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In recent decades, increasing attention has been paid to food safety and organic

horticulture. Thus, people are looking for natural products to manage plant diseases,

pests, and weeds. Essential oils (EOs) or EO-based products are potentially promising

candidates for biocontrol agents due to their safe, bioactive, biodegradable, ecologically,

and economically viable properties. Born of necessity or commercial interest to satisfy

market demand for natural products, this emerging technology is highly anticipated,

but its application has been limited without the benefit of a thorough analysis of the

scientific evidence on efficacy, scope, and mechanism of action. This review covers the

uses of EOs as broad-spectrum biocontrol agents in both preharvest and postharvest

systems. The known functions of EOs in suppressing fungi, bacteria, viruses, pests, and

weeds are briefly summarized. Related results and possible modes of action from recent

research are listed. The weaknesses of applying EOs are also discussed, such as high

volatility and low stability, low water solubility, strong influence on organoleptic properties,

and phytotoxic effects. Therefore, EO formulations and methods of incorporation to

enhance the strengths and compensate for the shortages are outlined. This review also

concludes with research directions needed to better understand and fully evaluate EOs

and provides an outlook on the prospects for future applications of EOs in organic

horticulture production.

Keywords: bactericidal, disease management, formulation, fungicidal, herbicidal, insecticidal, pest management,

phytotoxic

INTRODUCTION

Plant essential oils (EOs) are natural, complex, volatile aromatic, hydrophobic, oily liquids
composed of multiple related compounds synthesized in aromatic plants as secondary metabolites
(1). Aromatic plants have been appreciated and used for their aromatic and medicinal properties
since ancient times. Some aromatic herbs, such as thyme (Thymus vulgaris), savory (Satureja
hortensis), cinnamon (Cinnamomum verum), cumin (Cuminum cyminum), rosemary (Salvia
rosmarinus), and clove (Syzygium aromaticum) are used worldwide as seasonings to enrich food
flavors (2). In addition, many perfumes and fragrances use the fragrant oil of aromatic plants as
their main ingredients, for instance, lavender oil, rosemary oil, lemongrass oil, and mint oil, etc.
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Recently, EOs have also been used as the major therapeutic
agents for aroma and massage therapy due to their antiseptic
and skin permeability properties. Inhalation, topical application
to the skin, massage, and bath are the major methods used
in aromatherapy. Aromatherapy utilizes various EOs to treat
mental stress and anxiety, as well as numerous other ailments
like depression, indigestion, headache and migraine, insomnia,
muscular pain, respiratory problems, skin ailments, and swollen
joints (2). In a review of the pharmaceutical and therapeutic
potential of EOs, Edris (3) summarized published reports of EOs
that have shown potential to improve immunity, enhance energy
and mental clarity, suppress cancer, and prevent cardiovascular
diseases, cholesterol, and diabetes.

Conventional fungicides can cause potential ecotoxicological
risks and be hazardous to a wide range of non-target organisms
in aquatic systems because they impact basic biological processes
that are not unique to fungi (4). The increasing need to control
plant pathogens and arthropod pests in organic fruit production
promotes the search for safe and effective compounds from
natural sources, especially plant-derived compounds. Essential
oils have potential in insecticidal, anti-bacterial, anti-fungal, and
anti-viral functions as they effectively destroy several pests and
pathogens due to the actions of various functional groups such
as alcohols, aldehydes, phenolics, terpenes, ketones, and other
antimicrobial compounds (1, 5). However, most EOs still need to
be handled cautiously and following labeling recommendations
given for each situation because EOs may be phytotoxic and
cytotoxic at high concentrations (6, 7).

The efficacy of conventional treatments and EO treatments
have been compared in some studies. In a study by Zaka et al.
(8), four plant essential oils, two plant extracts, two herbicides,
and two insecticides were tested against Tribolium confusum, a
stored grain insect pest. The results suggested that even though
the two conventional insecticides, abamectin and cypermethrin,
caused higher mortalities in a shorter time, the EOs also showed
promising results. Neem EO and citrus plant extract also killed
adults of T. confusum quicker compared to other treatments.
EOs can be better alternatives to highly toxic and hazardous
chemicals for stored grain pestsmanagement. In another study by
Khaliq et al. (9), five EOs (Calotropis procera, Azadirachta indica,
Eucalyptus camaldulensis, Datura stramonium and Nicotiana
tabacum) and a conventional fumigant (phosphine gas) were
tested at various concentrations individually and synergistically
against red flour beetle (Tribolium castaneum). The EO of
N. tabacum (15%) and phosphine gas (500 ppm) caused the
highest mortality. The highest synergistic toxic effect were
observed for 15% N. tabacum and A. indica EOs with 500 ppm
phosphine gas combinations. The EOs presented promise as
alternatives or synergists to improve the efficacy of conventional
insecticides. Antibiotics and the EOs may act synergistically
by affecting multiple targets, physicochemical interactions, and
inhibiting antibacterial-resistance mechanisms. With a better
understanding of the mechanisms underpinning synergism, it
may be possible to create safe combinations to reduce antibiotic
use (10).

