You're viewing our updated article page. If you need more time to adjust, you can return to the old layout.

CORRECTION article

Front. Nutr., 01 November 2021

Sec. Nutritional Immunology

Volume 8 - 2021 | https://doi.org/10.3389/fnut.2021.790387

Corrigendum: Inflammatory and Microbiota-Related Regulation of the Intestinal Epithelial Barrier

  • 1. IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy

  • 2. Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy

  • 3. Medical-Surgical Department of Clinical Sciences and Translational Medicine, University Sapienza, Rome, Italy

Article metrics

View details

31

Citations

3,4k

Views

1,6k

Downloads

Incorrect Reference

In the original article, there is a mistake in the references cited in the text. From reference 105 onwards, the number does not correspond to the correct citation. The corrected references appear below.

The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated.

Publisher's Note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

  • 1.

    Turner JR . Intestinal mucosal barrier function in health and disease. Nat Rev Immunol. (2009) 9:799809. 10.1038/nri2653

  • 2.

    Helander HF Fändriks L . Surface area of the digestive tract-revisited. Scand J Gastroenterol. (2014) 49:6819. 10.3109/00365521.2014.898326

  • 3.

    Camilleri M . Leaky gut: mechanisms, measurement and clinical implications in humans. Gut. (2019) 68:151626. 10.1136/gutjnl-2019-318427

  • 4.

    Yen TH Wright NA . The gastrointestinal tract stem cell niche. Stem Cell Rev. (2006) 2:20312. 10.1007/s12015-006-0048-1

  • 5.

    Von Moltke J Ji M Liang HE Locksley RM . Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature. (2016) 529:2215. 10.1038/nature16161

  • 6.

    Bischoff SC Barbara G Buurman W Ockhuizen T Schulzke JD Serino M et al . Intestinal permeability - a new target for disease prevention and therapy. BMC Gastroenterol. (2014) 14:189. 10.1186/s12876-014-0189-7

  • 7.

    Salvo-Romero E Alonso-Cotoner C Pardo-Camacho C Casado-Bedmar M Vicario M . The intestinal barrier function and its involvement in digestive disease. Rev Esp Enfermedades Dig. (2015) 107:68696. 10.17235/reed.2015.3846/2015

  • 8.

    Meddings J . The significance of the gut barrier in disease. Gut. (2008) 57:43840. 10.1136/gut.2007.143172

  • 9.

    Hansson GC . Mucus and mucins in diseases of the intestinal and respiratory tracts. J Intern Med. (2019) 285:47990. 10.1111/joim.12910

  • 10.

    Gillois K Lévêque M Théodorou V Robert H Mercier-Bonin M . Mucus: an underestimated gut target for environmental pollutants and food additives. Microorganisms. (2018) 6:53. 10.3390/microorganisms6020053

  • 11.

    Johansson MEV Hansson GC . Immunological aspects of intestinal mucus and mucins. Nat Rev Immunol. (2016) 16:63949. 10.1038/nri.2016.88

  • 12.

    Cone RA . Barrier properties of mucus. Adv Drug Deliv Rev. (2009) 61:7585. 10.1016/j.addr.2008.09.008

  • 13.

    König J Wells J Cani PD García-Ródenas CL MacDonald T Mercenier A et al . Human intestinal barrier function in health and disease. Clin Transl Gastroenterol. (2016) 7:e196. 10.1038/ctg.2016.54

  • 14.

    Kim YS Ho SB . Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr Gastroenterol Rep. (2010) 12:31930. 10.1007/s11894-010-0131-2

  • 15.

    Hansson GC . Mucins and the Microbiome. Annu Rev Biochem. (2020) 89:76993. 10.1146/annurev-biochem-011520-105053

  • 16.

    Bansil R Turner BS . The biology of mucus: composition, synthesis and organization. Adv Drug Deliv Rev. (2018) 124:315. 10.1016/j.addr.2017.09.023

  • 17.

    LAMONT JT . Mucus: the front line of intestinal mucosal defense. Ann N Y Acad Sci. (1992) 664:190201. 10.1111/j.1749-6632.1992.tb39760.x

  • 18.

    Kim JJ Khan WI . Goblet cells and mucins: role in innate defense in enteric infections. Pathogens. (2013) 2:5570. 10.3390/pathogens2010055

  • 19.

    Strugnell RA Wijburg OLC . The role of secretory antibodies in infection immunity. Nat Rev Microbiol. (2010) 8:65667. 10.1038/nrmicro2384

  • 20.

    Huus KE Petersen C Finlay BB . Diversity and dynamism of IgA–microbiota interactions. Nat Rev Immunol. (2021) 21:51425. 10.1038/s41577-021-00506-1

  • 21.

    Pelaseyed T Hansson GC . Membrane mucins of the intestine at a glance. J Cell Sci. (2020) 133:jcs240929. 10.1242/JCS.240929

  • 22.

    Etienne-Mesmin L Chassaing B Desvaux M De Paepe K Gresse R Sauvaitre T et al . Experimental models to study intestinal microbes–mucus interactions in health and disease. FEMS Microbiol Rev. (2019) 43:45789. 10.1093/femsre/fuz013

  • 23.

    Pelaseyed T Bergström JH Gustafsson JK Ermund A Birchenough GMH Schütte A et al . The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunol Rev. (2014) 260:820. 10.1111/imr.12182

  • 24.

    Pabst O Mowat AM . Oral tolerance to food protein. Mucosal Immunol. (2012) 5:2329. 10.1038/mi.2012.4

  • 25.

    Shan M Gentile M Yeiser JR Walland AC Bornstein VU Chen K et al . Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. Science. (2013) 342:44753. 10.1126/science.1237910

  • 26.

    Ermund A Gustafsson JK Hansson GC Keita Å V . Mucus properties and goblet cell quantification in mouse, rat and human ileal Peyer's patches. PLoS ONE. (2013) 8:e83688. 10.1371/journal.pone.0083688

  • 27.

    Johansson MEV Holmén Larsson JM Hansson GC . The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc Natl Acad Sci USA. (2011) 108:465965. 10.1073/pnas.1006451107

  • 28.

    Atuma C Strugala V Allen A Holm L . The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am J Physiol Gastrointest Liver Physiol. (2001) 280:G9229. 10.1152/ajpgi.2001.280.5.g922

  • 29.

    Ermund A Schütte A Johansson MEV Gustafsson JK Hansson GC . Studies of mucus in mouse stomach, small intestine, and colon. I. Gastrointestinal mucus layers have different properties depending on location as well as over the Peyer's patches. Am J Physiol Gastrointest Liver Physiol. (2013) 305:G3417. 10.1152/ajpgi.00046.2013

  • 30.

    Birchenough GMH Johansson MEV Gustafsson JK Bergström JH Hansson GC . New developments in goblet cell mucus secretion and function. Mucosal Immunol. (2015) 8:7129. 10.1038/mi.2015.32

  • 31.

    Ouellette AJ . Paneth cells and innate mucosal immunity. Curr Opin Gastroenterol. (2010) 26:54753. 10.1097/MOG.0b013e32833dccde

  • 32.

    Heazlewood CK Cook MC Eri R Price GR Tauro SB Taupin D et al . Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis. PLoS Med. (2008) 5:54. 10.1371/journal.pmed.0050054

  • 33.

    Renner M Bergmann G Krebs I End C Lyer S Hilberg F et al . DMBT1 confers mucosal protection in vivo and a deletion variant is associated with Crohn's disease. Gastroenterology. (2007) 133:1499509. 10.1053/j.gastro.2007.08.007

  • 34.

    Hooper LV MacPherson AJ . Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol. (2010) 10:15969. 10.1038/nri2710

  • 35.

    Meyer-Hoffert U Hornef MW Henriques-Normark B Axelsson LG Midtvedt T Pütsep K et al . Secreted enteric antimicrobial activity localises to the mucus surface layer. Gut. (2008) 57:76471. 10.1136/gut.2007.141481

  • 36.

    Van Der Waaij LA Harmsen HJM Madjipour M Kroese FGM Zwiers M Van Dullemen HM et al . Bacterial population analysis of human colon and terminal ileum biopsies with 16S rRNA-based fluorescent probes: commensal bacteria live in suspension and have no direct contact with epithelial cells. Inflamm Bowel Dis. (2005) 11:86571. 10.1097/01.mib.0000179212.80778.d3

  • 37.

    Johansson MEV Phillipson M Petersson J Velcich A Holm L Hansson GC . The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci USA. (2008) 105:150649. 10.1073/pnas.0803124105

  • 38.

    Johansson MEV Sjövall H Hansson GC . The gastrointestinal mucus system in health and disease. Nat Rev Gastroenterol Hepatol. (2013) 10:35261. 10.1038/nrgastro.2013.35

  • 39.

    Li H Limenitakis JP Fuhrer T Geuking MB Lawson MA Wyss M et al . The outer mucus layer hosts a distinct intestinal microbial niche. Nat Commun. (2015) 6:8292. 10.1038/ncomms9292

  • 40.

    Kamphuis JBJ Mercier-Bonin M Eutamène H Theodorou V . Mucus organisation is shaped by colonic content; a new view. Sci Rep. (2017) 7:8527. 10.1038/s41598-017-08938-3

  • 41.

    Hoskins LC Boulding ET . Mucin degradation in human colon ecosystems. J Clin Invest. (1981) 67:16372. 10.1172/jci110009

  • 42.

    Png CW Lindén SK Gilshenan KS Zoetendal EG McSweeney CS Sly LI et al . Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol. (2010) 105:24208. 10.1038/ajg.2010.281

  • 43.

    Desai MS Seekatz AM Koropatkin NM Kamada N Hickey CA Wolter M et al . A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell. (2016) 167:133953.e21. 10.1016/j.cell.2016.10.043

  • 44.

    Johansson MEV Jakobsson HE Holmén-Larsson J Schütte A Ermund A Rodríguez-Piñeiro AM et al . Normalization of host intestinal mucus layers requires long-term microbial colonization. Cell Host Microbe. (2015) 18:58292. 10.1016/j.chom.2015.10.007

  • 45.

    Schroeder BO . Fight them or feed them: how the intestinal mucus layer manages the gut microbiota. Gastroenterol Rep. (2019) 7:312. 10.1093/gastro/goy052

  • 46.

    Fu J Wei B Wen T Johansson MEV Liu X Bradford E et al . Loss of intestinal core 1-derived O-glycans causes spontaneous colitis in mice. J Clin Invest. (2011) 121:165766. 10.1172/JCI45538

  • 47.

    Larsson JMH Karlsson H Crespo JG Johansson MEV Eklund L Sjövall H et al . Altered O-glycosylation profile of MUC2 mucin occurs in active ulcerative colitis and is associated with increased inflammation. Inflamm Bowel Dis. (2011) 17:2299307. 10.1002/ibd.21625

  • 48.

    Johansson MEV Gustafsson JK Holmen-Larsson J Jabbar KS Xia L Xu H et al . Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis. Gut. (2014) 63:28191. 10.1136/gutjnl-2012-303207

  • 49.

    Strugala V Dettmar PW Pearson JP . Thickness and continuity of the adherent colonic mucus barrier in active and quiescent ulcerative colitis and Crohn's disease. Int J Clin Pract. (2008) 62:7629. 10.1111/j.1742-1241.2007.01665.x

  • 50.

    Pullan RD Thomas GAO Rhodes M Newcombe RG Williams GT Allen A et al . Thickness of adherent mucus gel on colonic mucosa in humans and its relevance to colitis. Gut. (1994) 35:3539. 10.1136/gut.35.3.353

  • 51.

    Buisine MP Desreumaux P Leteurtre E Copin MC Colombel JF Porchet N et al . Mucin gene expression in intestinal epithelial cells in Crohn's disease. Gut. (2001) 49:54451. 10.1136/gut.49.4.544

  • 52.

