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This study aimed to determine the carboxymethylation effect of crude water-soluble

polysaccharides of Passiflora edulis peel (WPEP), xylan (XY), and citrus pectin (CP).

Their chemical and pre-biotic properties were also determined. The polysaccharides

were carboxymethylated by reacting with chloroacetic acid and sodium hydroxide.

The carboxymethylated and non-carboxymethylated polysaccharides were also used

as pre-biotics to study the growth pattern of selected intestinal microflora. These

polysaccharides substituted the glucose solution in culture media for culturing

Lactobacillus brevis GIM1.773, Lactobacillus plantarum GIM1.19, Lactobacillus

delbrueckii subsp. bulgaricus GIM1.155, and Streptococcus thermophilus GIM1.540.

The results showed that the carboxymethylated polysaccharides c-XY, c-CP, and

c-WPEP, had substitution degrees of 0.682, 0.437, and 0.439, respectively. The

polysaccharides demonstrated resistance to digestion in the simulated human digestive

models. The resistance to digestion was enhanced by carboxymethylation, especially the

carboxymethylated CP and WPEP. The results also showed that the pre-biotic activities

of the polysaccharides increased after carboxymethylation. The c-XY had a better

pre-biotic effect than XY and the other carbohydrate samples. The findings suggested

that carboxymethylated polysaccharides may be developed into novel pre-biotics and

nutraceuticals that could promote growth of the probiotic strains.

Keywords: chemical modification, growth curve, passion fruit, probiotic, functional group

INTRODUCTION

Pre-biotics are defined as substrates that could selectively promote growth and activity of the
host microorganisms. They are non-digestible oligosaccharides that have a beneficial effect on
the human gut. The substrates also maintain the balance of intestinal microecology (1, 2).
These oligosaccharides are food for gut microflora, such as lactobacilli or bifidobacteria. These
bacteria inhabit the human intestinal tract, and they are responsible for regulating fat storage and
biosynthesis of essential vitamins (3). Pre-biotics are metabolized into lactic acid and short-chain
fatty acids in the large intestine. These substances promote the growth of intestinal bacteria
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and improve the physiological health of the host. Regular
consumption of pre-biotics is essential for maintaining good
health and regulating intestinal microflora (4). Studies have
shown that the experimental mice fed pre-biotics had improved
intestinal microflora. Pre-biotics not only help to treat obesity
but also improve the host’s immune system and prevent the
development of diseases like type 2 diabetes mellitus, irritable
bowel syndrome, and colorectal cancer. These oligosaccharides
can also indirectly regulate cardiovascular diseases (5).

Polysaccharides are potent sources of pre-biotics. They have
antiviral, immuno-enhancing, hypoglycemic, antioxidation, and
antitumor effects in addition to the pre-biotic properties (6–8).
The substances also effectively promote the growth of intestinal
microflora and increase short-chain fatty acid levels (9, 10).
Literature showed that the polysaccharides extracted from the
citrus peel (11), bamboo shoots (12), Ganoderma lucidum, and
Poria cocos (13) exhibited pre-biotic potential. However, the
pre-biotic activities of carboxymethylated polysaccharides were
yet unknown. The consumption of sulfated polysaccharides
from marine seaweeds as pre-biotics showed anti-inflammatory
effects and prevented peptic-ulcer disease and gastrointestinal
disorders (14). The disease-prevention mechanism is related to
the blocking of the leucocyte adhered to the epithelium of blood
vessels. The polysaccharides also prevented themigration of these
cells to the inflammation sites. However, the biological activities
of these polysaccharides are limited by their low solubility. Many
scholars have also attempted to chemically modify the structures
of polysaccharides to improve their physicochemical properties
and bioactivities (2, 15).

The chemical modification of polysaccharides, especially
carboxymethylation, has recently drawn wide attention. The
carboxymethylation technique has been used to improve
the physicochemical properties and bioactivity of plant
polysaccharides. The carboxymethylated polysaccharides
exhibited immunoregulatory, oxidation, and antitumor effects
(16–19). A study on characterization of carboxymethylated xylan
has been done previously, and the structural information has
been obtained using 13C nuclear magnetic resonance (20). The
structural characteristics of carboxymethylated pectin had also
been studied using Fourier-transform infrared spectroscopy
(FTIR), X-ray diffraction, and thermogravimetric analysis (21).
Moreover, physicochemical characteristics of polysaccharides
extracted from passion fruit peel had been performed (22). As
no previous study has been done on carboxymethylation of
polysaccharides extracted from passion fruit peel, this study is,
therefore, aimed to fill such a gap.