Essential oil composition is mainly determined by genetic,
climatic, geographical, and seasonal factors (11). Main

antioxidant bioactive compounds of several of the most
commonly used EOs are shown in Figure 1. Furthermore, most
of the terpenoids and phenols found in EOs have generally fewer
toxic effects on plants and mammals than synthetic chemicals
(13, 14). The function of EOs in plants is antimicrobial,
antioxidant, and insecticidal defense, moreover, their strong
flavor makes plants less palatable for herbivores (15, 16).

Various techniques are used for the manufacture and
extraction of EOs from plant materials. Traditional methods
include cold compression and distillation, along with solvent
extractionmethods such asmaceration, enfleurage, fermentation,
percolation, hydro diffusion, and gravity extraction (17, 18).
Other promising techniques have been recently applied, such
as solvent-free microwave extraction (19), ultrasonic-microwave
assisted extraction (20), supercritical fluid extraction (21),
subcritical water extraction (22), and ohmic heating-assisted
extraction (23). The purpose of these methods is to remove and
concentrate the oils from the plant tissue in a pure form. Overall,
distillation is the most commonly used method (15), including
hydro distillation (24), steam distillation (25), solar distillation
(26), and molecular distillation, an extremely low pressure
distillation process (27). CO2 supercritical fluid extraction is the
most efficient method (28). It uses CO2 under very high pressure
as the solvent; the solvent and extractant separate when the
pressure is released.

Many EOs are approved as food additives and fragrance
ingredients and are labeled Generally Recognized as Safe (GRAS)
in the USA by the Food and Drug Administration (FDA)
in CFR - Code of Federal Regulations Title 21 subpart A -
General Provisions Sec. 182.20 Essential oils, oleoresins (solvent-
free), and natural extractives (https://www.accessdata.fda.gov/
scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=182.20). Therefore,
utilization of EOs as natural preservatives to extend food
shelf-life is gaining interest in the food industry (12). Results
of studies regarding the use of EOs as antimicrobial agents
suggest that EOs can be promising alternatives to synthetic
preservatives for postharvest fruits and vegetables (29–31).
However, possible negative effects of EOs, such as organoleptic
changes (especially smell and taste) and phytotoxicity effects
on fresh produce, are sources of concern among handlers and
consumers (32).

Horticultural systems of food, fiber, and medicinal crops are
complex, multiscale networks inclusive of the entire production,
consumption, and post-consumption cycles of thousands of
commodities worldwide. Within these systems, the methods of
horticultural crop production are influenced by climate, market
infrastructure, accessibility to quality farm inputs, regulations,
ethical and societal norms, and cultural traditions and values.
Organic farming, initially a response to develop alternative
approaches to an increasing reliance on synthetic inputs (33)
has matured to a global industry whose 2019 market value was
estimated at 106.4 billion euros (34). Any farmer may employ
the principles of organic farming, which emphasize soil health,
animal welfare, and pest prevention, but they may be held
accountable to financial penalties if they market their products
as organic without the legal validation from a regulatory body.
Of the 187 countries reporting adoption of organic practices, 108
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FIGURE 1 | Main antioxidant bioactive compounds found in essential oils (12).

have regulatory programs that define and enforce standards of
production, processing, and marketing (34).