    Buisine MP Desreumaux P Debailleul V Gambiez L Geboes K Ectors N et al . Abnormalities in mucin gene expression in Crohn's disease. Inflamm Bowel Dis. (1999) 5:2432. 10.1097/00054725-199902000-00004

  • 53.

    Nakamori S Ota DM Cleary KR Shirotani K Irimura T . MUC1 mucin expression as a marker of progression and metastasis of human colorectal carcinoma. Gastroenterology. (1994) 106:35361. 10.1016/0016-5085(94)90592-4

  • 54.

    Ajioka Y Allison LJ Jass JR . Significance of MUC1 and MUC2 mucin expression in colorectal cancer. J Clin Pathol. (1996) 49:5604. 10.1136/jcp.49.7.560

  • 55.

    McGuckin MA Lindén SK Sutton P Florin TH . Mucin dynamics and enteric pathogens. Nat Rev Microbiol. (2011) 9:26578. 10.1038/nrmicro2538

  • 56.

    Dharmani P Srivastava V Kissoon-Singh V Chadee K . Role of intestinal mucins in innate host defense mechanisms against pathogens. J Innate Immun. (2009) 1:12335. 10.1159/000163037

  • 57.

    Hayashi F Smith KD Ozinsky A Hawn TR Yi EC Goodlett DR et al . The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature. (2001) 410:1099103. 10.1038/35074106

  • 58.

    Birchenough GMH Nystrom EEL Johansson MEV Hansson GC . A sentinel goblet cell guards the colonic crypt by triggering Nlrp6-dependent Muc2 secretion. Science. (2016) 352:153542. 10.1126/science.aaf7419

  • 59.

    Wang S Ahmadi S Nagpal R Jain S Mishra SP Kavanagh K et al . Lipoteichoic acid from the cell wall of a heat killed Lactobacillus paracasei D3-5 ameliorates aging-related leaky gut, inflammation and improves physical and cognitive functions: from C. elegans to mice. GeroScience. (2020) 42:33352. 10.1007/s11357-019-00137-4

  • 60.

    Lee KD Guk SM Chai JY . Toll-like receptor 2 and Muc2 expression on human intestinal epithelial cells by gymnophalloides seoi adult antigen. J Parasitol. (2010) 96:5866. 10.1645/GE-2195.1

  • 61.

    Kamdar K Johnson AMF Chac D Myers K Kulur V Truevillian K et al . Innate recognition of the microbiota by TLR1 promotes epithelial homeostasis and prevents chronic inflammation. J Immunol. (2018) 201:23042. 10.4049/jimmunol.1701216

  • 62.

    Anderson JM Van Itallie CM . Physiology and function of the tight junction. Cold Spring Harb Perspect Biol. (2009) 1:a002584. 10.1101/cshperspect.a002584

  • 63.

    Furuse M Fujita K Hiiragi T Fujimoto K Tsukita S . Claudin-1 and−2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol. (1998) 141:153950. 10.1083/jcb.141.7.1539

  • 64.

    Furuse M Hirase T Itoh M Nagafuchi A Yonemura S Tsukita S et al . Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol. (1993) 123:177788. 10.1083/jcb.123.6.1777

  • 65.

    Martìn-Padura I Lostaglio S Schneemann M Williams L Romano M Fruscella P et al . Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol. (1998) 142:11727. 10.1083/jcb.142.1.117

  • 66.

    Ikenouchi J Umeda K Tsukita S Furuse M Tsukita S . Requirement of ZO-1 for the formation of belt-like adherens junctions during epithelial cell polarization. J Cell Biol. (2007) 176:77986. 10.1083/jcb.200612080

  • 67.

    Günzel D Fromm M . Claudins and other tight junction proteins. Compr Physiol. (2012) 2:181952. 10.1002/cphy.c110045

  • 68.

    Günzel D Yu ASL . Claudins and the modulation of tight junction permeability. Physiol Rev. (2013) 93:52569. 10.1152/physrev.00019.2012

  • 69.

    Suzuki T . Regulation of the intestinal barrier by nutrients: the role of tight junctions. Anim Sci J. (2020) 91:e13357. 10.1111/asj.13357

  • 70.

    Cong X Kong W . Endothelial tight junctions and their regulatory signaling pathways in vascular homeostasis and disease. Cell Signal. (2020) 66:109485. 10.1016/j.cellsig.2019.109485

  • 71.

    Shen L Weber CR Raleigh DR Yu D Turner JR . Tight junction pore and leak pathways: a dynamic duo. Annu Rev Physiol. (2011) 73:283309. 10.1146/annurev-physiol-012110-142150

  • 72.

    Van Itallie CM Anderson JM . Claudins and epithelial paracellular transport. Annu Rev Physiol. (2006) 68:40329. 10.1146/annurev.physiol.68.040104.131404

  • 73.

    Heller F Florian P Bojarski C Richter J Christ M Hillenbrand B et al . Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology. (2005) 129:55064. 10.1016/j.gastro.2005.05.002

  • 74.

    Ivanov AI Nusrat A Parkos CA . The epithelium in inflammatory bowel disease: potential role of endocytosis of junctional proteins in barrier disruption. Novartis Found Symp. (2004) 263:11524. 10.1002/0470090480.ch9

  • 75.

    Kucharzik T Walsh S V. Chen J Parkos CA Nusrat A . Neutrophil transmigration in inflammatory bowel disease is associated with differential expression of epithelial intercellular junction proteins. Am J Pathol. (2001) 159:20019. 10.1016/S0002-9440(10)63051-9

  • 76.

    Pizzuti D Senzolo M Buda A Chiarelli S Giacomelli L Mazzon E et al . In vitro model for IgE mediated food allergy. Scand J Gastroenterol. (2011) 46:17787. 10.3109/00365521.2010.525716

  • 77.

    Assimakopoulos SF Tsamandas AC Tsiaoussis GI Karatza E Triantos C Vagianos CE et al . Altered intestinal tight junctions' expression in patients with liver cirrhosis: a pathogenetic mechanism of intestinal hyperpermeability. Eur J Clin Invest. (2012) 42:43946. 10.1111/j.1365-2362.2011.02609.x

  • 78.

    Bertiaux-Vandaële N Youmba SB Belmonte L Lecleire S Antonietti M Gourcerol G et al . The expression and the cellular distribution of the tight junction proteins are altered in irritable bowel syndrome patients with differences according to the disease subtype. Am J Gastroenterol. (2011) 106:216573. 10.1038/ajg.2011.257

  • 79.

    Rahner C Mitic LL Anderson JM . Heterogeneity in expression and subcellular localization of claudins 2, 3, 4, and 5 in the rat liver, pancreas, and gut. Gastroenterology. (2001) 120:41122. 10.1053/gast.2001.21736

  • 80.

    Reyes JL Lamas M Martin D Namorado MDC Islas S Luna J et al . The renal segmental distribution of claudins changes with development. Kidney Int. (2002) 62:47687. 10.1046/j.1523-1755.2002.00479.x

  • 81.

    Wolburg H Wolburg-Buchholz K Liebner S Engelhardt B . Claudin-1, claudin-2 and claudin-11 are present in tight junctions of choroid plexus epithelium of the mouse. Neurosci Lett. (2001) 307:7780. 10.1016/S0304-3940(01)01927-9

  • 82.

    Zhu Y Brännström M Janson PO Sundfeldt K . Differences in expression patterns of the tight junction proteins, claudin 1, 3, 4 and 5, in human ovarian surface epithelium as compared to epithelia in inclusion cysts and epithelial ovarian tumours. Int J Cancer. (2006) 118:188491. 10.1002/ijc.21506

  • 83.

    Oshima T Miwa H Joh T . Changes in the expression of claudins in active ulcerative colitis. J Gastroenterol Hepatol. (2008) 23:37. 10.1111/j.1440-1746.2008.05405.x

  • 84.

    Nagy Szakál D Gyorffy H Arató A Cseh Á Molnár K Papp M et al . Mucosal expression of claudins 2, 3 and 4 in proximal and distal part of duodenum in children with coeliac disease. Virchows Arch. (2010) 456:24550. 10.1007/s00428-009-0879-7

  • 85.

    Martínez C Lobo B Pigrau M Ramos L González-Castro AM Alonso C et al . Diarrhoea-predominant irritable bowel syndrome: an organic disorder with structural abnormalities in the jejunal epithelial barrier. Gut. (2013) 62:11608. 10.1136/gutjnl-2012-302093

  • 86.

    Zeissig S Bürgel N Günzel D Richter J Mankertz J Wahnschaffe U et al . Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn's disease. Gut. (2007) 56:6172. 10.1136/gut.2006.094375

  • 87.

    Laurila JJ Karttunen T Koivukangas V Laurila PA Syrjälä H Saarnio J et al . Tight junction proteins in gallbladder epithelium: different expression in acute acalculous and calculous cholecystitis. J Histochem Cytochem. (2007) 55:56773. 10.1369/jhc.6A7155.2007

  • 88.

    Wolburg H Wolburg-Buchholz K Kraus J Rascher-Eggstein G Liebner S Hamm S et al . Localization of claudin-3 in tight junctions of the blood-brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme. Acta Neuropathol. (2003) 105:58692. 10.1007/s00401-003-0688-z

  • 89.

    Kiuchi-Saishin Y Gotoh S Furuse M Takasuga A Tano Y Tsukita S . Differential expression patterns of claudins, tight junction membrane proteins, in mouse nephron segments. J Am Soc Nephrol. (2002) 13:87586. 10.1681/asn.v134875

  • 90.

    Mennigen R Nolte K Rijcken E Utech M Loeffler B Senninger N et al . Probiotic mixture VSL#3 protects the epithelial barrier by maintaining tight junction protein expression and preventing apoptosis in a murine model of colitis. Am J Physiol Gastrointest Liver Physiol. (2009) 296:G11409. 10.1152/ajpgi.90534.2008

  • 91.

    Oshima T Miwa H . Gastrointestinal mucosal barrier function and diseases. J Gastroenterol. (2016) 51:76878. 10.1007/s00535-016-1207-z

  • 92.

    Sapone A Lammers KM Casolaro V Cammarota M Giuliano MT De Rosa M et al . Divergence of gut permeability and mucosal immune gene expression in two gluten-associated conditions: Celiac disease and gluten sensitivity. BMC Med. (2011) 9:23. 10.1186/1741-7015-9-23

  • 93.

    Morita K Sasaki H Furuse M Tsukita S . Endothelial claudin: Claudin-5/TMVCF constitutes tight junction strands in endothelial cells. J Cell Biol. (1999) 147:18594. 10.1083/jcb.147.1.185

  • 94.

    Nitta T Hata M Gotoh S Seo Y Sasaki H Hashimoto N et al . Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol. (2003) 161:65360. 10.1083/jcb.200302070

  • 95.

    Amasheh S Schmidt T Mahn M Florian P Mankertz J Tavalali S et al . Contribution of claudin-5 to barrier properties in tight junctions of epithelial cells. Cell Tissue Res. (2005) 321:8996. 10.1007/s00441-005-1101-0

  • 96.

    Schumann M Günzel D Buergel N Richter JF Troeger H May C et al . Cell polarity-determining proteins Par-3 and PP-1 are involved in epithelial tight junction defects in coeliac disease. Gut. (2012) 61:2208. 10.1136/gutjnl-2011-300123

  • 97.

    Fujita H Chiba H Yokozaki H Sakai N Sugimoto K Wada T et al . Differential expression and subcellular localization of claudin-7,−8,−12,−13, and−15 along the mouse intestine. J Histochem Cytochem. (2006) 54:93344. 10.1369/jhc.6A6944.2006

  • 98.