Currently, the valorization of natural resources and utilization
of renewable energy resources leads to universal sustainability.
The by-products of food processing are the new sources of
sustainable food that are renewable and eco-friendly (23). Fruit
peels or pericarps are some of the polysaccharide-rich wastes.
Polysaccharides have been extracted from citrus and passion
fruit peels. The use of polysaccharides from fruit peel provides
a new idea for waste utilization. These polysaccharides are
potent functional foods. Functional food is one of the most
promising and fastest developing health foods in the food
industry. Pre-biotics have been widely studied and commercially

explored. The data on pre-biotic effects of carboxymethylated
polysaccharides are also limited. Therefore, these polysaccharides
have great application potential in the functional food and
medical industries.

MATERIALS AND METHODS

Chemicals and Reagents
Fructooligosaccharide (FOS) was purchased from Guangdong
Guanghua Chemical Factory Co., Ltd (Guangdong, China);
trypsin, pancreatin solution, bile salt, and α-amylase were
purchased from Qingdao Hi-tech Park Haibo Biological
Technology Co., Ltd. (China). All other chemicals and reagents
were obtained from Xilong Chemical Co., Ltd. (Guangdong,
China). All chemicals and reagents used in this study were of
analytical grade.

Sample Preparation
The analytical grade of xylan (XY) was obtained from the
Guangxi Institute of Botany (Guilin, China). The XY sample was
prepared according to the method described by Miao et al. (24).
Citrus pectin (PC) was purchased from the Shanghai Yuanye
Biotechnology Co., Ltd. (Shanghai, China), and the WPEP
sample was prepared according to the method described by Guan
et al. (22). Lactobacillus brevisGIM1.773, L. plantarumGIM1.19,
L. delbrueckii subsp. bulgaricus GIM1.155, and Streptococcus
thermophilus GIM1.540 were obtained from the Guangdong
Institute of Microbiology (Guangzhou, China).

Preparation of Carboxymethylated
Polysaccharides
The chloroacetic acid–sodium hydroxide reaction procedure was
adapted from the method described by Wang et al. (25). An
exact 240mg of XY, CP, and WPEP was separately dissolved in
20mL of 20% sodium hydroxide (NaOH) solution and 50mL
isopropanol and stirred for 3 h in an ice-water bath to obtain a
uniform suspension. Next, 6.0 g chloroacetic acid was mixed with
50mL of isopropanol until complete dissolution was achieved.
Then, 20mL of 20% NaOH solution was added to the mixture
and heated for 3 h in a water bath of 60◦C. The conical flask
was cooled to room temperature, and the solution pH was
adjusted to 7 by adding 1M hydrochloric acid (HCl). Finally, the
mixture was dialyzed for 24 h with tap water, concentrated, and
freeze-dried to obtain carboxymethylated polysaccharides. The
carboxymethylated XY, CP, and WPEP were named c-XY, c-CP,
and c-WPEP, respectively.

Determination of Chemical Composition
The phenol-sulfuric acid method was used to determine the total
sugar content of the polysaccharide samples (26). Briefly, 1mL of
0.1 mg/mL sample was added with 0.5mL of 6% phenol reagent
and 2.5mL of concentrated sulfuric acid. The reacting solution
was placed into a HH-W420 water bath (Shanghai Fangrui
Instrument Co., Ltd., Shanghai, China) at 100◦C for 10min and
then cooled to room temperature. The changes in absorbances
at 490 nm were determined, and the total sugar content was
calculated based on the glucose standard curve (0–1.0 mg/mL).
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The m-hydroxydiphenyl method was used to determine the
galacturonic acid content of the polysaccharide samples (27).
In brief, 400 µL sample solution (0.1 mg/mL) was added with
sulfamic acid (0.39 mg/mL), homogenized, and then added
with 2.5mL of concentrated sulfuric acid. The mixture was
placed in boiling water for 20min. After cooling to room
temperature, 40 µL of m-hydroxydiphenyl reagent was added to
the solution mixture and kept at room temperature for 15min.
The absorbance was measured at 595 nm. The standard curve
was plotted based on different concentrations of galacturonic acid
(0–400 mg/mL).

Bradford method was used to determine the total protein
content of the polysaccharide samples (28). Briefly, 1.0mL of the
sample solution (0.1 mg/mL) was added with 4mL of Coomasie
Blue reagent and then placed at room temperature for 5min.
Bovine serum albumin (0–1.0 mg/mL) was used as the protein
standard. The absorbance was measured at 595 nm.

Fourier-Transform Infrared Spectroscopy
Exactly 1.0mg of the freeze-dried sample was mixed with 100mg
potassium bromide, pulverized, and then pressed into disks. The
Nicolet iS10 FTIR spectrometer (Thermo Scientific, Waltham,
USA) was used to obtain the absorption spectra of compounds.
The wavelengths used ranged from 4,000 to 400 cm−1.

