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This review uses person-centered research and data analysis strategies to discuss

the conceptualization and measurement of appetite self-regulation (ASR) phenotypes

and trajectories in childhood (from infancy to about ages 6 or 7 years). Research that

is person-centered provides strategies that increase the possibilities for investigating

ASR phenotypes. We first examine the utility of examining underlying phenotypes using

latent profile/class analysis drawing on cross-sectional data. The use of trajectory

analysis to investigate developmental change is then discussed, with attention to

phenotypes using trajectories of individual behaviors as well as phenotypes based on

multi-trajectory modeling. Data analysis strategies and measurement approaches from

recent examples of these person-centered approaches to the conceptualization and

investigation of appetite self-regulation and its development in childhood are examined.

Where relevant, examples from older children as well as developmental, clinical and

educational psychology are drawn on to discuss when and how person-centered

approaches can be used. We argue that there is scope to incorporate recent advances

in biological and psychoneurological knowledge about appetite self-regulation as well

as fundamental processes in the development of general self-regulation to enhance

the examination of phenotypes and their trajectories across childhood (and beyond).

The discussion and conclusion suggest directions for future research and highlight the

potential of person-centered approaches to progress knowledge about the development

of appetite self-regulation in childhood.

Keywords: phenotypes, appetite regulation, mixture models, developmental trajectories, latent class analysis,

unobserved (or underlying) heterogeneity, eating behavior, child

INTRODUCTION

In current food environments, where there is an abundance of palatable but unhealthy foods, it
is important that children are able to self-regulate appetite. Appetite self-regulation (ASR) means
that children are better able to resist tempting but unhealthy foods, better balance energy intakes
with expenditure and select and consume healthier diets. The conceptualization and measurement
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of children’s ASR is an emerging field and new approaches are
needed. The recent application of person-centered approaches to
research on children’s eating and ASR provide new perspectives
and insights and is the focus of the present review.

There has been some vagueness and uncertainty about
definitions of ASR in childhood, including its components and
fundamental processes. A number of theoretical models together
with potentially relevant constructs are evident in the literature.
There is a general acceptance that ASR has to do with responding
to hunger cues as well as to cues of satiety and satiation (1,
2). Satiation and satiety have been conceived as separate but
overlapping processes. Satiation leads to the termination of
eating while satiety is a post-consumption process that leads
to the inhibition of further eating and is an ingredient in the
inter-meal interval (3–6). Beyond that, it has been variously
treated as a multidimensional construct that includes traits
(e.g., food responsiveness or satiety responsiveness), processes
[e.g., as in the Satiety Cascade (4, 7)] and individual skills
or strategies (e.g., delay of gratification) (8). Many of the
traits have been associated with the subscales of the Children’s
Eating Behavior Questionnaire (CEBQ). This scale includes food
approach behaviors such as food responsiveness (e.g., child is
attracted to food and eating) and food avoidance behaviors such
as satiety responsiveness (e.g., child gets full easily and leaves
food on his/her plate) (9). The Satiety Cascade is a model that
involves pre-consumption processes (such as hunger cues and
food responsiveness), processes during consumptions such as
satiety and habituation, and post-consumptions processes such
as satiety cues.

The conceptualization of ASR has been assisted by the
application of overall models such as the bottom-up, top-
down model (10–12) or dual processing model (13) and the
satiety cascade (4, 7). These models incorporate aspects of traits,
processes, and skills. In the bottom-up, top-down model there is
a recursive interplay between bottom-up reactive, often emotion
driven and automatic, approach or avoidance behaviors (such
as hedonic responses to hunger or food cues) and top-down
regulatory control processes including inhibitory control. In the
dual processing model, self-regulation is conceived as involving
an interaction between regulatory processes such as inhibitory
control (top-down) and approach-avoidance behaviors (bottom-
up). Here, self-regulation is considered to involve an interplay
between impulse generating and impulse controlling systems. It
is possible to group many of the ASR-related constructs that
have been described and investigated in the literature under
the main headings of bottom-up (approach), such as food
responsiveness, bottom-up (avoidance) such as food fussiness,
and top down such as inhibitory control (12). The bottom-up,
top-down model for conceptualizing ASR in childhood is helpful

Abbreviations: FMM, Finite mixture modeling; LCA, Latent class analysis;

LCGA, Latent class growth analysis; LPA, Latent profile analysis; LTA, Latent

transition analysis; GBTM, Group-based trajectory modeling; GMM, Latent

growth mixture modeling; LVMM, Latent variable mixture modeling; CEBQ,

Children’s Eating Behavior Questionnaire; BMI, Body Mass Index; EAH, Eating

in the absence ofhunger; ASR, Appetite self-regulation.

in the investigation of ASR phenotypes as it provides a framework
for the interpretation of patterns of characteristics and behaviors.