    Go M Kojima T Takano KI Murata M Ichimiya S Tsubota H et al . Expression and function of tight junctions in the crypt epithelium of human palatine tonsils. J Histochem Cytochem. (2004) 52:162738. 10.1369/jhc.4A6339.2004

  • 99.

    Li WY Huey CL Yu AS . Expression of claudin-7 and−8 along the mouse nephron. Am J Physiol Renal Physiol. (2004) 286:F106371.10.1152/ajprenal.00384.2003

  • 100.

    Turksen K Troy TC . Claudin-6: a novel tight junction molecule is developmentally regulated in mouse embryonic epithelium. Dev Dyn. (2001) 222:292300. 10.1002/dvdy.1174

  • 101.

    Lameris AL Huybers S Kaukinen K Mäkelä TH Bindels RJ Hoenderop JG et al . Expression profiling of claudins in the human gastrointestinal tract in health and during inflammatory bowel disease. Scand J Gastroenterol. (2013) 48:5869. 10.3109/00365521.2012.741616

  • 102.

    Niimi T Nagashima K Ward JM Minoo P Zimonjic DB Popescu NC et al . claudin-18, a novel downstream target gene for the T/EBP/NKX2.1 homeodomain transcription factor, encodes lung- and stomach-specific isoforms through alternative splicing. Mol Cell Biol. (2001) 21:738090. 10.1128/mcb.21.21.7380-7390.2001

  • 103.

    Linares GR Brommage R Powell DR Xing W Chen ST Alshbool FZ et al . Claudin 18 is a novel negative regulator of bone resorption and osteoclast differentiation. J Bone Miner Res. (2012) 27:155365. 10.1002/jbmr.1600

  • 104.

    Sanada Y Oue N Mitani Y Yoshida K Nakayama H Yasui W . Down-regulation of the claudin-18 gene, identified through serial analysis of gene expression data analysis, in gastric cancer with an intestinal phenotype. J Pathol. (2006) 208:63342. 10.1002/path.1922

  • 105.

    Wong V . Phosphorylation of occludin correlates with occludin localization and function at the tight junction. Am J Physiol Cell Physiol. (1997) 273:C185967. 10.1152/ajpcell.1997.273.6.c1859

  • 106.

    Umeda K Ikenouchi J Katahira-Tayama S Furuse K Sasaki H Nakayama M et al . ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation. Cell. (2006) 126:74154. 10.1016/j.cell.2006.06.043

  • 107.

    González-Mariscal L Quirós M Díaz-Coránguez M . ZO proteins and redox-dependent processes. Antioxidants Redox Signal. (2011) 15:123553. 10.1089/ars.2011.3913

  • 108.

    Jesaitis LA Goodenough DA . Molecular characterization and tissue distribution of ZO-2, a tight junction protein homologous to ZO-1 and the Drosophila discs-large tumor suppressor protein. J Cell Biol. (1994) 124:94961. 10.1083/jcb.124.6.949

  • 109.

    Fanning AS Jameson BJ Jesaitis LA Anderson JM . The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J Biol Chem. (1998) 273:2974553. 10.1074/jbc.273.45.29745

  • 110.

    Itoh M Morita K Tsukita S . Characterization of ZO-2 as a MAGUK family member associated with tight as well as adherens junctions with a binding affinity to occludin and α catenin. J Biol Chem. (1999) 274:59816. 10.1074/jbc.274.9.5981

  • 111.

    Fanning AS Ma TY Anderson JM . Isolation and functional characterization of the actin binding region in the tight junction protein ZO-1. FASEB J. (2002) 16:18357. 10.1096/fj.02-0121fje

  • 112.

    Mandell KJ Parkos CA . The JAM family of proteins. Adv Drug Deliv Rev. (2005) 57:85767. 10.1016/j.addr.2005.01.005

  • 113.

    Ebnet K . Junctional adhesion molecules (JAMs): cell adhesion receptors with pleiotropic functions in cell physiology and development. Physiol Rev. (2017) 97:152954. 10.1152/physrev.00004.2017

  • 114.

    Van Itallie CM Anderson JM . Architecture of tight junctions and principles of molecular composition. Semin Cell Dev Biol. (2014) 36:15765. 10.1016/j.semcdb.2014.08.011

  • 115.

    Laukoetter MG Nava P Lee WY Severson EA Capaldo CT Babbin BA et al . JAM-A regulates permeability and inflammation in the intestine in vivo. J Exp Med. (2007) 204:306776. 10.1084/jem.20071416

  • 116.

    Severson EA Lee WY Capaldo CT Nusrat A Parkos CA . Junctional adhesion molecule a interacts with afadin and PDZ-GEF2 to activate raplA, regulate j31 integrin levels, and enhance cell migration. Mol Biol Cell. (2009) 20:191625. 10.1091/mbc.E08-10-1014

  • 117.

    Nava P Capaldo CT Koch S Kolegraff K Rankin CR Farkas AE et al . JAM-A regulates epithelial proliferation through Akt/β-catenin signalling. EMBO Rep. (2011) 12:31420. 10.1038/embor.2011.16

  • 118.

    Monteiro AC Sumagin R Rankin CR Leoni G Mina MJ Reiter DM et al . JAM-A associates with ZO-2, afadin, and PDZ-GEF1 to activate Rap2c and regulate epithelial barrier function. Mol Biol Cell. (2013) 24:284960. 10.1091/mbc.E13-06-0298

  • 119.

    Hollander D Vadheim CM Brettholz E Petersen GM Delahunty T Rotter JI . Increased intestinal permeability in patients with Crohn's disease and their relatives: a possible etiologic factor. Ann Intern Med. (1986) 105:8835. 10.7326/0003-4819-105-6-883

  • 120.

    Martínez C Vicario M Ramos L Lobo B Mosquera JL Alonso C et al . The jejunum of diarrhea-predominant irritable bowel syndrome shows molecular alterations in the tight junction signaling pathway that are associated with mucosal pathobiology and clinical manifestations. Am J Gastroenterol. (2012) 107:73646. 10.1038/ajg.2011.472

  • 121.

    Wilcz-Villega E Mcclean S O'Sullivan M . Reduced E-cadherin expression is associated with abdominal pain and symptom duration in a study of alternating and diarrhea predominant IBS. Neurogastroenterol Motil. (2014) 26:31625. 10.1111/nmo.12262

  • 122.

    Drago S El Asmar R Di Pierro M Clemente MG Tripathi A Sapone A et al . Gliadin, zonulin and gut permeability: effects on celiac and non-celiac intestinal mucosa and intestinal cell lines. Scand J Gastroenterol. (2006) 41:40819. 10.1080/00365520500235334

  • 123.

    Vetrano S Rescigno M Rosaria Cera M Correale C Rumio C Doni A et al . Unique role of junctional adhesion molecule-a in maintaining mucosal homeostasis in inflammatory Bowel disease. Gastroenterology. (2008) 135:17384. 10.1053/j.gastro.2008.04.002

  • 124.

    Wilcz-Villega EM McClean S O'Sullivan MA . Mast cell tryptase reduces junctional adhesion molecule-A (JAM-A) expression in intestinal epithelial cells: implications for the mechanisms of barrier dysfunction in irritable bowel syndrome. Am J Gastroenterol. (2013) 108:114051. 10.1038/ajg.2013.92

  • 125.

    Cordenonsi M D'Atri F Hammar E Parry DAD Kendrick-Jones J Shore D et al . Cingulin contains globular and coiled-coil domains and interacts with ZO-1, ZO-2, ZO-3, and myosin. J Cell Biol. (1999) 147:156981. 10.1083/jcb.147.7.1569

  • 126.

    Citi S Paschoud S Pulimeno P Timolati F De Robertis F Jond L et al . The tight junction protein cingulin regulates gene expression and rhoA signaling. Ann N Y Acad Sci. (2009) 1165:8898. 10.1111/j.1749-6632.2009.04053.x

  • 127.

    Suarez C Kovar DR . Internetwork competition for monomers governs actin cytoskeleton organization. Nat Rev Mol Cell Biol. (2016) 17:799810. 10.1038/nrm.2016.106

  • 128.

    Kim S Coulombe PA . Emerging role for the cytoskeleton as an organizer and regulator of translation. Nat Rev Mol Cell Biol. (2010) 11:7581. 10.1038/nrm2818

  • 129.

    Al-Sadi RM Ma TY . IL-1β Causes an Increase in Intestinal Epithelial Tight Junction Permeability. J Immunol. (2007) 178:46419. 10.4049/jimmunol.178.7.4641

  • 130.

    Schwayer C Shamipour S Pranjic-Ferscha K Schauer A Balda M Tada M et al . Mechanosensation of tight junctions depends on ZO-1 phase separation and flow. Cell. (2019) 179:93752.e18. 10.1016/j.cell.2019.10.006

  • 131.

    Holthöfer B Windoffer R Troyanovsky S Leube RE . Structure and function of desmosomes. Int Rev Cytol. (2007) 264:65163. 10.1016/S0074-7696(07)64003-0

  • 132.

    Hartsock A Nelson WJ . Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta Biomembr. (2008) 1778:6609. 10.1016/j.bbamem.2007.07.012

  • 133.

    Shapiro L Weis WI . Structure and biochemistry of cadherins and catenins. Cold Spring Harb Perspect Biol. (2009) 1:a003053. 10.1101/cshperspect.a003053

  • 134.

    Ivanov AI Naydenov NG . Dynamics and regulation of epithelial adherens junctions. Recent discoveries and controversies. Int Rev Cell Mol Biol. (2013) 303:2799. 10.1016/B978-0-12-407697-6.00002-7

  • 135.

    Takeichi M . Dynamic contacts: rearranging adherens junctions to drive epithelial remodelling. Nat Rev Mol Cell Biol. (2014) 15:397410. 10.1038/nrm3802

  • 136.

    Nekrasova OE Amargo EV Smith WO Chen J Kreitzer GE Green KJ . Desmosomal cadherins utilize distinct kinesins for assembly into desmosomes. J Cell Biol. (2011) 195:1185203. 10.1083/jcb.201106057

  • 137.

    Hatzfeld M Keil R Magin TM . Desmosomes and intermediate filaments: their consequences for tissue mechanics. Cold Spring Harb Perspect Biol. (2017) 9:a029157. 10.1101/cshperspect.a029157

  • 138.

    Tripathi A Lammers KM Goldblum S Shea-Donohue T Netzel-Arnett S Buzza MS et al . Identification of human zonulin, a physiological modulator of tight junctions, as prehaptoglobin-2. Proc Natl Acad Sci USA. (2009) 106:16799804. 10.1073/pnas.0906773106

  • 139.

    Lammers KM Lu R Brownley J Lu B Gerard C Thomas K et al . Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3. Gastroenterology. (2008) 135:194204.e3. 10.1053/j.gastro.2008.03.023

  • 140.

    Sapone A De Magistris L Pietzak M Clemente MG Tripathi A Cucca F et al . Zonulin upregulation is associated with increased gut permeability in subjects with type 1 diabetes and their relatives. Diabetes. (2006) 55:14439. 10.2337/db05-1593

  • 141.

    Barbaro MR Cremon C Wrona D Fuschi D Marasco G Stanghellini V et al . Non-celiac gluten sensitivity in the context of functional gastrointestinal disorders. Nutrients. (2020) 12:121. 10.3390/nu12123735

  • 142.

    Fasano A . Zonulin measurement conundrum: add confusion to confusion does not lead to clarity. Gut. (2020) 70:20078. 10.1136/gutjnl-2020-323367

  • 143.