Scanning Electron Microscopy
The polysaccharide samples (1 mg/mL) were dissolved in
deionized water and freeze-dried to produce sample specimens.
A SU5000 field emission scanning electron microscope
(SEM) (Hitachi, Tokyo, Japan) was performed to observe the
morphology of the polysaccharide samples at 20◦C with an
acceleration voltage of 5 kV and magnification of 300×.

Determination of Degree of Substitution
The degree of substitution (DS) was determined by the
neutralization titration (29). Briefly, 10mg polysaccharide was
diluted with 3mL 70% methanol, then 10mL distilled water and
5mL 0.5mol/L sodium hydroxide were added, and finally titrated
with 0.1M HCl until the color of phenolphthalein in the mixture
faded. The carboxymethylation degree (A) of the polysaccharide
samples was determined as follows:

A =
V0M0 − (V2 − V1)M

W
(1)

where V0 is the amount of NaOH (mL) added, V1 is the volume
of HCl used to titrate the sample (mL), V2 is the amount of HCl
(mL) used, M0 is the increase in the concentration of sodium
hydroxide (0.5 mol/L), M is the concentration of HCl used to
titrate the sample (0.1 mol/L), and W is the mass of the sample
(g). The degree of substitution (DS) was calculated as follows:

DS =
0.162A

1− 0.058A
(2)

Hydrolysis Degree of Polysaccharides
Simulated Saliva Digestion
The digestion reagent of the simulated saliva was prepared by
adding 0.764 g sodium chloride, 1.491 g potassium chloride, and

0.133 g of calcium chloride into distilled water. The total volume
was increased to 1,000mL, and the solution was adjusted to pH
6.9 with 1M sodium bicarbonate. An exact 0.345 g α-amylase was
then dissolved with 400mL of the digestion reagent, magnetically
stirred for 20min, and finally filtered. The filtered was added with
another 400mL of the digestion reagent before adding 1 mg/mL
sample solution at a ratio (1:1) and then placed in the water bath
of 37◦C to imitate the oral environment. The digesting samples
were collected at 0 h and 0.5 h and then boiled for 5min to
inactivate the enzyme. The 3,5-dinitrosalicylic acid method and
phenol-sulfuric acid were used to determine the reducing sugar
and total sugar content. The degree of hydrolysis was calculated
based on the formula as follows:

Hydrolysis degree (%)

=
Hydrolyzed reducing sugar

Total sugar−Non hydrolyzed reducing sugar
× 100

(3)

Simulated Gastric Digestion
The experimental method was slightly modified from themethod
described previously (30–32). The buffer solution was prepared
by adding 8.25 g disodium hydrogen phosphate monohydrate,
14.35 g monosodium phosphate, 8.0 g sodium chloride, 0.2 g
potassium chloride, 0.1 g calcium chloride, and 0.18 gmagnesium
chloride hexahydrate with distilled water and diluted to 1,000mL.
The pH of the buffer solution was adjusted to 1, 2, or 3 with
1M HCl solution. The sample weighing 100mg was added to
10.0mL of the buffer solution and placed in a water bath at 37◦C
for 6 h. An exact 1.0mL of the sample solution was obtained at
4 and 6 h during the simulated gastric digestion to determine
reducing sugar and total sugar content. The degree of hydrolysis
was calculated using Equation (3).

Simulated Small Intestinal Digestion
The simulated small intestinal digestion was performed
according to the method described previously (2, 31). The
simulated small-intestinal juice was prepared by adding 5.40 g
sodium chloride, 0.65 g potassium chloride, and 0.33 g calcium
chloride into a conical flask, dissolved with distilled water, and
diluted to 1,000mL. Next, 13mg trypsin, 100mL of pancreatin
solution (7%, w/w), 200mL of bile salt (4%, w/w), and the juice
solution were mixed before the pH was adjusted to 7 with 1M
sodium bicarbonate. Then, 1 mg/mL sample solution was mixed
with the simulated small-intestinal juice at a ratio of 1:1. During
the digestion, 1.0mL of the digesting sample was separately
collected at 4 and 6 h and then boiled for 5min to inactivate
the enzymes. The reducing sugar and total sugar content were
determined. The degree of hydrolysis was calculated according
to Equation (3).