Most of the existing research on the development of ASR has
taken a variable-centered approach [c.f. the studies reviewed in
(8)]. Similarly, the conceptualization of fundamental processes
in ASR such as in the models described above has been
substantially based on variable-centered research. To broaden
knowledge about ASR in childhood, there is a need to give
greater recognition to the nature and extent of individual
differences in behaviors, processes, traits, skills and trajectories
in the development of ASR. There is limited research and theory
about ASR that focuses separately on traits, processes, and skills.
Instead, consistent with the multidimensional treatment of ASR
in infancy and childhood, research designs typically include
measures of one or more of traits, processes, and skills although
with a heavy emphasis on traits. In the present review, the
focus is on possible advances in conceptualization that could
be gained from a person-centered perspective to research and
theory. We discuss ASR phenotypes, trajectories of individual
ASR indicators, and trajectories of underlying ASR phenotypes.
We argue that the exploration of ASR phenotypes and trajectories
has implications for the conceptualization and measurement
of ASR in childhood. If it can be assumed that scholarship is
at a relatively early stage of developing an integrated model
of ASR in childhood, person-centered strategies could provide
insights into how traits, processes and skills might be organized
and interrelated.

The initial scoping of the review was based on keyword
and abstract literature searches in the main databases: PubMed,
PsycINFO, SCOPUS, Web of Science, and Google Scholar.
The searches covered theoretical articles (e.g., person-centered
vs. variable centered), data analysis (e.g., latent class analysis,
trajectory analysis), and research evidence (e.g., eating behavior
phenotypes, latent class, and profile analyses of eating behaviors
in childhood). We sourced articles under these headings from
the literature on children’s eating and ASR, as well as other
areas of scholarship (such as clinical psychology, developmental
psychology, and educational psychology). In contrast to the
structured approach of a systematic review consistent with our
purpose we chose articles for their illustrative significance in
relation to the purpose of discussing the nature, role, and
contribution of person-centered strategies in the investigation of
ASR phenotypes and trajectories in childhood.

We begin with a discussion of person-centered vs. variable-
centered strategies before considering the prospect for
investigations of phenotypes to examine ASR components
and processes in childhood. The main body of the review is then
about the measurement of trajectories and the potential of this
approach to contribute to knowledge about the development
of ASR.

Person-Centered vs. Variable-Centered

Approaches
Person-centered and variable-centered approaches answer
different research questions, and can provide complementary
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information about a research field, including about child
development (14–21). Variable-centered approaches (e.g.,
regression analysis, factor analysis, structural equationmodeling)
examine associations between variables in a population and are
suited to questions about normative development and the
effect of one variable on another, especially in terms of the
contributions of predictor variables to outcome variables
(16, 22–26). In this case, data are aggregated and individual
differences are treated as “noise” or “errors” which provides more
parsimony (19) but less specificity (16).

In contrast, individual differences, or an assumption that
the sample is not uniform and that behavior and psychological
processes are unique to the individual or differ from one group
to another (15, 27), are the basis of person-centered approaches
such as cluster analysis and finite mixture models (14, 15,
20, 27–31). In this case the emphasis is on individual and
sub-group differences within the sample, including sub-group
differences in development. Person-centered approaches are
helpful for understanding possible developmental mechanisms
(20) and allow investigation of inter-individual (between-person)
differences in intraindividual (within-person) profiles of behavior
or change (32, 33). Person-centered approaches categorize
participants into subgroups, or phenotypes, based on a set of
shared characteristics or attributes. The resulting phenotypes
may be based on complex patterns of substantive variables to
provide amore detailed and nuanced picture of development. For
these reasons, person-centered approaches have the potential to
advance knowledge about ASR and its development in childhood.

The Contribution of Phenotypes to the

Conceptualization of ASR
Technically, a phenotype is a set of behaviors and characteristics
arising from the interaction of the genotype with the
environment (34). The phenotype concept is useful as a
way of describing combinations of individual traits and behavior,
especially as they apply to sub-groups of the population. The
concept has been applied to children’s eating behaviors as
we discuss here, but also to parent feeding practices (35, 36),
in developmental psychology (37–39), and in other areas of
psychology such as educational psychology (40) and clinical
psychology (41–43).