    Misra A . Challenges in delivery of therapeutic genomics and proteomics.Amsterdam: Elsevier Inc. (2011). 10.1016/C2010-0-65663-X

  • 144.

    Sugano K Kansy M Artursson P Avdeef A Bendels S Di L et al . Coexistence of passive and carrier-mediated processes in drug transport. Nat Rev Drug Discov. (2010) 9:597614. 10.1038/nrd3187

  • 145.

    Wang Y DeMazumder D Hill JA . Ionic fluxes and genesis of the cardiac action potential. Muscle. (2012) 1:6785. 10.1016/B978-0-12-381510-1.00007-7

  • 146.

    Horisberger JD Chraïbi A . Epithelial sodium channel: a ligand-gated channel?Nephron Physiol. (2004) 96:3741. 10.1159/000076406

  • 147.

    Mukherjee B Satapathy BS Bhattacharya S Chakraborty R Mishra VP . Chapter 19 - Pharmacokinetic and pharmacodynamic modulations of therapeutically active constituents from orally administered nanocarriers along with a glimpse of their advantages and limitations. In: Grumezescu AM, editor. Nano- and Microscale Drug Delivery Systems. Elsevier. (2017). p. 35775. 10.1016/B978-0-323-52727-9.00019-4

  • 148.

    Goldstein JL Anderson RGW Brown MS . Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature. (1979) 279:67985. 10.1038/279679a0

  • 149.

    Garcia-Castillo MD Chinnapen DJF Lencer WI . Membrane transport across polarized epithelia. Cold Spring Harb Perspect Biol. (2017) 9:a027912. 10.1101/cshperspect.a027912

  • 150.

    Sandvig K Kavaliauskiene S Skotland T . Clathrin-independent endocytosis: an increasing degree of complexity. Histochem Cell Biol. (2018) 150:10718. 10.1007/s00418-018-1678-5

  • 151.

    Tuma PL Hubbard AL . Transcytosis: crossing cellular barriers. Physiol Rev. (2003) 83:871932. 10.1152/physrev.00001.2003

  • 152.

    Mestecky J Russell MW Elson CO . Intestinal IgA: novel views on its function in the defence of the largest mucosal surface. Gut. (1999) 44:25. 10.1136/gut.44.1.2

  • 153.

    Kadaoui KA Corthésy B . Secretory IgA mediates bacterial translocation to dendritic cells in mouse Peyer's patches with restriction to mucosal compartment. J Immunol. (2007) 179:77517. 10.4049/jimmunol.179.11.7751

  • 154.

    Boullier S Tanguy M Kadaoui KA Caubet C Sansonetti P Corthésy B et al . Secretory IgA-mediated neutralization of Shigella flexneri prevents intestinal tissue destruction by down-regulating inflammatory circuits. J Immunol. (2009) 183:587985. 10.4049/jimmunol.0901838

  • 155.

    Rey J Garin N Spertini F Corthésy B . Targeting of secretory IgA to Peyer's patch dendritic and T cells after transport by intestinal M cells. J Immunol. (2004) 172:302633. 10.4049/jimmunol.172.5.3026

  • 156.

    Matysiak-Budnik T Moura IC Arcos-Fajardo M Lebreton C Ménard S Candalh C et al . Secretory IgA mediates retrotranscytosis of intact gliadin peptides via the transferrin receptor in celiac disease. J Exp Med. (2008) 205:14354. 10.1084/jem.20071204

  • 157.

    Bevilacqua C Montagnac G Benmerah A Candalh C Brousse N Cerf-Bensussan N et al . Food allergens are protected from degradation during CD23-mediated transepithelial transport. Int Arch Allergy Immunol. (2004) 205:14354. 10.1159/000080653

  • 158.

    Kaiserlian D Lachaux A Grosjean I Graber P Bonnefoy JY . Intestinal epithelial cells express the CD23/FcεRII molecule: enhanced expression in enteropathies. Immunology. (1993) 80:905.

  • 159.

    Montagnac G Yu LCH Bevilacqua C Heyman M Conrad DH Perdue MH et al . Differential role for CD23 splice forms in apical to basolateral transcytosis of IgE/allergen complexes. Traffic. (2005) 6:23042. 10.1111/j.1600-0854.2005.00262.x

  • 160.

    Montagnac G Mollà-Herman A Bouchet J Yu LCH Conrad DH Perdue MH et al . Intracellular trafficking of CD23: differential regulation in humans and mice by both extracellular and intracellular exons. J Immunol. (2005) 174:556272. 10.4049/jimmunol.174.9.5562

  • 161.

    Neal MD Leaphart C Levy R Prince J Billiar TR Watkins S et al . Enterocyte TLR4 Mediates Phagocytosis and Translocation of Bacteria Across the Intestinal Barrier. J Immunol. (2006) 176:30709. 10.4049/jimmunol.176.5.3070

  • 162.

    Conner SD Schmid SL . Regulated portals of entry into the cell. Nature. (2003) 422:3744. 10.1038/nature01451

  • 163.

    Günther J Seyfert HM . The first line of defence: insights into mechanisms and relevance of phagocytosis in epithelial cells. Semin Immunopathol. (2018) 40:55565. 10.1007/s00281-018-0701-1

  • 164.

    Hommelgaard AM Roepstorff K Vilhardt F Torgersen ML Sandvig K van Deurs B . Caveolae: stable membrane domains with a potential for internalization. Traffic. (2005) 6:7204. 10.1111/j.1600-0854.2005.00314.x

  • 165.

    Maloy KJ Powrie F . Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature. (2011) 474:298306. 10.1038/nature10208

  • 166.

    Khor B Gardet A Xavier RJ . Genetics and pathogenesis of inflammatory bowel disease. Nature. (2011) 474:30717. 10.1038/nature10209

  • 167.

    Suzuki T . Regulation of intestinal epithelial permeability by tight junctions. Cell Mol Life Sci. (2013) 70:63159. 10.1007/s00018-012-1070-x

  • 168.

    Berkes J Viswanathan VK Savkovic SD Hecht G . Intestinal epithelial responses to enteric pathogens: effects on the tight junction barrier, ion transport, and inflammation. Gut. (2003) 52:43951. 10.1136/gut.52.3.439

  • 169.

    Bäckhed F Ley RE Sonnenburg JL Peterson DA Gordon JI . Host-bacterial mutualism in the human intestine. Science. (2005) 307:191520. 10.1126/science.1104816

  • 170.

    Hooper L V. Littman DR Macpherson AJ . Interactions between the microbiota and the immune system. Science. (2012) 336:126873. 10.1126/science.1223490

  • 171.

    Kayama H Okumura R Takeda K . Interaction between the microbiota, epithelia, and immune cells in the intestine. Annu Rev Immunol. (2020) 38:2348. 10.1146/annurev-immunol-070119-115104

  • 172.

    Sonnenburg ED Smits SA Tikhonov M Higginbottom SK Wingreen NS Sonnenburg JL . Diet-induced extinctions in the gut microbiota compound over generations. Nature. (2016) 529:2125. 10.1038/nature16504

  • 173.

    LeBlanc JG Milani C de Giori GS Sesma F van Sinderen D Ventura M . Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol. (2013) 24:1608. 10.1016/j.copbio.2012.08.005

  • 174.

    Baümler AJ Sperandio V . Interactions between the microbiota and pathogenic bacteria in the gut. Nature. (2016) 535:8593. 10.1038/nature18849

  • 175.

    Buffie CG Pamer EG . Microbiota-mediated colonization resistance against intestinal pathogens. Nat Rev Immunol. (2013) 13:790801. 10.1038/nri3535

  • 176.

    Gensollen T Iyer SS Kasper DL Blumberg RS . How colonization by microbiota in early life shapes the immune system. Science. (2016) 352:53944. 10.1126/science.aad9378

  • 177.

    Thaiss CA Zmora N Levy M Elinav E . The microbiome and innate immunity. Nature. (2016) 535:6574. 10.1038/nature18847

  • 178.

    Stecher B Hardt WD . Mechanisms controlling pathogen colonization of the gut. Curr Opin Microbiol. (2011) 14:8291. 10.1016/j.mib.2010.10.003

  • 179.

    Keeney KM Finlay BB . Enteric pathogen exploitation of the microbiota-generated nutrient environment of the gut. Curr Opin Microbiol. (2011) 14:928. 10.1016/j.mib.2010.12.012

  • 180.

    Litvak Y Byndloss MX Bäumler AJ . Colonocyte metabolism shapes the gut microbiota. Science. (2018) 362:eaat9076. 10.1126/science.aat9076

  • 181.

    van Thiel IAM de Jonge WJ Chiu IM van den Wijngaard RM . Microbiota-neuroimmune cross talk in stress-induced visceral hypersensitivity of the bowel. Am J Physiol Gastrointest Liver Physiol. (2020) 318:G103441. 10.1152/ajpgi.00196.2019

  • 182.

    Chowdhury SR King DE Willing BP Band MR Beever JE Lane AB et al . Transcriptome profiling of the small intestinal epithelium in germfree versus conventional piglets. BMC Genomics. (2007) 8:215. 10.1186/1471-2164-8-215

  • 183.

    Burger-van Paassen N Vincent A Puiman PJ van der Sluis M Bouma J Boehm G et al . The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: implications for epithelial protection. Biochem J. (2009) 420:2119. 10.1042/BJ20082222

  • 184.

    Kim MH Kang SG Park JH Yanagisawa M Kim CH . Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology. (2013) 145:396406.e1-10. 10.1053/j.gastro.2013.04.056

  • 185.

    Singh N Gurav A Sivaprakasam S Brady E Padia R Shi H et al . Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity. (2014) 40:12839. 10.1016/j.immuni.2013.12.007

  • 186.

    Ghosh S Whitley CS Haribabu B Jala VR . Regulation of intestinal barrier function by microbial. Cell Mol Gastroenterol Hepatol. (2021) 11:146382. 10.1016/j.jcmgh.2021.02.007

  • 187.

    Abreu MT . Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat Rev Immunol. (2010) 10:13143. 10.1038/nri2707

  • 188.

    Burgueño JF Abreu MT . Epithelial Toll-like receptors and their role in gut homeostasis and disease. Nat Rev Gastroenterol Hepatol. (2020) 17:26378. 10.1038/s41575-019-0261-4

  • 189.

    Allam-Ndoul B Castonguay-Paradis S Veilleux A . Gut microbiota and intestinal trans-epithelial permeability. Int J Mol Sci. (2020) 21:114. 10.3390/ijms21176402

  • 190.

    Hayes CL Dong J Galipeau HJ Jury J McCarville J Huang X et al . Commensal microbiota induces colonic barrier structure and functions that contribute to homeostasis. Sci Rep. (2018) 8:14184. 10.1038/s41598-018-32366-6

  • 191.

    Hooper L V. Wong MH Thelin A Hansson L Falk PG Gordon JI . Molecular analysis of commensal host-microbial relationships in the intestine. Science. (2001) 291:8814. 10.1126/science.291.5505.881

  • 192.

    Ukena SN Singh A Dringenberg U Engelhardt R Seidler U Hansen W et al . Probiotic Escherichia coli Nissle 1917 inhibits leaky gut by enhancing mucosal integrity. PLoS ONE. (2007) 2:e1308. 10.1371/journal.pone.0001308

  • 193.

    Barbaro MR Fuschi D Cremon C Carapelle M Dino P Marcellini MM et al . Escherichia coli Nissle 1917 restores epithelial permeability alterations induced by irritable bowel syndrome mediators. Neurogastroenterol Motil. (2018) 30:e13388. 10.1111/nmo.13388

  • 194.

    Johnson-Henry KC Donato KA Shen-Tu G Gordanpour M Sherman PM . Lactobacillus rhamnosus strain GG prevents enterohemorrhagic Escherichia coli O157:H7-induced changes in epithelial barrier function. Infect Immun. (2008) 76:13408. 10.1128/IAI.00778-07

  • 195.