Preparation of Culture Media
The basal medium for culturing S. thermophilus was prepared
by mixing peptone (5.0 g), yeast extract powder (10.0 g), calcium
carbonate (1.0 g), dipotassium phosphate (2.0 g), glucose (15.0
g/L), cysteine (0.50 g), and Tween-80 (1.0mL) in a beaker, and the
mixture was heated until dissolution. The medium was topped
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up with distilled water to 1 L. The pH was adjusted to 6.5, and the
solution was sterilized for 20min at 121◦C. The basal medium for
the other strains was prepared by mixing tryptone (10 g/L), beef
extract powder (10.0 g), yeast extract powder (5.0 g), ammonium
citrate (2.0 g), dipotassium phosphate (2.0 g), manganese sulfate
monohydrate (0.30 g), Tween-80 (1 ml/L), urea (15 g/L), and
sodium acetate (5 g/L), and then heated until dissolution. The
distilled water was then added to the mixture to obtain a total
volume of 1 L. The pH was adjusted to 6.5, and the solution was
sterilized. The experimental media were prepared by replacing
glucose solution in the basal medium with XY, CP, WPEP, and
the carboxymethylated polysaccharide samples.

Pre-biotic Effect of the Carboxymethylated
Polysaccharides
The pre-biotic effect of the polysaccharide samples was
determined based on the microbial growth assay. The
polysaccharide samples were added to the culture media as
the only carbon source. The four probiotic strains used were
L. brevis, L. plantarum, L. delbrueckii subsp. bulgaricus, and S.
thermophilus. Different concentrations of the polysaccharide
samples were first used to screen for the microbial growth-
promoting effect. In brief, a 100 µL of probiotic solution (2 ×

108 CFU/mL) was pipetted to the culture medium and then
cultured for 48 h at 37◦C. The optical density (OD) values were
determined by measuring the absorbance at a wavelength of
600 nm. The OD value denotes the optimal concentration of
polysaccharides used for the growth of the probiotic strains. The
microbials were then cultured at different incubation times (0,
4, 8, 12, 24, and 36 h) by applying the optimized polysaccharide
concentration. The OD values of the cultures were measured, and
the results were expressed as log CFU/mL. A linear regression
equation was obtained for each probiotic strain. The optimal
polysaccharide concentration of 3% (w/v) was chosen as the only
carbon source, and FOS was used for comparison. The growth
curves of the four probiotic strains cultured using the culture
media containing different polysaccharide samples were plotted.

Statistical Analysis
All data were expressed as mean ± standard error of the mean
(n = 3). The statistically significant differences were determined
between the different groups based on the analysis of variance
coupled with Duncan’s multiple range test and student’s t-test.
The statistical analysis was performed using SPSS 26.0 software.
P < 0.05 was considered a statistically significant difference.

RESULTS AND DISCUSSION

Chemical Composition Analysis
Three polysaccharides were used in carboxymethylation. They
were XY, CP, and WPEP. The degrees of substitution for c-XY, c-
CP, and c-WPEP were 0.68, 0.44, and 0.44, respectively (Table 1).
XY had the highest degree of saturation in comparison with CP
and WPEP. The results also showed that the carboxymethylated
polysaccharide samples had a significantly lower total sugar
content than the non-carboxymethylated samples (P <

0.05). Although the carboxymethylated polysaccharides had

total protein content lesser than the non-carboxymethylated
forms, no significant differences were found between the
polysaccharide samples (P > 0.05). WPEP also had a significantly
lower galacturonic acid content besides the total sugar and
protein content. On the contrary, the c-XY and c-CP had
a significantly higher galacturonic acid content than the
non-carboxymethylated forms (P < 0.05).

The XY was a fine light-yellow powder, CP was a
white powder, and WPEP was a golden particle (Figure 1).
The colors and appearances of XY, CP, and WPEP were
remarkably changed after carboxymethylation. These changes
indicated that the internal structure of the polysaccharides
could have been modified chemically. Carboxymethylation of
polysaccharides extracted from Cyclocarya paliurus showed a
lower protein content than the non-carboxymethylated samples
(33). Besides, the solubility of the polysaccharides increased after
carboxymethylation (34). Moreover, the bioactivity of the c-XY
improved (35).

The IR spectra of the c-XY and XY are shown in Figure 1A.
The result showed that the broad peak at 3,480 cm−1 could be
attributed to the stretching vibrations of the OH group. The IR
peak at 2,930 cm−1 could also be attributed to the stretching
vibration of the CH group. The result revealed C–O–C stretching
vibrations at 1,330 cm−1. The peak spectra of c-XY close to 1,609
and 1,405 cm−1 also showed the characteristic absorption peaks
of C=O and CO, respectively.

The IR spectra of the c-CP and CP are shown in Figure 1B.
The broad peak at 3,420 cm−1 could be attributed to the
stretching vibrations of the OH group. The IR peak at 2,926 cm−1

was due to the stretching vibration of the CH group in c-XY, and
the peak at 1,330 cm−1 revealed C–O–C stretching vibrations
of the carboxymethylated structure. The peak spectra of c-XY
close to 1,616 and 1,419 cm−1 also showed the characteristic
absorption peaks of C=O and CO, respectively.