The examination of ASR phenotypes can contribute to
the understanding of components and processes in ASR.
The investigation of possible phenotypes enables ASR to be
conceptualized in new ways by suggesting different combinations
of measures of traits, processes, skills, behaviors and other
ASR-related measures (e.g., neurobehavioral indicators) and
how these combinations interact for separate sub-groups. For
example, ASR difficulties could be associated with increased food
approach tendencies in some groups of children, difficulties in
responding to satiety and satiation cues in other groups, and
increased impulsiveness and reduced inhibitory control in other
children, or different combinations and patterns of change of
these characteristics. The so-called patterns of change could vary
from consistency across ages, to increases, decreases or other
variations such as consistency followed by an increase or a

decrease. Possible insights from the examination of phenotypes
have been illustrated in an adult sample where four phenotypes of
obesity-related behaviors and characteristics were derived from
behavioral and questionnaire measures (44). One phenotype,
labeled “hungry brain,” was described as having abnormal
satiation, and another phenotype, labeled “emotional eating,” was
high on hedonic eating. The other phenotypes were “hungry
gut,” involving abnormal satiety, and “slow burn” described as
involving decreased metabolic rate. The authors assumed that
the phenotypes revealed something about fundamental processes
in weight gain and obesity and described them as “actionable”
because they were helpful to target weight-loss treatments.
The examination of phenotypes has been enhanced by the
application of person-centered data analysis strategies. In the
following section we describe the analytical strategies available
for examining phenotypes and illustrate their use in ASR/eating
behavior research. These include strategies for analyzing both
cross-sectional and longitudinal data.

PERSON-CENTERED APPROACHES AND

THEIR APPLICATION IN ASR PHENOTYPE

RESEARCH

Earlier person-centered approaches for evaluating the underlying
psychological attributes of weight gain in cross-sectional studies
included cluster analyses using hierarchical (e.g., Ward’s) or
partitioning (e.g., k-means) methods (45, 46). However, finite
mixture models (FMM), also known as model-based clustering
or latent variable mixture models (LVMM), are newer techniques
that have become a popular alternative for understanding
population heterogeneity (47). Examples of such techniques
include latent class analysis (LCA), latent transition analysis
(LTA), and growthmixture models (GMM) (47). FMMdraw on a
structural equation modeling (SEM) approach and encompass a
“collection of statistical approaches” for analyzing cross-sectional
and longitudinal data [(41, 48), p. 175]. They take one or more
observed input variables to model the probability of participants
belonging to latent (i.e., unobserved or underlying) subgroups
and classify participants to the subgroup with the highest
probability of their belonging (41, 48). The resultant subgroups
may be referred to as classes, profiles, typologies, or phenotypes,
with the latter more commonly used in the field of psychology
(32). Interested readers are referred to Berlin and colleagues
(18, 48) for an introduction and non-technical account of cross-
sectional and longitudinal FMM/LVMM approaches, covering
assumptions and a “how to” description of their use.

Cross Sectional Studies: Latent Class and

Latent Profile Analysis
LCA for categorical data and latent profile analysis (LPA) for
continuous data are foundation person-centered strategies used
in many fields including medical, biological, physical nutritional
and social sciences (18, 31, 40, 48, 49). LCA and LPA are examples
of FMM/LVMM used in cross-sectional studies (31) and identify
latent subgroups based on specific combinations of observed
variables (18, 48). The goal of the analysis is to determine the
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optimal number of latent subgroups that summarize the unique,
and often complex, patterns of the observed variables within
individuals (32).

In cross-sectional studies, distinct eating behavior subgroups,
or phenotypes, have been identified in children using LCA or
LPA. For example, Boutelle et al. (50) conducted LPA from
multiple measures of eating behaviors in a sample of 8 to
12 year-old children with overweight or obesity. Three latent
profiles were identified, labeled as (i) high satiety responsiveness,
(ii) high food responsiveness and (iii) moderate satiety and
food responsiveness. Although each phenotype was associated
with overeating and overweight, the phenotypes involved
combinations of different levels on the individual variables, such
as eating in the absence of hunger (EAH), satiety responsiveness,
food responsiveness, negative affect eating, loss of control eating
and external eating.

In a sample of 4-year-old children, Tharner et al. (51)
conducted LPA on Children’s Eating Behavior Questionnaire
(CEBQ) scores and identified six eating behavior profiles. Most
children were in the “moderate eaters” (44.6%) or “avoidant
eaters” (33.2%) profiles. The authors were mainly interested
in the “fussy eater” profile (5.6%) which was characterized by
high scores on the subscales of satiety responsiveness, food
fussiness and slowness in eating combined with low scores on the
enjoyment of eating subscale. This subscale was associated with
dietary, weight and parental factors, demonstrating the utility
of examining a number of eating behavior subscales as profiles
rather than individual variables.