    Yu Q Yuan L Deng J Yang Q . Lactobacillus protects the integrity of intestinal epithelial barrier damaged by pathogenic bacteria. Front Cell Infect Microbiol. (2015) 5:26. 10.3389/fcimb.2015.00026

  • 196.

    Zareie M Riff J Donato K McKay DM Perdue MH Soderholm JD et al . Novel effects of the prototype translocating Escherichia coli, strain C25 on intestinal epithelial structure and barrier function. Cell Microbiol. (2005) 7:178297. 10.1111/j.1462-5822.2005.00595.x

  • 197.

    Barbara G Feinle-Bisset C Ghoshal UC Santos J Vanner SJ Vergnolle N et al . The intestinal microenvironment and functional gastrointestinal disorders. Gastroenterology. (2016) 150:130518.e8. 10.1053/j.gastro.2016.02.028

  • 198.

    Lee M Chang EB . Inflammatory Bowel Diseases (IBD) and the microbiome—searching the crime scene for clues. Gastroenterology. (2021) 160:52437. 10.1053/j.gastro.2020.09.056

  • 199.

    Machiels K Joossens M Sabino J De Preter V Arijs I Eeckhaut V et al . A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut. (2014) 63:127583. 10.1136/gutjnl-2013-304833

  • 200.

    Zhou L Zhang M Wang Y Dorfman RG Liu H Yu T et al . Faecalibacterium prausnitzii produces butyrate to maintain Th17/treg balance and to ameliorate colorectal colitis by inhibiting histone deacetylase 1. Inflamm Bowel Dis. (2018) 24:192640. 10.1093/ibd/izy182

  • 201.

    Cremon C Guglielmetti S Gargari G Taverniti V Castellazzi AM Valsecchi C et al . Effect of Lactobacillus paracasei CNCM I-1572 on symptoms, gut microbiota, short chain fatty acids, and immune activation in patients with irritable bowel syndrome: a pilot randomized clinical trial. United Eur Gastroenterol J. (2018) 6:60413. 10.1177/2050640617736478

  • 202.

    Friedrich M Pohin M Powrie F . Cytokine networks in the pathophysiology of inflammatory Bowel disease. Immunity. (2019) 50:9921006. 10.1016/j.immuni.2019.03.017

  • 203.

    Coccia M Harrison OJ Schiering C Asquith MJ Becher B Powrie F et al . IL-1β mediates chronic intestinal inflammation by promoting the accumulation of IL-17A secreting innate lymphoid cells and CD4 + Th17 cells. J Exp Med. (2012) 209:1595609. 10.1084/jem.20111453

  • 204.

    Lee YS Yang H Yang JY Kim Y Lee SH Kim JH et al . Interleukin-1 (IL-1) signaling in intestinal stromal cells controls KC/ CXCL1 secretion, which correlates with recruitment of IL-22- secreting neutrophils at early stages of Citrobacter rodentium infection. Infect Immun. (2015) 83:325767. 10.1128/IAI.00670-15

  • 205.

    Song A Zhu L Gorantla G Berdysz O Amici SA Guerau-De-Arellano M et al . Salient type 1 interleukin 1 receptor expression in peripheral non-immune cells. Sci Rep. (2018) 8:723. 10.1038/s41598-018-19248-7

  • 206.

    Cox CB Storm EE Kapoor VN Chavarria-Smith J Lin DL Wang L et al . IL-1R1-dependent signaling coordinates epithelial regeneration in response to intestinal damage. Sci Immunol. (2021) 6:eabe8856. 10.1126/sciimmunol.abe8856

  • 207.

    Madara JL Stafford J . Interferon-γ directly affects barrier function of cultured intestinal epithelial monolayers. J Clin Invest. (1989) 83:7247. 10.1172/JCI113938

  • 208.

    Adams RB Planchon SM Roche JK . IFN-gamma modulation of epithelial barrier function. Time course, reversibility, and site of cytokine binding. J Immunol. (1993) 150:235663.

  • 209.

    Schmitz H Fromm M Bentzel CJ Scholz P Detjen K Mankertz J et al . Tumor necrosis factor-alpha (TNFalpha) regulates the epithelial barrier in the human intestinal cell line HT-29/B6. J Cell Sci. (1999) 112(Pt 1):13746.

  • 210.

    Bruewer M Luegering A Kucharzik T Parkos CA Madara JL Hopkins AM et al . Proinflammatory cytokines disrupt epithelial barrier function by apoptosis-independent mechanisms. J Immunol. (2003) 171:616472. 10.4049/jimmunol.171.11.6164

  • 211.

    Barbaro MR Di Sabatino A Cremon C Giuffrida P Fiorentino M Altimari A et al . Interferon-γ is increased in the gut of patients with irritable bowel syndrome and modulates serotonin metabolism. Am J Physiol Gastrointest Liver Physiol. (2016) 310:G43947. 10.1152/ajpgi.00368.2015

  • 212.

    Zolotarevsky Y Hecht G Koutsouris A Gonzalez DE Quan C Tom J et al . A membrane-permeant peptide that inhibits MLC kinase restores barrier function in in vitro models of intestinal disease. Gastroenterology. (2002) 123:16372. 10.1053/gast.2002.34235

  • 213.

    Bhat AA Uppada S Achkar IW Hashem S Yadav SK Shanmugakonar M et al . Tight junction proteins and signaling pathways in cancer and inflammation: a functional crosstalk. Front Physiol. (2019) 10:1942. 10.3389/fphys.2018.01942

  • 214.

    Pham CTN . Neutrophil serine proteases: specific regulators of inflammation. Nat Rev Immunol. (2006) 6:54150. 10.1038/nri1841

  • 215.

    Dale C Vergnolle N . Protease signaling to G protein-coupled receptors: implications for inflammation and pain. J Recept Signal Transduct. (2008) 28:2937. 10.1080/10799890801941913

  • 216.

    Chin AC Lee WY Nusrat A Vergnolle N Parkos CA . Neutrophil-mediated activation of epithelial protease-activated receptors-1 and−2 regulates barrier function and transepithelial migration. J Immunol. (2008) 181:570210. 10.4049/jimmunol.181.8.5702

  • 217.

    Barbara G Stanghellini V De Giorgio R Corinaldesi R . Functional gastrointestinal disorders and mast cells: implications for therapy. Neurogastroenterol Motil. (2006) 18:617. 10.1111/j.1365-2982.2005.00685.x

  • 218.

    Bashashati M Moossavi S Cremon C Barbaro MR Moraveji S Talmon G et al . Colonic immune cells in irritable bowel syndrome: a systematic review and meta-analysis. Neurogastroenterol Motil. (2018) 30:10. 10.1111/nmo.13192

  • 219.

    Bashashati M Rezaei N Shafieyoun A Mckernan DP Chang L Öhman L Quigley EM et al . Cytokine imbalance in irritable bowel syndrome: a systematic review and meta-analysis. Neurogastroenterol Motil. (2014) 26:103648. 10.1111/nmo.12358

  • 220.

    Chang L Adeyemo M Karagiannidis I Videlock EJ Bowe C Shih W et al . Serum and colonic mucosal immune markers in irritable bowel syndrome. Am J Gastroenterol. (2012) 107:26272. 10.1038/ajg.2011.423

  • 221.

    McKernan DP Gaszner G Quigley EM Cryan JF Dinan TG . Altered peripheral toll-like receptor responses in the irritable bowel syndrome. Aliment Pharmacol Ther. (2011) 33:104552. 10.1111/j.1365-2036.2011.04624.x

  • 222.

    Darkoh C Comer L Zewdie G Harold S Snyder N DuPont HL . Chemotactic chemokines are important in the pathogenesis of irritable bowel syndrome. PLoS ONE. (2014) 9:e93144. 10.1371/journal.pone.0093144

  • 223.

    Wang F Graham WV Wang Y Witkowski ED Schwarz BT Turner JR . Interferon-γ and tumor necrosis factor-α synergize to induce intestinal epithelial barrier dysfunction by up-regulating myosin light chain kinase expression. Am J Pathol. (2005) 166:40919. 10.1016/S0002-9440(10)62264-X

  • 224.

    Hanning N Edwinson AL Ceuleers H Peters SA De Man JG Hassett LC et al . Intestinal barrier dysfunction in irritable bowel syndrome: a systematic review. Therap Adv Gastroenterol. (2021) 14:1756284821993586. 10.1177/1756284821993586

  • 225.

    Renga G Moretti S Oikonomou V Borghi M Zelante T Paolicelli G et al . IL-9 and mast cells are key players of Candida albicans commensalism and pathogenesis in the gut. Cell Rep. (2018) 23:176778. 10.1016/j.celrep.2018.04.034

  • 226.

    Gerlach K Hwang Y Nikolaev A Atreya R Dornhoff H Steiner S et al . T H 9 cells that express the transcription factor PU.1 drive T cell-mediated colitis via IL-9 receptor signaling in intestinal epithelial cells. Nat Immunol. (2014) 15:67686. 10.1038/ni.2920

  • 227.

    Gerlach K McKenzie AN Neurath MF Weigmann B . IL-9 regulates intestinal barrier function in experimental T cell-mediated colitis. Tissue Barriers. (2015) 3:e983777. 10.4161/21688370.2014.983777

  • 228.

    Piche T Barbara G Aubert P Des Varannes SB Dainese R Nano JL et al . Impaired Intestinal barrier integrity in the colon of patients with irritable bowel syndrome: involvement of soluble mediators. Gut. (2009) 58:196201. 10.1136/gut.2007.140806

  • 229.

    Barbara G Stanghellini V De Giorgio R Cremon C Cottrell GS Santini D et al . Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable Bowel syndrome. Gastroenterology. (2004) 126:693702. 10.1053/j.gastro.2003.11.055

  • 230.

    Barbara G Wang B Stanghellini V de Giorgio R Cremon C Di Nardo G et al . Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritable Bowel syndrome. Gastroenterology. (2007) 132:2637. 10.1053/j.gastro.2006.11.039

  • 231.

    Gecse K Róka R Ferrier L Leveque M Eutamene H Cartier C et al . Increased faecal serine protease activity in diarrhoeic IBS patients: a colonic lumenal factor impairing colonic permeability and sensitivity. Gut. (2008) 57:5918. 10.1136/gut.2007.140210

  • 232.

    Pontarollo G Mann A Brandão I Malinarich F Schöpf M Reinhardt C . Protease-activated receptor signaling in intestinal permeability regulation. FEBS J. (2020) 287:64558. 10.1111/febs.15055

  • 233.

    Barbara G Grover M Bercik P Corsetti M Ghoshal UC Ohman L et al . Rome foundation working team report on post-infection irritable Bowel syndrome. Gastroenterology. (2019) 156:4658.e7. 10.1053/j.gastro.2018.07.011

  • 234.

    Edogawa S Edwinson AL Peters SA Chikkamenahalli LL Sundt W Graves S Breen-Lyles M Johnson S Dyer R et al . Serine proteases as luminal mediators of intestinal barrier dysfunction and symptom severity in IBS. Gut. (2020) 69:6273. 10.1136/gutjnl-2018-317416

  • 235.

    Cenac N Bautzova T Le Faouder P Veldhuis NA Poole DP Rolland C et al . Quantification and potential functions of endogenous agonists of transient receptor potential channels in patients with irritable bowel syndrome. Gastroenterology. (2015) 149:4334.e7. 10.1053/j.gastro.2015.04.011

  • 236.