The IR spectra of the c-WPEP and WPEP are shown in
Figure 1C. The broad spectrum peak at 3,420 cm−1 could
be attributed to the stretching vibrations of the OH group.
Similar to c-XY and c-CP, the CH, C–O–C, C=O, and CO
stretching vibrations were found for the c-WPEP. Also, the
spectra of XY, CP, WPEP, c-XY, c-CP, and c-WPEP indicated
typical characteristic absorption peaks of the polysaccharides at
wavelengths of 1,100 and 3,500 cm−1.

The carboxymethylated polysaccharides had a lower peak
height (broad peak) than the non-carboxymethylated forms.
There was a sharp band at 900 cm−1, where it arose from the
C1 group frequency or ring frequency. It was the characteristic
of β-glucosidic linkages between the sugar units. The peak
spectra of c-XY, c-CP, and c-WPEP close to 1,600 and 1,425
cm−1 also revealed the characteristic absorption peaks of C=O
and CO, respectively. The findings indicated the successful
carboxymethylation of the polysaccharide samples.

The carboxymethylation was performed using both aqueous
and organic media. The use of organic medium has many
advantages, including high reaction stability and degree of
substitution. The substitution degree of XY was higher than
CP and WPEP because the purity of XY was higher than
these substances. CP and WPEP had the same substitution
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TABLE 1 | Chemical compositions of polysaccharide samples.

Samples Total sugar (%) Total protein (%) Galactoronic acid (%) DS

WPEP 54.23 ± 1.62e 2.98 ± 0.43a 39.43 ± 2.33a

XY 94.43 ± 4.77a 1.49 ± 0.22c 4.32 ± 1.74f

CP 87.25 ± 3.76b 1.33 ± 0.92c 6.72 ± 2.25e

c-WPEP 39.46 ± 1.25f 2.48 ± 0.57b 33.23 ± 1.92b 0.44 ± 0.06b

c-XY 79.12 ± 3.62d 1.42 ± 0.14c 9.43 ± 1.43c 0.68 ± 0.02a

c-CP 79.63 ± 1.89c 1.12 ± 0.91d 7.66 ± 1.47d 0.44 ± 0.04b

Data are presented as mean ± standard error of the mean of three replicates. Different lowercase superscript letters in the same column denote significant differences (P < 0.05).

FIGURE 1 | FT-IR spectra of (A) xylan (XY), (B) citrus pectin (CP), and (C) crude water-soluble polysaccharides of Passiflora edulis peel (WPEP) samples.

degree because the main polysaccharide in WPEP was pectin.
Literature shows that the purple passion fruit peel has as high
as 12.6% of pectin. The major monosaccharides of pectin were
rhamnose, arabinose, and galactose (36). These monosaccharides
had been confirmed as the major components of the water-
soluble polysaccharides of passion fruit peel (37).

The biological activity of polysaccharides is greatly affected
by the functional groups that exist in the molecular structures.
The presence of functional groups in a polysaccharide determines
the size and bioactivity of the polysaccharide. Also, the chemical
modification of a polysaccharide introduces new functional
groups to its molecular structure. The spatial structure influences
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FIGURE 2 | SEM micrographs of (A) xylan (XY), (B) carboxymethylated xylan

(c-XY), (C) citrus pectin (CP), (D) carboxymethylated citrus pectin (c-CP), (E)

crude water soluble polysaccharides of Passiflora edulis peel (WPEP) samples,

(F) carboxymethylated crude water soluble polysaccharides oPfassiflora edulis

peel (c-WPEP) samples; magnification factor: 300×.

bioactivity of the polysaccharide. The polysaccharide structure
with flexural waves has higher bioactivity than the others,
whereas the polysaccharide with wrinkle-shaped or stretchable
ribbons has low bioactivity (38).

The sweetness of a polysaccharide is derived from
the monosaccharide molecules. The high number of
hydroxyl groups (–OH) of a polysaccharide denotes a high
polysaccharide solubility in water and bioactivity (39). The
sweetness of a polysaccharide is also attributed to the OH
group. The carboxymethylation increased the intensity
of stretching vibrations of the OH group. Therefore, the
carboxymethylated polysaccharide could be sweeter than the
non-carboxymethylated form.

Scanning Electron Microscopy Analysis
The surface structures of the polysaccharides were observed
by SEM (Figure 2). The result showed that the surface
structure of WPEP was multiporous, mildly rough, and
unbounded. The surface structure of CP was less flaky,
mild fibrous look, and some were rod-like structure; the
XY had a granular shape. The changes in the surface
structures of the polysaccharide samples were observed after the
carboxymethylation, especially the surface of XY became flaky.
TheWPEP became lumpy after the carboxymethylation. The size
of the flaky structure of c-WPEP was also reduced. The rod-
like shape was not seen in the c-CP. The findings confirm that

the structural surface of these polysaccharides had been modified
by carboxymethylation.