Longitudinal Studies of Subgroups: Latent

Transition Analysis
LTA is a longitudinal extension of LCA and LPA that identifies
unique latent subgroups based on combinations of observed
variables, and an individual’s transition, or movement, between
these latent subgroups over time (40, 52–55). LTA has mostly
been applied to two time points, but three may be used (16, 56,
57). In longitudinal research, LTA may be used to investigate
different developmental paths or transitions from one phenotype
to another over time (16, 47, 53). It also enables the examination
of whether phenotypes might be age-specific or if they are
established early and then are maintained across childhood.
Further, it could assist in the examination of outcomes or
changes associated with interventions (e.g., whether participants
transition to a different phenotype following intervention).

Pitt et al. (58) illustrate the use of LTA to examine
developmental change. The authors calculated phenotypes (using
LCA) for dietary patterns at age 3 and 5 years and then
used LTA to investigate changes in the subgroups over time.
Similarly, development change was explored by Swanson et al.
(59) who measured eating disorder symptoms in girls in five age
groups from preadolescence, early adolescence, late adolescence
and two young adulthood periods and calculated transition
probabilities from the latent classes at age 9–12 to classes at age
19–22. Latent transition probabilities following LCA has also
been used to investigate learning outcomes (55) in a way that
could provide a parallel for the examination of eating-based

intervention outcomes. These approaches examine transitions
between groups, however changes over time are also usefully
explored with modeling of trajectories.

Trajectories Modeling
Nagin (60) argued that charting and understanding trajectories
in longitudinal research is fundamental to knowledge about
development, including the possibility that sub-groups might
follow distinct trajectories. Trajectory analyses in longitudinal
research might inform the investigation of multifinality (a
common starting point, but then divergence of trajectories),
equifinality (different starting points, but convergence on a
common end point, possibly via different routes or paths), and
fanning (increasing interindividual differences in trajectories
over time) (17, 61).

There are two kinds of analytical strategies for examining
trajectories of ASR-related eating behaviors and the associated
outcomes of weight gain, adiposity or BMI. The first involves the
investigation of trajectories for individual variables. The second
approach has been to examine trajectories that include multiple
variables in the one analysis.

Longitudinal Studies of Trajectories of Single

Variables: Latent Growth Mixture Modeling
GMM is a statistical approach for modeling the average rate
of individual change, or trajectories, across three or more time
points. Whilst LTA involves the identification of latent subgroups
and then the calculation of transitions, GMMmodels include the
trajectories when calculating the latent subgroups (16). GMM is
an extension of the traditional latent growth curve model (62)
and includes latent class growth analysis (LCGA), a simplified
GMM, and group-based trajectory modeling (GBTM), a special
case of LCGA that assumes error variances are the same for all
latent subgroups (18, 21, 32, 33, 60, 63–68). Unlike conventional
latent growth curve modeling which assumes the same pattern
of growth corresponds to the whole population, GMM takes into
account population heterogeneity and identifies latent subgroups
of individual growth patterns, or developmental trajectories (62).

A number of authors compare the assumptions and use of
the main approaches to GMM (18, 32, 43, 69). Nagin and
Odgers (43) argue that while there are technical differences
between these approaches (i.e., they make different assumptions
about the distribution of trajectories in the population), they
are all designed to assign individuals into trajectory groups. For
example, LCGA is a restricted version of GMM that constrains
the variations (i.e., variances and covariances) within each class
to zero and as a consequence reduces the number of parameters
and simplifies model selection (70). LCGA assumes that all
individual growth trajectories within classes are homogeneous
(71) and is often recommended as a first step in the exploration
of possible latent classes. GMM relaxes the assumption that all
individuals in a class are from a single homogenous population
(67) and estimates all growth factors (e.g., means, variances
and covariances). However, such increases in model complexity
may lead to estimation difficulties, including non-convergence or
non-optimal latent subgroup solutions; the model chosen should
be one that best fits the data and leads to meaningful subgroup
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solutions based on substantive prior theory (62). Berlin et al.
discuss when and how a researcher might use LCGA and GMM,
including a step-by-step account of processes in the identification
of latent trajectory subgroups (18, 48). After conducting Monte
Carlo simulations of synthetic data, Den Teuling et al. (69)
concluded that GMM provided the “best overall performance.”

