythrocytes, and reticulocytes
were not significantly associated with sepsis. Future studies are
needed to explore the exact mechanism and confirm the potential
clinical value of such a prevention and treatment strategy.
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