The surface structural differences between the polysaccharide
samples were due to the variation in molecular structures and
bondings (40). The WPEP could contain other glycans besides
pectin. The CP used in this study had 65% purity. The pectin
in the purified extract might be bound together with glycans
like xylan, xyloglucan, and glucuronoxylan (41). However,
carboxymethylation increased the roughness and irregularity of
the surface structure of xylan, with hollows and embossment
(42). Also, CP prepared from manosonication assisted extraction
formed an amorphous, rough, and hard surface with surface
cracking and particles stuck to the surface.

Hydrolysis Degree of Polysaccharides
The study of resistance of the polysaccharide digestion was
performed based on assays mimicking the human digestive tract.
The digestion resistance was explored using simulated saliva,
gastric juice, and small intestinal juice methods. The digestion
resistance rate was determined based on the hydrolysis degree.
The minimal differences among the polysaccharides and FOS
in terms of the degree of hydrolysis are shown in Table 2. The
results showed that most polysaccharide samples had a moderate
degree of resistance to digestion. The hydrolysis degrees of
c-WPEP assessed by the simulated saliva, gastric juice, and
small intestinal juice methods were lower than the WPEP (P <

0.05). It showed that the carboxymethylation of WPEP increased
digestion resistance in the human digestive tract. The hydrolysis
degrees of c-XY and c-CP were not significantly improved (P >

0.05). The hydrolysis degrees of XY and CP after 4 h of hydrolysis
using the simulated small intestinal juice test were significantly
higher than the carboxymethylated samples (P < 0.05).

The minimal changes in hydrolysis degrees of the
polysaccharide samples following digestion by saliva and
gastric juice between 4 and 6 h indicated that the polysaccharide
samples have a good resistance against digestion. Literature
shows that pH values of gastric juice in a healthy individual
ranged from 1.3 to 2.5. The pH values increase to 4.5–5.8 after
eating. The ingested polysaccharides remain in the stomach for
4–6 h, and the undigested substances enter the large intestine.
The undigested polysaccharides are pre-biotics in the large
intestine (37). The FTIR analysis showed that the molecular
structures of the polysaccharide samples had a β-D glycosidic
bond. The hydrolytic actions of human digestive enzymes on
carbohydrates are mainly involved in the cleavage of α-glycosidic
bonds (43). Therefore, the polysaccharide samples were digestion
resistant. In the simulated human digestive system, the degrees
of hydrolysis of all polysaccharides were lower than 10%. The
polysaccharides also have relatively stable main structures. They
are hydrolysis resistant, and they are potent pre-biotics (44).

Bile salts are the functional components of bile. They are
biological surfactants involved in the digestion and absorption
of lipids in the small intestine. The concentrations of bile salts
in the small intestine also ranged between 4 and 20mM. The
values may fall to as low as 2.6mM in the fasted state or rise to
over 15mM in the fed state (45, 46). The effects of different bile
salts on the absorption of fluid, electrolytes, andmonosaccharides
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TABLE 2 | Hydrolysis degrees (%) of polysaccharides in simulated salivary, gastric, and intestinal conditions.

Samples Simulated Simulated gastric Simulated intestinal

saliva

0.5 h 4 h 6 h 4 h 6 h

pH 1 pH 2 pH 3 pH 1 pH 2 pH 3

XY 8.49 ± 0.025c 2.00 ± 0.014e 1.23 ± 0.022e 0.66 ± 0.003g 4.07 ± 0.004d 2.98 ± 0.002d 3.53 ± 0.002a 3.15 ± 0.004c 3.5 ± 0.026d

CP 3.36 ± 0.020f 2.13 ± 0.030c 1.74 ± 0.041c 2.15 ± 0.069c 5.53 ± 0.042b 3.51 ± 0.041c 2.92 ± 0.028c 3.36 ± 0.02b 3.77 ± 0.008c