A common example of phenotypes defined in terms of
trajectories of ASR-related constructs with a single variable is
trajectories for weight gain or BMI. Norris et al. (72), for
instance, examined weight trajectories from 0 to 60 months
of age using GMM to identify five groups of individuals with
different average trajectories. The subgroups included “average,”
“high-decreasing,” and “stable-high” BMI trajectories. They then
examined maternal (e.g., maternal BMI and education), family
and birth characteristics of children associated with the different
trajectories. Becnal and Williams (64) and Ventura et al. (73)
followed a similar approach, using GMM to identify several
weight trajectories. Risk factors were included as covariates
and health outcomes associated with the trajectories were
examined. In a birth cohort, van Rossem et al. (74) used
LCGA to investigate trajectories for BMI until age 11 years.
Trajectories of persistent overweight and overweight reduction
were subsequently found to be related to early-life and parent
factors including parent overweight.

Trajectories of individual ASR-related eating behaviors have
also been explored. Derks et al. (75) used LCGA to examine
trajectories for individual CEBQ scales assessed at ages 4 and
10 years. They found three patterns for emotional overeating
and five patterns for food responsiveness, but no subgroups
for enjoyment of food and satiety responsiveness. Follow-up
regression analyses enabled them to explore early life predictors
of each of the trajectories. Herle et al. (70) also used LCGA
to investigate trajectories of child eating behaviors in the first
10 years of life from parent reports. They reported a number
of trajectories for each of the single variables of overeating,
undereating and fussy eating. The eating trajectories were
associated with later zBMI in meaningful ways and were also
found to be predictive of later eating disorder diagnosis.

These examples illustrate the potential contribution of
person-centered trajectory analyses to the identification of
developmental patterns for weight gain and ASR-related eating
behaviors. They also show how predictors or risk factors can be
related to trajectories as well as relationships between trajectories
and outcomes.

Longitudinal Studies of Multiple Trajectories:

Multi-Trajectory Modeling
Rather than using a single trajectory variable to assign individuals
to a phenotype, multi-trajectory modeling, or multivariate
GBTM, approach defines trajectory phenotypes using multiple
and distinct trajectories variables (76). It is a variation of
univariate GBTM. It defines a trajectory group in terms of
trajectories for multiple indicators and takes account of the
interrelationships among the indicators in a multivariate design.
Nagin et al. (76) provide two illustrative examples and argue
there is a need to sharpen guidelines for model selection and
evaluation. Their first illustrative example was frommale subjects

in the DunedinMultidisciplinary Health andDevelopment Study
withmeasures at different ages from 3 to 38 years. There were five
trajectory groups, defined by the patterns of trajectories on three
physiological outcome variables. The second illustrative example
was from the Montreal-based longitudinal study of 1,037 males
with measures from ages 6 to 17 years. The analysis yielded five
trajectory groups based on the pattern of trajectories of four
individual variables.

We illustrate this multivariate approach to the investigation
of latent trajectory phenotypes for ASR-related eating behaviors
with two studies. First, Epstein et al. (77) measured trajectories
of food habituation to salty, sweet and savory foods in a sample
of 8–12 year-old children. GBTM was used to identify individual
trajectory phenotypes for the three foods andmultivariate GBTM
was used to determine trajectories for the combination of
foods. The habituation phenotypes (such as “rapidly decelerating
habituation” vs. “slower to initiate the decelerating rate of
responding”) were related to a measure of the reinforcing value
of each of the foods. This approach is helpful in the examination
of ASR, as it demonstrated that the children who habituated
slower also found food more reinforcing than children with a
rapid habituation phenotype, thereby providing new insights into
possible processes in ASR in childhood.

Boutelle et al. (78) provide a second example of multi-
trajectory modeling. They assessed four child (mean age 10.4
years) appetitive traits at 3, 6, 12, and 24 months after
baseline. Multivariate GBTM yielded three “trait trajectories
of appetitive subgroups.” In a subgroup they labeled “high
satiety responsiveness” there was an increasing pattern in satiety
responsiveness, a decreasing pattern in food responsiveness and a
low stable pattern in emotional eating and negative affect eating.
The phenotypes, therefore, were characterized by a different
pattern of trajectories for the four eating behaviors. Again, these
phenotypes show the potential of multi-trajectory analyses for the
investigation of ASR development because they show different
combinations of eating behaviors in subgroups of children. The
finding that only the high satiety responsiveness subgroup-
maintained weight loss following a family-based treatment for
children with overweight or obesity provides further support for
separating appetite trajectory phenotype subgroups.