    Bautzova T Hockley JRF Perez-Berezo T Pujo J Tranter MM Desormeaux C et al . 5-oxoETE triggers nociception in constipation-predominant irritable bowel syndrome through MAS-related G protein–coupled receptor D. Sci Signal. (2018) 11:eaal2171. 10.1126/scisignal.aal2171

  • 237.

    Trifan A Burta O Tiuca N Petrisor DC Lenghel A Santos J . Efficacy and safety of Gelsectan for diarrhoea-predominant irritable bowel syndrome: a randomised, crossover clinical trial. United Eur Gastroenterol J. (2019) 7:1093101. 10.1177/2050640619862721

  • 238.

    Rubio-Tapia A Murray JA . Updated guidelines by the European Society for the Study of Coeliac Disease. United Eur Gastroenterol J. (2019) 7:5812. 10.1177/2050640619849370

  • 239.

    Schuppan D Junker Y Barisani D . Celiac disease: from pathogenesis to novel therapies. Gastroenterology. (2009) 137:191233. 10.1053/j.gastro.2009.09.008

  • 240.

    Harris LA Park JY Voltaggio L Lam-Himlin D . Celiac disease: clinical, endoscopic, and histopathologic review. Gastrointest Endosc. (2012) 76:62540. 10.1016/j.gie.2012.04.473

  • 241.

    Greco L Romino R Coto I Di Cosmo N Percopo S Maglio M et al . The first large population based twin study of coeliac disease. Gut. (2002) 50:6248. 10.1136/gut.50.5.624

  • 242.

    Caminero A McCarville JL Galipeau HJ Deraison C Bernier SP Constante M et al . Duodenal bacterial proteolytic activity determines sensitivity to dietary antigen through protease-activated receptor-2. Nat Commun. (2019) 10:114. 10.1038/s41467-019-09037-9

  • 243.

    Di Biase AR Marasco G Ravaioli F Dajti E Colecchia L Righi B et al . Gut microbiota signatures and clinical manifestations in celiac disease children at onset: a pilot study. J Gastroenterol Hepatol. (2020) 36:44654. 10.1111/jgh.15183

  • 244.

    Marasco G Cirota GG Rossini B Lungaro L Di Biase AR Colecchia A et al . Probiotics, prebiotics and other dietary supplements for gut microbiota modulation in celiac disease patients. Nutrients. (2020) 12:2674. 10.3390/nu12092674

  • 245.

    Stene LC Honeyman MC Hoffenberg EJ Haas JE Sokol RJ Emery L et al . Rotavirus infection frequency and risk of celiac disease autoimmunity in early childhood: a longitudinal study. Am J Gastroenterol. (2006) 101:233340. 10.1111/j.1572-0241.2006.00741.x

  • 246.

    Zafeiropoulou K Nichols B Mackinder M Biskou O Rizou E Karanikolou A et al . Alterations in intestinal microbiota of children with celiac disease at time of diagnosis and on a gluten-free diet. Gastroenterology. (2020) 159:203951.e20. 10.1053/j.gastro.2020.08.007

  • 247.

    Marasco G Di Biase AR Colecchia A . Microbial signatures in celiac disease: still far from a final answer. Gastroenterology. (2020) 161:3589. 10.1053/j.gastro.2020.10.059

  • 248.

    Marasco G Di Biase AR Schiumerini R Eusebi LH Iughetti L Ravaioli F et al . Gut microbiota and celiac disease. Dig Dis Sci. (2016) 61:146172. 10.1007/s10620-015-4020-2

  • 249.

    Jabri B Abadie V . IL-15 functions as a danger signal to regulate tissue-resident T cells and tissue destruction. Nat Rev Immunol. (2015) 15:77183. 10.1038/nri3919

  • 250.

    Catassi C Elli L Bonaz B Bouma G Carroccio A Castillejo G et al . Diagnosis of Non-Celiac Gluten Sensitivity (NCGS): the Salerno experts' criteria. Nutrients. (2015) 7:496677. 10.3390/nu7064966

  • 251.

    Giovannini C Sanchez M Straface E Scazzocchio B Silano M De Vincenzi M . Induction of apoptosis in Caco-2 cells by wheat gliadin peptides. Toxicology. (2000) 145:6371. 10.1016/S0300-483X(99)00223-1

  • 252.

    Barone MV Gimigliano A Castoria G Paolella G Maurano F Paparo F et al . Growth factor-like activity of gliadin, an alimentary protein: implications for coeliac disease. Gut. (2007) 56:4808. 10.1136/gut.2005.086637

  • 253.

    Heyman M Abed J Lebreton C Cerf-Bensussan N . Intestinal permeability in coeliac disease: insight into mechanisms and relevance to pathogenesis. Gut. (2012) 61:135564. 10.1136/gutjnl-2011-300327

  • 254.

    Clemente MG De Virgiliis S Kang JS Macatagney R Musu MP Di Pierro MR et al . Early effects of gliadin on enterocyte intracellular signalling involved in intestinal barrier function. Gut. (2003) 52:21823. 10.1136/gut.52.2.218

  • 255.

    Alaedini A Latov N . Transglutaminase-independent binding of gliadin to intestinal brush border membrane and GM1 ganglioside. J Neuroimmunol. (2006) 177:16772. 10.1016/j.jneuroim.2006.04.022

  • 256.

    Bondar C Araya RE Guzman L Rua EC Chopita N Chirdo FG . Role of CXCR3/CXCL10 axis in immune cell recruitment into the small intestine in celiac disease. PLoS ONE. (2014) 9:e0089068. 10.1371/journal.pone.0089068

  • 257.

    Careddu P Chiumello G Vaccari A Bardare M Zilocchi A . Effects of gluten on intestinal absorption and permeability during remission of celiac disease. Boll Soc Ital Biol Sper. (1963) 1963:12358.

  • 258.

    Cobden I Dickinson RJ Rothwell J Axon ATR . Intestinal permeability assessed by excretion ratios of two molecules: results in coeliac disease. Br Med J. (1978) 2:1060. 10.1136/bmj.2.6144.1060

  • 259.

    Oberhuber G Vogelsang H . Gastrointestinal permeability in celiac disease [1]. Gastroenterology. (1998) 114:226. 10.1016/S0016-5085(98)70661-4

  • 260.

    Van Elburg RM Uil JJ Mulder CJJ Heymans HSA . Intestinal permeability in patients with coeliac disease and relatives of patients with coeliac disease. Gut. (1993) 34:3547. 10.1136/gut.34.3.354

  • 261.

    Schulzke JD Bentzel CJ Schulzke I Riecken EO Fromm M . Epithelial tight junction structure in the jejunum of children with acute and treated celiac sprue. Pediatr Res. (1998) 43:43541. 10.1203/00006450-199804000-00001

  • 262.

    Goswami P Das P Verma AK Prakash S Das TK Nag TC et al . Are alterations of tight junctions at molecular and ultrastructural level different in duodenal biopsies of patients with celiac disease and Crohn's disease?Virchows Arch. (2014) 465:52130. 10.1007/s00428-014-1651-1

  • 263.

    Ciccocioppo R Finamore A Ara C Di Sabatino A Mengheri E Corazza GR . Altered expression, localization, and phosphorylation of epithelial junctional proteins in celiac disease. Am J Clin Pathol. (2006) 125:50211. 10.1309/dtyr-a91g-8r0k-tm8m

  • 264.

    Montalto M Cuoco L Ricci R Maggiano N Vecchio FM Gasbarrini G . Immunohistochemical analysis of ZO-1 in the duodenal mucosa of patients with untreated and treated celiac disease. Digestion. (2002) 65:22733. 10.1159/000063817

  • 265.

    Perry I Tselepis C Hoyland J Iqbal TH Scott D Sanders A et al . Reduced cadherin/catenin complex expression in celiac disease can be reproduced in vitro by cytokine stimulation. Lab Invest. (1999) 79:148999.

  • 266.

    Schumann M Siegmund B Schulzke JD Fromm M . Celiac disease: role of the epithelial barrier. CMGH. (2017) 3:15062. 10.1016/j.jcmgh.2016.12.006

  • 267.

    Mishra A Prakash S Sreenivas V Das TK Ahuja V Gupta SD et al . Structural and functional changes in the tight junctions of asymptomatic and serology-negative first-degree relatives of patients with celiac disease. J Clin Gastroenterol. (2016) 50:55160. 10.1097/MCG.0000000000000436

  • 268.

    Hunt KA Zhernakova A Turner G Heap GAR Franke L Bruinenberg M et al . Newly identified genetic risk variants for celiac disease related to the immune response. Nat Genet. (2008) 40:395402. 10.1038/ng.102

  • 269.

    Wapenaar MC Monsuur AJ Van Bodegraven AA Weersma RK Bevova MR Linskens RK et al . Associations with tight junction genes PARD3 and MAGI2 in Dutch patients point to a common barrier defect for coeliac disease and ulcerative colitis. Gut. (2008) 57:4637. 10.1136/gut.2007.133132

  • 270.

    Monsuur AJ Bakker PIWD Alizadeh BZ Zhernakova A Bevova MR Strengman E et al . Myosin IXB variant increases the risk of celiac disease and points toward a primary intestinal barrier defect. Nat Genet. (2005) 37:13414. 10.1038/ng1680

  • 271.

    Wolters VM Alizadeh BZ Weijerman ME Zhernakova A van Hoogstraten IMW Mearin ML et al . Intestinal barrier gene variants may not explain the increased levels of antigliadin antibodies, suggesting other mechanisms than altered permeability. Hum Immunol. (2010) 71:3926. 10.1016/j.humimm.2010.01.016

  • 272.

    Kumar V Gutierrez-Achury J Kanduri K Almeida R Hrdlickova B Zhernakova D V et al . Systematic annotation of celiac disease loci refines pathological pathways and suggests a genetic explanation for increased interferon-gamma levels. Hum Mol Genet. (2015) 24:397409. 10.1093/hmg/ddu453

  • 273.

    Almeida R Ricanõ-Ponce I Kumar V Deelen P Szperl A Trynka G et al . Fine mapping of the celiac disease-associated LPP locus reveals a potential functional variant. Hum Mol Genet. (2014) 23:24819. 10.1093/hmg/ddt619

  • 274.

    Ciccocioppo R Panelli S Bellocchi MCC Cangemi GC Frulloni L Capelli E et al . The transcriptomic analysis of circulating immune cells in a celiac family unveils further insights into disease pathogenesis. Front Med. (2018) 5:182. 10.3389/fmed.2018.00182

  • 275.

    Dolfini E Roncoroni L Elli L Fumagalli C Colombo R Ramponi S et al . Cytoskeleton reorganization and ultrastructural damage induced by gliadin in a three-dimensional in vitro model. World J Gastroenterol. (2005) 11:7597601. 10.3748/wjg.v11.i48.7597

  • 276.

    Strobel S Brydon WG Ferguson A . Cellobiose/mannitol sugar permeability test complements biopsy histopathology in clinical investigation of the jejunum. Gut. (1984) 25:12416. 10.1136/gut.25.11.1241

  • 277.

    Gass J Bethune MT Siegel M Spencer A Khosla C . Combination enzyme therapy for gastric digestion of dietary gluten in patients with celiac sprue. Gastroenterology. (2007) 133:47280. 10.1053/j.gastro.2007.05.028

  • 278.

    Pinier M Verdu EF Nasser-Eddine M David CS Vézina A Rivard N et al . Polymeric binders suppress gliadin-induced toxicity in the intestinal epithelium. Gastroenterology. (2009) 136:28898. 10.1053/j.gastro.2008.09.016

  • 279.

    Paterson BM Lammers KM Arrieta MC Fasano A Meddings JB . The safety, tolerance, pharmacokinetic and pharmacodynamic effects of single doses of AT-1001 in coeliac disease subjects: a proof of concept study. Aliment Pharmacol Ther. (2007) 26:75766. 10.1111/j.1365-2036.2007.03413.x

  • 280.