WPEP 10.30 ± 0.023a 2.86 ± 0.023b 3.89 ± 0.045a 3.93 ± 0.045a 2.34 ± 0.025f 3.67 ± 0.025b 1.87 ± 0.010e 4.30 ± 0.025a 4.70 ± 0.020b

c-XY 8.86 ± 0.020b 1.49 ± 0.005f 1.22 ± 0.002e 1.04 ± 0.033e 4.16 ± 0.003c 2.38 ± 0.001f 3.27 ± 0.002b 0.88 ± 0.006g 5.28 ± 0.038a

c-CP 2.61 ± 0.017g 2.04 ± 0.004d 1.73 ± 0.031c 2.58 ± 0.02b 5.62 ± 0.006a 4.11 ± 0.032a 2.76 ± 0.006d 1.09 ± 0.009f 1.78 ± 0.013g

c-WPEP 7.70 ± 0.024d 0.54 ± 0.025g 1.31 ± 0.023d 1.15 ± 0.015d 1.14 ± 0.025g 1.30 ± 0.025g 1.22 ± 0.0025f 1.50 ± 0.004d 2.40 ± 0.010f

FOS 5.20 ± 0.015e 2.98 ± 0.056a 2.64 ± 0.073b 0.82 ± 0.005f 3.10 ± 0.008e 2.50 ± 0.002e 0.70 ± 0.001g 1.30 ± 0.002e 2.82 ± 0.012e

Data are presented as mean ± standard error of the mean of three replicates. Different lowercase superscript letters in the same column denote significant differences (P < 0.05).

FIGURE 3 | Effects of different concentrations of carboxymethylated xylan (c-XY) sample on the growth of probiotics (A) L. brevis, (B) L. plantarum, (C) L. delbrueckii

subsp. bulgaricus, and (D) S. thermophilus. *P < 0.05.

have been investigated in the small intestine of the experimental
rats (47). The deoxycholate (1mM) impaired absorption of water
and potassium in the jejunum, but not of sodium or glucose. At

higher concentrations (2.5 and 5mM), the secretion of fluid and
electrolytes occurred, and glucose and fructose absorption was
impaired (48).
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FIGURE 4 | Effects of different concentrations of carboxymethylated citrus pectin (c-CP) sample on the growth of (A) L. brevis, (B) L. plantarum, (C) L. delbrueckii

subsp. bulgaricus, and (D) S. thermophilus. *P < 0.05.

Effects of Different Concentrations of
Polysaccharides on Probiotic Growth
The effects of different concentrations of XY, CP, WPEP, c-
XY, c-CP, and c-WPEP on the growth of the probiotic strains
were determined (Figures 3–5). The OD values reflected the
microbial counts in the fermentation broth. The changes in the
values represented the growth rate of the intestinal microflora.
The growth of the probiotic strains could be more accurately
expressed as CFU/mL (49). The regression equations of the
standard curves for L. brevis, L. plantarum, L. delbrueckii subsp.
bulgaricus, and S. thermophilus were y = 4−10x + 0.007 (R2 =

0.9995), y = 8−9x – 1.1215 (R2 = 0.9948), y = 4−9x – 0.5944
(R2 = 0.9926), and y = 2−9x – 0.26 (R2 = 0.9958), respectively.
The results showed that c-XY and c-CP promoted the growth of
the probiotic strains (Figures 3, 4), especially L. plantarum and
L. delbrueckii subsp. bulgaricus.Hence, the c-WPEP inhibited the
microbial growth (Figure 5).

The finding of this study revealed that c-XY was the most
effective pre-biotic in promoting the growth of L. brevis. It is
because c-CP and c-WPEP significantly inhibited the growth of
L. brevis and S. thermophilus. In this study, the polysaccharide
samples promoted the growth of the Lactobacillus strains except

for c-WPEP. The 3% c-XY had the best effect in promoting the
proliferation of the probiotic strains. As shown in Figures 3, 4, c-
XY and c-CP at concentrations of up to 3% effectively increased
the growth of L. plantarum (P < 0.05). On the contrary, some
polysaccharides were not positively correlated with the growth of
the probiotic strains.

Literature demonstrated that the effect of polysaccharides
isolated from the dried root of Atractylodis macrocephalae
(42) and Fu Brick tea (37) on the growth of probiotics was
not concentration-dependent. When a higher concentration
of the polysaccharides was used, the growth-promoting
effect weakened. It could be due to the high sugar
concentration causing an increase in the osmotic pressure
and accumulation of metabolites, thus limiting the proliferation
of bifidobacteria.

Effect of Optimal Concentrations of
Polysaccharides on Growth Curve of
Probiotics
The growth curves of the probiotic strains supplemented with the
optimal concentrations of polysaccharide samples are presented
in Figure 6. The addition of polysaccharide samples to the
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FIGURE 5 | Effects of different concentrations of the carboxymethylated crude water-soluble polysaccharides of Passiflora edulis peel (c-WPEP) sample on the

growth of (A) L. brevis, (B) L. plantarum, (C) L. delbrueckii subsp. bulgaricus, and (D) S. thermophilus. *P < 0.05.

basal medium as sole carbon sources promoted microbial
growth. The growth rate remained consistent for about 10 h,
and the growth rate increased rapidly and reached a maximum
growth rate at 24 h. After 24 h, the growth rate started to
drop gradually until the end of the experiment at 48 h. The
treatment with FOS showed the highest growth rates for all four
probiotic strains.