Some Strengths and Limitations of Using

Person-Centered Approaches to

Understand ASR
The literature includes extensive discussion of assumptions,
processes and strategies in model selection, the inclusion of
covariates and the limitations of these approaches to person-
centered analyses (18, 32, 33, 42, 43, 48, 52, 79, 80). In all
FMM, selecting the optimal number of latent subgroups requires
the investigation of multiple model fit criteria (62). These may
include information criteria statistics [e.g., Bayesian Information
Criteria (BIC), Consistent Akaike’s Information Criteria (CAIC),
and ApproximateWeight of Evidence Criterion (AWE)], entropy
values, the log-likelihood sample size, and likelihood ratio tests
comparing the k-class and k-1 subgroup model [e.g., Bootstrap
Likelihood Ration Test (BLRT), Lo-Mendell-Rubin adjusted
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likelihood ratio test (LMR-LRT)]. Bray and Dziak (52) argue that
sometimes the use of FMM/LVMM is something of an art as
well as a science in model selection. This is particularly so when
the sample size is small relative to the model complexity, or the
quality of themeasurement model is poor. They suggest that both
statistical fit and theoretical interpretability should be considered
and at times it is better to select a model with a few interpretable
classes even if the statistical fit is not optimal. Herle et al.
(32) also comment on “non-science” aspects of model selection.
This includes taking account of the size and interpretability
of classes (70). Lubke and Luningham (42) in a related way
refer to the considerable uncertainty around model selection.
Several practical guides to the selection and reporting of latent
subgroups are available (81–83). Whilst there is currently there is
no “rule-of-thumb” regarding a minimal sample size for FMMs,
the impact of sample size on determining the optimal number
of latent subgroups in FMM have been investigated in several
Monte Carlo simulation studies (81, 84).

In relation to latent transition analysis, there is debate and
guidance in the literature about procedures and decisions in the
conduct of latent transition analyses including sample size and
selection of classes [e.g., (52)]. There are challenges associated
with causal analysis using these approaches, as well as the
possibility for these analyses to compare different theoretical
models and for linking latent classes to predictors and outcomes.
Berlin et al. (18) alert researchers to issues in using FMM arising
from sample size. They argue that insufficient sample sizes can
lead to convergence problems, improper solutions and a limited
ability to identify meaningful subgroups. They also point out
difficulties in determining adequate sample size, such in relation
to reliability and the distribution of variables.

A key advantage of all FMM is the ability to directly
incorporate predictors or antecedents, covariates, including time-
varying covariates, and outcomes in the model (27, 32, 43, 52, 85,
86). Many techniques have been suggested for the examination
of covariates [e.g., (87)]. One possibility is based on a regression
model where class membership is predicted by the covariates, or
classes are used to predict outcome variables such as zBMI (70).
Or, where the covariates are partitioned into the latent classes
(32). Here, Herle et al. included a discussion of two approaches
to the investigation of covariates and their use. Marsh et al. (88)
provided a discussion of the inclusion of correlates: when, why
and what it assumes. They argued that their inclusion should
not qualitatively change the classes but should make them more
accurate and that covariates should be antecedent not concurrent
or outcome. The inclusion of covariates in models is complex
but a useful discussion is provided by Lubke and Luningham
(42) on the theoretical bases of FMM/LVMM and the inclusion
of covariates.

Finally, scholarship associated with analytic approaches
following a person-centered perspective is an active and
expanding field. Authors have discussed additional analysis
options or extensions of LCA, LPA, LTA (52), and GMM (60, 62).
Bray and Dziak indicate that the FMM/LVMM framework is
flexible and permits the specification of different types of mixture
models that include path models, factor models, survival models,
growth curve models, and that structural equation models can be
specified for multiple subgroups.

In summary, and overall, research onASR-related phenotypes,
including trajectory phenotypes (whether using individual
constructs or a multitrajectory approach) is contributing to
an understanding ASR and its development in childhood. The
extensive conceptual and technical literature on person-centered
strategies in the investigation of subgroup differences also shows
the potential of this approach to contribute to knowledge
about ASR and its development in childhood. At the same
time, researchers should be cognizant of the assumptions and
limitations of this approach, as well as the art vs. science
aspects of subgroup identification. An important consideration
is also that the phenotypes identified are clearly a product of
the number and type of individual variables that have been
measured. Further, the inclusion of covariates and outcomes
provided opportunities to better understand the predictors or
possible origins of ASR, influences on its development and
effects on important development outcomes such as BMI and
weight gain. Below, we comment further on the importance of
phenotype research for advancing knowledge about ASR and its
development. We argue for the need to expand measures into
new domains of ASR-related constructs.

DISCUSSION

Knowledge and understanding of ASR can be advanced in
many ways: through conceptual and theoretical developments,
improvements in research design and methods (especially
measurement) and progress in approaches to data analysis and
statistics. In this review we have taken a slice through some of
these matters via the distinction between person-centered and
variable-centered approaches to research, and then a focus on
person-centered strategies.