    Kelly CP Green PHR Murray JA Dimarino A Colatrella A Leffler DA et al . Larazotide acetate in patients with coeliac disease undergoing a gluten challenge: a randomised placebo-controlled study. Aliment Pharmacol Ther. (2013) 37:25262. 10.1111/apt.12147

  • 281.

    Leffler DA Kelly CP Abdallah HZ Colatrella AM Harris LA Leon F et al . A randomized, double-blind study of larazotide acetate to prevent the activation of celiac disease during gluten challenge. Am J Gastroenterol. (2012) 107:155462. 10.1038/ajg.2012.211

  • 282.

    Leffler DA Kelly CP Green PHR Fedorak RN Dimarino A Perrow W et al . Larazotide acetate for persistent symptoms of celiac disease despite a gluten-free diet: a randomized controlled trial. Gastroenterology. (2015) 148:13119.e6. 10.1053/j.gastro.2015.02.008

  • 283.

    Hujoel IA Murray JA . Refractory celiac disease. Curr Gastroenterol Rep. (2020) 22:18. 10.1007/s11894-020-0756-8

  • 284.

    Jauregi-Miguel A . The tight junction and the epithelial barrier in coeliac disease. Int Rev Cell Mol Biol. (2021) 358:10532. 10.1016/bs.ircmb.2020.09.010

  • 285.

    Pearson ADJ Eastham EJ Laker MF Craft AW Nelson R . Intestinal permeability in children with Crohn's disease and Coeliac disease. Br Med J. (1982) 285:2021. 10.1136/bmj.285.6334.20

  • 286.

    Ukabam SO Clamp JR Cooper BT . Abnormal small intestinal permeability to sugars in patients with Crohn's disease of the terminal ileum and colon. Digestion. (1983) 27:704. 10.1159/000198932

  • 287.

    Abraham C Cho JH . Mechanisms of inflammatory Bowel disease. N Engl J Med. (2009) 361:206678. 10.1056/NEJMra0804647

  • 288.

    Miner-Williams WM Moughan PJ . Intestinal barrier dysfunction: implications for chronic inflammatory conditions of the bowel. Nutr Res Rev. (2016) 29:4059. 10.1017/S0954422416000019

  • 289.

    Khan MW Kale AA Bere P Vajjala S Gounaris E Pakanati KC . Microbes, intestinal inflammation and probiotics. Expert Rev Gastroenterol Hepatol. (2012) 6:8194. 10.1586/egh.11.94

  • 290.

    Ingersoll SA Ayyadurai S Charania MA Laroui H Yan Y Merlin D . The role and pathophysiological relevance of membrane transporter pept1 in intestinal inflammation and inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol. (2012) 302:G48492. 10.1152/ajpgi.00477.2011

  • 291.

    Dalmasso G Nguyen HTT Charrier-Hisamuddin L Yan Y Laroui H Demoulin B. Merlin D . PepT1 mediates transport of the proinflammatory bacterial tripeptide L-Ala-γ-D-Glu-meso-DAP in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol. (2010) 299:68796. 10.1152/ajpgi.00527.2009

  • 292.

    Jappar D Hu Y Smith DE . Effect of dose escalation on the in vivo oral absorption and disposition of glycylsarcosine in wild-type and Pept1 knockout mice. Drug Metab Dispos. (2011) 39:22507. 10.1124/dmd.111.041087

  • 293.

    De Medina FS Daddaoua A Requena P Capitán-Cañadas F Zarzuelo A Dolores Suárez M et al . New insights into the immunological effects of food bioactive peptides in animal models of intestinal inflammation. Proc Nutr Soc. (2010) 69:45462. 10.1017/S0029665110001783

  • 294.

    Nässl AM Rubio-Aliaga I Sailer M Daniel H . The intestinal peptide transporter pept1 is involved in food intake regulation in mice fed a high-protein diet. PLoS ONE. (2011) 6:e0026407. 10.1371/journal.pone.0026407

  • 295.

    Cipriani S Mencarelli A Chini MG Distrutti E Renga B Bifulco G et al . The bile acid receptor GPBAR-1 (TGR5) modulates integrity of intestinal barrier and immune response to experimental colitis. PLoS ONE. (2011) 6:e0025637. 10.1371/journal.pone.0025637

  • 296.

    Chia-Hui Y . Microbiota dysbiosis and barrier dysfunction in inflammatory bowel disease: RSM Library Discovery Service. J Biomed Sci. (2018) 25:79. 10.1186/s12929-018-0483-8

  • 297.

    Gruber L Lichti P Rath E Haller D . Nutrigenomics and nutrigenetics in inflammatory bowel diseases. J Clin Gastroenterol. (2012) 46:73547. 10.1097/MCG.0b013e31825ca21a

  • 298.

    Ananthakrishnan AN Bernstein CN Iliopoulos D Macpherson A Neurath MF Ali RAR et al . Environmental triggers in IBD: a review of progress and evidence. Nat Rev Gastroenterol Hepatol. (2018) 15:3949. 10.1038/nrgastro.2017.136

  • 299.

    Ho SM Lewis JD Mayer EA Plevy SE Chuang E Rappaport SM et al . Challenges in IBD research: environmental triggers. Inflamm Bowel Dis. (2019) 25:S1323. 10.1093/ibd/izz076

  • 300.

    Mahid SS Minor KS Soto RE Hornung CA Galandiuk S . Smoking and inflammatory bowel disease: a meta-analysis. Mayo Clin Proc. (2006) 81:146271. 10.4065/81.11.1462

  • 301.

    Calkins BM . A meta-analysis of the role of smoking in inflammatory bowel disease. Dig Dis Sci. (1989) 34:184154. 10.1007/BF01536701

  • 302.

    Higuchi LM Khalili H Chan AT Richter JM Bousvaros A Fuchs CS . A prospective study of cigarette smoking and the risk of inflammatory bowel disease in women. Am J Gastroenterol. (2012) 107:1399406. 10.1038/ajg.2012.196

  • 303.

    Pedersen KM Çolak Y Vedel-Krogh S Kobylecki CJ Bojesen SE Nordestgaard BG . Risk of ulcerative colitis and Crohn's disease in smokers lacks causal evidence. Eur J Epidemiol. (2021) 10.1007/s10654-021-00763-3. 10.1007/s10654-021-00763-3

  • 304.

    Singh UP Singh NP Murphy EA Price RL Fayad R Nagarkatti M et al . Chemokine and cytokine levels in inflammatory bowel disease patients. Cytokine. (2016) 77:449. 10.1016/j.cyto.2015.10.008

  • 305.

    Ostaff MJ Stange EF Wehkamp J . Antimicrobial peptides and gut microbiota in homeostasis and pathology. EMBO Mol Med. (2013) 5:146583. 10.1002/emmm.201201773

  • 306.

    Salzman NH Hung K Haribhai D Chu H Karlsson-Sjöberg J Amir E et al . Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol. (2010) 11:7683. 10.1038/ni.1825

  • 307.

    Peyrin-Biroulet L Beisner J Wang G Nuding S Oommen ST Kelly D et al . Peroxisome proliferator-activated receptor gamma activation is required for maintenance of innate antimicrobial immunity in the colon. Proc Natl Acad Sci USA. (2010) 107:87727. 10.1073/PNAS.0905745107

  • 308.

    Wehkamp J Harder J Weichenthal M Mueller O Herrlinger KR Fellermann K et al . Inducible and constitutive beta-defensins are differentially expressed in Crohn's disease and ulcerative colitis. Inflamm Bowel Dis. (2003) 9:21523. 10.1097/00054725-200307000-00001

  • 309.

    Martini E Krug SM Siegmund B Neurath MF Becker C . Mend your fences: the epithelial barrier and its relationship with mucosal immunity in inflammatory bowel disease. Cmgh. (2017) 4:3346. 10.1016/j.jcmgh.2017.03.007

  • 310.

    Courth LF Ostaff MJ Mailänder-Sánchez D Malek NP Stange EF Wehkamp J . Crohn's disease-derived monocytes fail to induce Paneth cell defensins. Proc Natl Acad Sci USA. (2015) 112:140005. 10.1073/pnas.1510084112

  • 311.

    Wehkamp J Koslowski M Wang G Stange EF . Barrier dysfunction due to distinct defensin deficiencies in small intestinal and colonic Crohn's disease. Mucosal Immunol. (2008) 1:6774. 10.1038/mi.2008.48

  • 312.

    Paone P Cani PD . Mucus barrier, mucins and gut microbiota: the expected slimy partners?Gut. (2020) 69:223243. 10.1136/gutjnl-2020-322260

  • 313.

    Van Der Post S Jabbar KS Birchenough G Arike L Akhtar N Sjovall H et al . Structural weakening of the colonic mucus barrier is an early event in ulcerative colitis pathogenesis. Gut. (2019) 68:214251. 10.1136/gutjnl-2018-317571

  • 314.

    Johansson ME Ambort D Pelaseyed T Schütte A Gustafsson JK Ermund A et al . Composition and functional role of the mucus layers in the intestine. Cell Mol Life Sci. (2011) 68:363541. 10.1007/S00018-011-0822-3

  • 315.

    Cornick S Tawiah A Chadee K . Roles and regulation of the mucus barrier in the gut. Tissue Barriers. (2015) 3:e982426. 10.4161/21688370.2014.982426

  • 316.

    Vivinus-Nébot M Frin-Mathy G Bzioueche H Dainese R Bernard G Anty R et al . Functional bowel symptoms in quiescent inflammatory bowel diseases: role of epithelial barrier disruption and low-grade inflammation. Gut. (2014) 63:74452. 10.1136/gutjnl-2012-304066

  • 317.

    Hollander D Vadheim CM Brettholz E Peterson GM Delahunty T Rotter J . Increased intestinal permeability in patients with Crohn's disease and their relatives. Ann Intern Med. (1986) 105:8835.

  • 318.

    Arnott IDR Kingstone K Ghosh S . Abnormal intestinal permeability predicts relapse in inactive Crohn disease. Scand J Gastroenterol. (2000) 35:11639. 10.1080/003655200750056637

  • 319.

    Wyatt J Vogelsang H Hübl W Waldhoer T Lochs H . Intestinal permeability and the prediction of relapse in Crohn's disease. Lancet. (1993) 341:14379. 10.1016/0140-6736(93)90882-H

  • 320.

    Arrieta MC Bistritz L Meddings JB . Alterations in intestinal permeability. Gut. (2006) 55:151220. 10.1136/gut.2005.085373

  • 321.

    Madsen KL Malfair D Gray D Doyle JS Jewell LD Fedorak RN . Interleukin-10 gene-deficient mice develop a primary intestinal permeability defect in response to enteric microflora. Inflamm Bowel Dis. (1999) 5:26270. 10.1097/00054725-199911000-00004

  • 322.

    Reuter BK Pizarro TT . Mechanisms of tight junction dysregulation in the SAMP1YitFc model of Crohn's disease-like ileitis. Ann N Y Acad Sci. (2009) 1165:3017. 10.1111/j.1749-6632.2009.04035.x

  • 323.

    Su L Shen L Clayburgh DR Nalle SC Sullivan EA Jon B et al . Activation and contributes to development of experimental colitis. Gastroenterology. (2010) 136:55163. 10.1053/j.gastro.2008.10.081

  • 324.

    Blair SA Kane S V. Clayburgh DR Turner JR . Epithelial myosin light chain kinase expression and activity are upregulated in inflammatory bowel disease. Lab Investig. (2006) 86:191201. 10.1038/labinvest.3700373

  • 325.