The carboxymethylated polysaccharides significantly
improved the growth performance of the probiotics compared
with the non-carboxymethylated samples, especially for L.
brevis. As shown in Figure 4, c-XY and c-CP had better growth-
promoting effects than c-WPEP. Besides, the probiotics
exposed to the carboxymethylated polysaccharides had
a slightly stable growth phase after 24 h of incubation.
Among the polysaccharides tested, c-XY was the most
effective pre-biotic.

FOS is low molecular weight and low polymerization degree
substance, and it has a better pre-biotic effect than the other
polysaccharides. When FOS is added to the fermentation broth
as the only energy source, it promotes the growth of the intestinal

microflora. Literature also showed that FOS was the best carbon
source for the proliferation of probiotics (12). Moreover, the
ketone-rich FOS relieved allergic dermatitis by regulating the
intestinal microflora, and it played an essential role in regulating
the growth of these microorganisms (50).

The c-XY and FOS showed a similar growth performance
of the four probiotics. This finding demonstrated that c-XY
is a more effective pre-biotic for promoting growth of the
intestinal microflora than c-CP and c-WPEP. It could be
because the carboxymethylation of XY changed in its surface
structure and structural bonds. Previous studies showed that the
characteristics of fructose-oligosaccharides, including structural
units and degree of polymerization, had a fundamental influence
on its probiotic activity; c-XY and FOS might also have similar
chemical information.

The growth curves of the probiotics could be divided into
different phases, such as the stagnation phase, logarithmic
growth phase, stationary phase, and decline phase (51). S.
thermophilus and L. brevis cultivated with most polysaccharide
samples had a 4 h stagnation phase, whereas L. plantarum
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FIGURE 6 | Effects of polysaccharide samples on the growth of (A) L. brevis, (B) L. plantarum, (C) L. delbrueckii subsp. bulgaricus, and (D) S. thermophilus.

and L. delbrueckii subsp. bulgaricus showed a long hour
of stagnation phase before entering the logarithmic growth
phase. The declining growth curves were also observed if
the probiotics were kept at a prolonged period, especially
after 36 h.

Studies have shown that the intestinal microflora mainly
obtained nutrients from carbohydrate sources by digesting
the complex polysaccharides (52). The c-WPEP showed a
moderate effect in promoting the growth of the probiotics,
but the result was less significant than the c-XY and c-
CP. Among the three carboxymethylated polysaccharides,
c-WPEP had the lowest sugar content. It indicated that
c-WPEP did not provide enough energy for the growth
of probiotics. Therefore, appropriate sources of pre-
biotics are needed for the optimal growth of intestinal
microflora (53). Also, the solubility of the c-XY and c-
CP increased after carboxymethylation. The intestinal
microflora could have fully utilized these carboxymethylated
polysaccharides for their growth. As carboxymethylated
polysaccharides have shorter chains than the non-
carboxymethylated forms, the polysaccharides are easier
to decompose and use by the intestinal microflora (54).
Therefore, the carboxymethylated polysaccharides had a better
pre-biotic effect.

CONCLUSION

The carboxymethylation of XY, CP, and WPEP was successfully

performed using a combination of chloroacetic acid and

NaOH reactions. The successful carboxymethylation of
these polysaccharides was shown by the FTIR spectra. The

carboxymethylated polysaccharides had total protein content
lesser than the non-carboxymethylated forms, and no significant

differences were found between the polysaccharide samples. The
three carboxymethylated polysaccharides resisted hydrolysis
based on the assays mimicking the human digestive tract, where
c-WPEP had the best resistance to digestion. The hydrolysis
degrees of c-WPEP accessed by the simulated saliva, gastric juice,
and small intestinal juice methods were lower than the WPEP.
It showed that the carboxymethylation of WPEP increased
digestion resistance in the human digestive tract. The uses of
c-XY, c-CP, and c-WPEP as sole carbon sources demonstrated a
variation in the effects on the growth of L. brevis, L. plantarum,
L. delbrueckii subsp. bulgaricus, and S. thermophilus. These
probiotic strains had different abilities to decompose and utilize
the polysaccharides. The carboxymethylated polysaccharide
samples also demonstrated better pre-biotic effects than the
non-carboxymethylated samples, and c-XY had a better pre-
biotic-promoting effect than c-CP and c-WPEP. The findings
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collectively suggested that c-XY, c-CP, and c-WPEP are potent
pre-biotics that should be developed into dietary supplements
for regulating Lactobacillus and Streptococcus in the human gut.
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