In the discussion we first explore insights from extant person-
centered approaches for the conceptualization and measurement
of ASR in childhood together with suggestions for future
research. Second, we discuss possibilities for combining person-
centered and variable-centered approaches in scholarship about
ASR and children’s eating behaviors in childhood. Third, we
argue that person-centered approaches could assist in the
design of intervention strategies and in the measurement of
intervention outcomes.

Insights From a Person-Centered

Approach for Conceptualizing and

Measuring ASR
Research on phenotypes from cross-sectional and longitudinal
data has the potential to examine underlying processes and
dimensions of ASR in childhood. This is apparent from the labels
applied to the latent subgroups [e.g., “high satiety responsiveness”
(78), “rapidly decelerating habituation” (77)] and the particular
measures used to characterize them in the research reviewed
here. This research can also contribute to knowledge about (a)
antecedents, precursors, or correlates of ASR-related phenotypes,
and (b) associations between phenotypes and outcomes (either
developmental outcomes or outcomes from interventions).

Latent class/profile and trajectory analyses have been
described as data driven and exploratory [e.g., (43, 89)].
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Consistent with this description, findings from person-centered
analyses should not be used to infer causality, but rather to
generate hypotheses for future testing. Also in line with this
description, Bergman and Trost (20) emphasize the vagueness
of guiding theories in the case of person-centered approaches,
especially about how the studied system operates, for example,
about how different measures might interact and coordinate
to form distinct phenotypes or how and why there could be
different trajectories of ASR and its components. For example, in
the Derks et al. (75) study although many patterns were found
for each of the measured appetitive traits and these were linked
to early life predictors, due to the absence of a clear theoretical
foundation for the development of appetitive traits, it is unclear
why, for instance, three patterns of emotional eating and 5
patterns for food responsiveness may arise. While recognizing
the potential of person-centered approaches for advancing
knowledge about ASR and its development, it is important to
keep in mind that it needs to be built on sound theory as well
as efforts to integrate it with variable-centered approaches. As
we mention below, recent data analysis strategies that enable a
more confirmatory approach and assessment of predictions are
also helpful.

Because person-centered strategies in relation to ASR
have been mainly exploratory, an important role of these
strategies could be in the development and clarification of
conceptualization and measurement. Central to a person-
centered approach is the assumption that the individual is an
integrated totality over time, with behaviors interwoven and
interacting (20). This approach is suited to the exploration of
possible developmental mechanisms and to inductive theory
building (16). A complexity here is that while ASR could be
changing over time, other developmental processes and changes
are also occurring. This means that person-centered strategies to
investigate the development of ASR will need to take account of
wider developmental changes and processes.

Morin et al. (27) suggest that some areas of research might
not be sufficiently advanced in theory and with a substantial
enough body of results to generate clear hypotheses about
the expected nature of profiles. They argue that when this is
the case, construct validation is important, through showing
that the profiles have heuristic and theoretical values and are
meaningfully related to key correlates or outcomes. In this
case, confirmatory approaches may be applied. Schmiege et al.
(89) discuss approaches to confirmatory latent class analysis,
including a dual sample approach and confirmatory testing of
a latent class structure. As person-centered evidence on ASR
expands, it is possible that these more stringent theoretical tests
will become more important.

Fundamentally, phenotypes are suggestive of central
components and processes in ASR. But the latent subgroups are
limited and constrained by, and entirely reflect, the individual
measures used. Person-centered strategies with a focus on
ASR-related phenotypes will be better placed to contribute
to conceptualization and measurement with the continued
addition of individual measures of behaviors, characteristics,
traits or processes based on emerging evidence about processes
and individual differences in ASR. This includes evidence

from biologically based research such as genetic susceptibility,
psychoneurological measures, as well as measures about general
self-regulation from psychology, neuroscience and from areas
such as the effects of highly processed food and the rewarding
value of food. When covariates and outcomes are included in
the research design, person-centered strategies could progress
knowledge about the possible origins of ASR, influences on the
development of ASR, and developmental outcome associated
with ASR.

Indeed research on ASR-related behaviors, characteristics,
traits and processes has expanded considerably in recent
years and there is now a growing set of possibilities for
inclusion in research about ASR phenotypes in childhood
including: temperament (such as impulsivity and effortful
control) (90), Executive function (such as inhibitory control),
genetic susceptibility, reward sensitivity, hedonic responses to
food, cognitive function (91), cognitive control and negative
affect (92), state and/or trait food cue reactivity (93), brain
reward sensitivity to food cues (94), dietary measures, such
as dietary fat or carbohydrates (95, 96), fructose consumption
(97), intake of processed food (98), sensory sensitivity (99),
neuroimaging functional connectivity (100), metabolomics and
analysis of the gut microbiome (101, 102), measures of the
social facilitation of eating (103), susceptibility to modeling
(104), effects of portion size cues (105) and attachment
security (106), behavioral and neural measures of appetitive
traits such as through neuroimaging measures (107, 108).
A helpful broadening of work on ASR phenotypes is also
suggested by attention to endophenotypes where genetic
predisposition and neural substrates as well as behavioral
measures are included (107, 109–112).