    Swidsinski A Ladhoff A Pernthaler A Swidsinski S Loening Baucke V Ortner M et al . Mucosal flora in inflammatory bowel disease. Gastroenterology. (2002) 122:4454. 10.1053/gast.2002.30294

  • 326.

    Prasad S Mingrino R Kaukinen K Hayes KL Powell RM MacDonald TT et al . Inflammatory processes have differential effects on claudins 2, 3 and 4 in colonic epithelial cells. Lab Investig. (2005) 85:113962. 10.1038/labinvest.3700316

  • 327.

    Ménard S Cerf-Bensussan N Heyman M . Multiple facets of intestinal permeability and epithelial handling of dietary antigens. Mucosal Immunol. (2010) 3:24759. 10.1038/mi.2010.5

  • 328.

    Oshima T Laroux FS Coe LL Morise Z Kawachi S Bauer P et al . Interferon-γ and interleukin-10 reciprocally regulate endothelial junction integrity and barrier function. Microvasc Res. (2001) 61:13043. 10.1006/mvre.2000.2288

  • 329.

    Albert-Bayo M Paracuellos I González-Castro AM Rodríguez-Urrutia A Rodríguez-Lagunas MJ Alonso-Cotoner C et al . Intestinal mucosal mast cells: key modulators of barrier function and homeostasis. Cells. (2019) 8:135. 10.3390/cells8020135

  • 330.

    Al-Sadi R Ye D Boivin M Guo S Hashimi M Ereifej L et al . Interleukin-6 modulation of intestinal epithelial tight junction permeability is mediated by JNK pathway. PLoS ONE. (2014) 9:e0085345. 10.1371/journal.pone.0085345

  • 331.

    Gassler N Rohr C Schneider A Kartenbeck J Bach A Obermüller N et al . Inflammatory bowel disease is associated with changes of enterocytic junctions. Am J Physiol Gastrointest Liver Physiol. (2001) 281:21628. 10.1152/ajpgi.2001.281.1.g216

  • 332.

    Shih DQ Michelsen KS Barrett RJ Biener-Ramanujan E Gonsky R Zhang X et al . Insights into TL1A and IBD pathogenesis. Adv Exp Med Biol. (2011) 691:27988. 10.1007/978-1-4419-6612-4_29

  • 333.

    Cooney R Jewell D . The genetic basis of inflammatory bowel disease. Dig Dis. (2009) 27:42842. 10.1159/000234909

  • 334.

    Ishihara S Aziz MM Yuki T Kazumori H Kinoshita Y . Inflammatory bowel disease: review from the aspect of genetics. J Gastroenterol. (2009) 44:1097108. 10.1007/s00535-009-0141-8

  • 335.

    Mayer L . Evolving paradigms in the pathogenesis of IBD. J Gastroenterol. (2010) 45:916. 10.1007/s00535-009-0138-3

  • 336.

    Hugot JP Chamaillard M Zouali H Lesage S Cézard JP Belaiche J et al . Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature. (2001) 411:599603. 10.1038/35079107

  • 337.

    Kosovac K Brenmoehl J Holler E Falk W Schoelmerich J Hausmann M et al . Association of the NOD2 genotype with bacterial translocation via altered cell-cell contacts in Crohn's disease patients. Inflamm Bowel Dis. (2010) 16:131121. 10.1002/ibd.21223

  • 338.

    Rosenstiel P Sebreiber S . NOD-like receptors-pivotal guardians of the immunological integrity of barrier organs. Adv Exp Med Biol. (2009) 653:3547. 10.1007/978-1-4419-0901-5_3

  • 339.

    Girardin SE Boneca IG Viala J Chamaillard M Labigne A Thomas G et al . Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem. (2003) 278:886972. 10.1074/jbc.C200651200

  • 340.

    Inohara N Ogura Y Fontalba A Gutierrez O Pons F Crespo J et al . Host recognition of bacterial muramyl dipeptide mediated through NOD2: implications for Crohn's disease. J Biol Chem. (2003) 278:550912. 10.1074/jbc.C200673200

  • 341.

    Rosenstiel P Fantini M Bräutigam K Kühbacher T Waetzig GH Seegert D et al . TNF-α and IFN-γ regulate the expression of the NOD2 (CARD15) gene in human intestinal epithelial cells. Gastroenterology. (2003) 124:10019. 10.1053/gast.2003.50157

  • 342.

    Buhner S Buning C Genschel J Kling K Herrmann D Dignass A et al . Genetic basis for increased intestinal permeability in families with Crohn's disease: role of CARD15 3020insC mutation?Gut. (2006) 55:3427. 10.1136/gut.2005.065557

  • 343.

    Matsuoka K Kanai T . The gut microbiota and inflammatory bowel disease. Semin Immunopathol. (2015) 37:4755. 10.1007/s00281-014-0454-4

  • 344.

    Fukata M Arditi M . The role of pattern recognition receptors in intestinal inflammation. Mucosal Immunol. (2013) 6:45163. 10.1038/mi.2013.13

  • 345.

    Zeuthen LH Fink LN Frokiaer H . Epithelial cells prime the immune response to an array of gut-derived commensals towards a tolerogenic phenotype through distinct actions of thymic stromal lymphopoietin and transforming growth factor-β. Immunology. (2008) 123:197208. 10.1111/j.1365-2567.2007.02687.x

  • 346.

    Rimoldi M Chieppa M Salucci V Avogadri F Sonzogni A Sampietro GM et al . Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells. Nat Immunol. (2005) 6:50714. 10.1038/ni1192

  • 347.

    Travis S Menzies I . Intestinal permeability: functional assessment and significance. Clin Sci. (1992) 82:47188. 10.1042/cs0820471

  • 348.

    Bjarnason I Macpherson A Hollander D . Intestinal permeability: an overview. Gastroenterology. (1995) 108:156681. 10.1016/0016-5085(95)90708-4

  • 349.

    Wehkamp J Stange EF . Paneth's disease. J Crohn's Colitis. (2010) 4:52331. 10.1016/j.crohns.2010.05.010

  • 350.

    Khoshbin K Camilleri M . Effects of dietary components on intestinal permeability in health and disease. Am J Physiol Gastrointest Liver Physiol. (2020) 319:G589608. 10.1152/AJPGI.00245.2020

  • 351.

    Camilleri M . Human intestinal barrier: effects of stressors, diet, prebiotics, and probiotics. Clin Transl Gastroenterol. (2021) 12:e00308. 10.14309/ctg.0000000000000308

  • 352.

    Klimberg VS Souba WW . The importance of intestinal glutamine metabolism in maintaining a healthy gastrointestinal tract and supporting the body's response to injury and illness. Surg Annu. (1990) 22:6176.

  • 353.

    Zhou YP Jiang ZM Sun YH Wang XR Ma EL Wilmore D . The effect of supplemental enteral glutamine on plasma levels, gut function, and outcome in severe burns: a randomized, double-blind, controlled clinical trial. J Parenter Enter Nutr. (2003) 27:2415. 10.1177/0148607103027004241

  • 354.

    Peng X Yan H You Z Wang P Wang S . Effects of enteral supplementation with glutamine granules on intestinal mucosal barrier function in severe burned patients. Burns. (2004) 30:1359. 10.1016/j.burns.2003.09.032

  • 355.

    Zhou QQ Verne ML Fields JZ Lefante JJ Basra S Salameh H et al . Randomised placebo-controlled trial of dietary glutamine supplements for postinfectious irritable bowel syndrome. Gut. (2019) 68:9961002. 10.1136/gutjnl-2017-315136

  • 356.

    Norman AW . From vitamin D to hormone D: fundamentals of the vitamin D endocrine system essential for good health. Am J Clin Nutr. (2008) 88:4919S. 10.1093/ajcn/88.2.491s

  • 357.

    Kong J Zhang Z Musch MW Ning G Sun J Hart J et al . Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier. Am J Physiol Gastrointest Liver Physiol. (2007) 294:G20816. 10.1152/ajpgi.00398.2007

  • 358.

    Hewison M . Vitamin D and innate and adaptive immunity. Vitam Horm. (2011) 86:2362. 10.1016/B978-0-12-386960-9.00002-2

  • 359.

    Froicu M Cantorna MT . Vitamin D and the vitamin D receptor are critical for control of the innate immune response to colonic injury. BMC Immunol. (2007) 8:5. 10.1186/1471-2172-8-5

  • 360.

    Zhao H Zhang H Wu H Li H Liu L Guo J et al . Protective role of 1,25(OH)2vitamin D3 in the mucosal injury and epithelial barrier disruption in DSS-induced acute colitis in mice. BMC Gastroenterol. (2012) 12:57. 10.1186/1471-230X-12-57

  • 361.

    Guzman-Prado Y Samson O Segal JP Limdi JK Hayee B . Vitamin D therapy in adults with inflammatory bowel disease: a systematic review and meta-analysis. Inflamm Bowel Dis. (2020) 26:181930. 10.1093/ibd/izaa087

  • 362.

    Raftery T Martineau AR Greiller CL Ghosh S McNamara D Bennett K et al . Effects of vitamin D supplementation on intestinal permeability, cathelicidin and disease markers in Crohn's disease: results from a randomised double-blind placebo-controlled study. United Eur Gastroenterol J. (2015) 3:294302. 10.1177/2050640615572176

  • 363.

    Corrêa-Oliveira R Fachi JL Vieira A Sato FT Vinolo MAR . Regulation of immune cell function by short-chain fatty acids. Clin Transl Immunol. (2016) 5:e73. 10.1038/cti.2016.17

  • 364.

    Ríos-Covián D Ruas-Madiedo P Margolles A Gueimonde M De los Reyes-Gavilán CG Salazar N . Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol. (2016) 7:185. 10.3389/fmicb.2016.00185

  • 365.

    Barcenilla A Pryde SE Martin JC Duncan SH Stewart CS Henderson C et al . Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl Environ Microbiol. (2000) 66:165461. 10.1128/AEM.66.4.1654-1661.2000

  • 366.

    Louis P Young P Holtrop G Flint HJ . Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene. Environ Microbiol. (2010) 12:30414. 10.1111/j.1462-2920.2009.02066.x

  • 367.

    Vital M Howe AC Tiedje JM . Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data. MBio. (2014) 5:e00889. 10.1128/mBio.00889-14

  • 368.

    Kannampalli P Shaker R Sengupta JN . Colonic butyrate- algesic or analgesic?Neurogastroenterol Motil. (2011) 23:9759. 10.1111/j.1365-2982.2011.01775.x

  • 369.

    Banasiewicz T Krokowicz Stojcev Z Kaczmarek BF Kaczmarek E Maik J et al . Microencapsulated sodium butyrate reduces the frequency of abdominal pain in patients with irritable bowel syndrome. Color Dis. (2013) 15:2049. 10.1111/j.1463-1318.2012.03152.x

Summary

Keywords

intestinal epithelial barrier, mucosal immune system, gut microbiota, IBS, IBD, celiac disease, non-celiac gluten sensitivity

Citation

Barbara G, Barbaro MR, Fuschi D, Palombo M, Falangone F, Cremon C, Marasco G and Stanghellini V (2021) Corrigendum: Inflammatory and Microbiota-Related Regulation of the Intestinal Epithelial Barrier. Front. Nutr. 8:790387. doi: 10.3389/fnut.2021.790387

Received

06 October 2021

Accepted

07 October 2021

Published

01 November 2021

Approved by

Frontiers Editorial Office, Frontiers Media SA, Switzerland

Volume

8 - 2021

Updates

Copyright

*Correspondence: Giovanni Barbara

This article was submitted to Nutritional Immunology, a section of the journal Frontiers in Nutrition

Disclaimer

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Outline

Cite article

Copy to clipboard


Export citation file


Share article

Article metrics