However, the inclusion of many behaviors, characteristics, and
traits to determine ASR phenotypes may be too computationally
burdensome for the model-based person-centered approaches
discussed in the present review. Future ASR researchmay need to
employ machine learning, or data mining, methods to determine
phenotypes from large and complex datasets (113–115).

Combining Person-Centered and

Variable-Centered Strategies
Comparisons of person-centered and variable-centered
approaches to research have highlighted their differences in
assumptions, purpose, sampling, research questions, analytic
approach and strengths (16). The two approaches can also be
complementary (16, 20, 116). Derks et al. (75) for example,
demonstrated how combining the two approaches can provide
information about children’s ASR. They identified different
trajectory patterns of children’s eating behaviors using LCGA
(person centered) and then investigated the early life or other
predictors of those patterns (variable centered). Predictors
could include child and family characteristics (51) and BMI-z
(50) or socio-demographic and clinical characteristics (117).
Another option to combine the two approaches is to first identify
latent profiles of ASR and use these as predictors of subsequent
outcomes such as BMI or diet [e.g., (118)]. Much of the research
on risk factors for obesity or weight gain has examined individual
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predictor variables. This type of research could be helpfully
expanded to include relationships between ASR phenotypes
and subsequent measures of weight, thereby gaining greater
specificity about potential risks as well as possible processes
associated with weight gain and obesity.

Phenotype and other person-centered analyses also enable
reflections on theoretical models such as a biopsychosocial
approach (119) that incorporate variable and person-centered
elements. For instance, these analyses could enable the
examination of how biological, psychological and social measures
combine in the formation of phenotypes, how they differ
from one phenotype to another, and then how the phenotypes
relate to model outcomes such as weight gain and adiposity.
It would also be possible to incorporate parent and child
measures from cross-lagged designs to examine transactional
processes via phenotypes and co-variate analyses. Other designs
could also provide important insights, such as parallel process
latent growth modeling which could investigate ASR trajectories
alongside other developmental trajectories, such as BMI or
emotion regulation.

In the present review we highlighted the potential of person-
centered strategies for the conceptualization andmeasurement of
ASR in childhood and infancy. In contrast to a systematic review,
the emphasis of the present review was not on an assessment of
the evidence or findings from person-centered strategies. Aligned
to the purpose of the review, the literature chosen was supportive
rather than critical of these strategies and does not cover nor
assess the suitability or quality of all research on person centered
approaches to advancing the conceptualization of ASR. We
briefly discussed the roles and contributions of person-centered
vs. variable centered approaches. There is value in further
appraisal of these two approaches to the conceptualization and
measurement of ASR in infancy and childhood. Further, as
evidence accumulates, there is a need for systematic reviews to
appraise and synthesize evidence from the two approaches.

Person-Centered Strategies in Intervention

Design and Measurement of Outcomes
There is scope for person-centered approaches to contribute to
the design of intervention strategies and in the measurement
of outcomes. Person-centered analyses could better inform
intervention strategies by a greater focus on the specificity arising
from the identification of phenotype subgroups that could be tied
to personalized intervention strategies (44, 78, 117). Phenotype

and trajectory analyses could be used to examine intervention
outcomes such as through changes in phenotypes following an
intervention, and transitions from one phenotype to another,
such as has been described in the literature on teaching and
learning (40, 120). Finally, in contributing to intervention design
and the measurement of outcomes, person-centered approaches
could contribute to knowledge about possible developmental
processes and assist theory development.

CONCLUSION

Person-centered strategies can make an important contribution
to advances in the conceptualization and measurement of ASR
in children, including to an understanding of developmental
paths and processes. This appears to be especially so for
person-centered strategies that explore phenotypes, whether
based on cross-sectional data or trajectories. The potential
contribution seems to be enhanced when combined with
variable centered approaches that include predictors or co-
variates and that examine outcomes. Possible gains from person-
centered approaches should be strengthened by further evidence
about individual skills, traits and behaviors that comprise
ASR, as well as increased evidence about ASR processes
and developmental change/trajectories. There is also a need
for overall theory development, more confirmatory research
and a greater integration with variable-centered approaches.
Finally, evidence about children’s appetitive phenotypes and
trajectories could assist in the design and measurement of
intervention outcomes.
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