In the USA, the National Organic Program (NOP) is housed in
the Department of Agriculture’s (USDA) Agricultural Marketing
Service and enforced by USDA accredited agencies (35). The
NOP certifies production systems. In part, producers must
demonstrate adoption of integrated soil and pest management

strategies that conserve natural resources, employ cultural and
ecological strategies to manage pests, and use formulated
pesticides for pathogens, insects, and weeds only when necessary.
Inputs used for crop production are deemed compliant; and raw
materials used in inputs must meet the criteria described in the
Organic Foods Production Act of 1990 and must be approved
by the farmer’s certification agency before they are used on the
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farm to ensure compliance is maintained. In general, synthetic
materials are prohibited but there are some exceptions. A current
list of all prohibited and approved raw materials allowed for
use in organic systems, including those used in food processing,
cosmetics, is maintained on the National List (36). Compliant
materials and inputs, including formulated pesticides, are readily
recognized by farmers if they bear the NOP EPA label or elect to
pay a fee for validation of compliance by the Organic Materials
Review Institute (OMRI) to use the OMRI-Listed R© label.

Compliant pesticides must also satisfy regulatory criteria
established by the US Environmental Protection Agency (EPA).
Most active and inert ingredients used in compliant pesticides
are considered “minimum risk” by the EPA when used according
to labeled instructions. Biopesticides are defined by the National
Pesticide Information Center as “made of living things, or
come from living things, or found in nature” and include
three types: microbes, natural substances such as EOs, and
plant-incorporated protectants or PIPs, which are genes and
proteins introduced to plants via genetic engineering and thus are
prohibited by the NOP. Biopesticides made of or from microbes
or natural substances have been used in organic farming for
decades, but not all commercially-available biopesticides are
compliant with the NOP.

The current review aims to provide an overview of the latest
studies that have investigated the efficacy of preharvest and
postharvest EO applications to manage diseases, arthropod pests,
and weeds of horticultural crops. We summarize some of the
reasons why EOs are still not in widespread use, list the modes
of action of EO products, and outline common EO application
methods used today in the food industry. Finally, we highlight
gaps in research-based knowledge that should guide the future
directions of efforts to increase EO utilization in regulated and
non-regulated organic horticulture systems globally.

PROPERTIES OF EOs AS
BROAD-SPECTRUM ANTI-MICROBIAL
AGENTS

Disease Management
Fungicides are indispensable to global food security as plant
diseases are a prime constraint on agricultural and horticultural
production (37). Fungicide use on fruits and vegetables accounts
for more than 35% of the global pesticide market; while
fungicides account for <10% of the total mass of pesticides used
in theUnited States (4). Conventional growers rely on application
of synthetic fungicides to mitigate infections and control diseases
properly (38). However, abuses of synthetic compounds have
resulted in more health hazards and environmental pollution,
as well as promoting resistant biotypes of fungal pathogens
(39). Currently, a major goal of organic agriculture is to search
for alternative disease control methods and concentrate on
reaching profitable markets and extending shelf life without
compromising product quality and causing environmental
pollution (14).

Antifungal Properties

Over 19,000 phytopathogenic fungi are known to cause
diseases in agricultural and horticultural crops globally (40).
Fungal pathogens are the most prevalent among all pathogens
and are major causes of quality deterioration of fruits and
vegetables. Fungal diseases, which are mainly caused by
Fusarium,Aspergillus, and Penicillium spp., typically cause decay,
accelerated ripening, and in some cases an accumulation of
mycotoxins (41, 42). Phytopathogenic fungi play a critical role in
the profitability, quality, and quantity of fresh products. They are
responsible for nearly 30% of all crop diseases and cause quality
losses worth billions of dollars worldwide each year (43, 44).

Antifungal properties of EOs against phytopathogenic
fungi have been reported in numerous studies. The fungicidal
assays of EOs include different methods with either in vitro
or in vivo assessments. The results are mostly expressed
as half maximal inhibitory concentration (IC50), minimal
inhibitory concentration (MIC), minimum fungicidal
concentration (MFC), and zone of inhibition (ZOI) (43).
Some commonly studied aspects are mycelial growth
inhibition, conidial germination, dry hyphal mass weight,
germ tube elongation, and hyphal morphology observation by
scanning electron microscopy (SEM) and transmission electron
microscopy (TEM).

Essential oils extracted from plants have different effects on
various phytopathogenic fungi (Table 1). It was observed on
Alternaria alternata-inoculated tomato leaves that cinnamon
oil and origanum oil vapors reduced necrotic lesions, delayed
conidial germination and germ-tube elongation but fennel oil
and thyme oil vapors did not. However, these four EOs showed
similar antifungal activities against the in vitro mycelial growth
of A. alternata in dose-dependent manners (49). Peppermint oil
showed the greatest influence on charcoal rot (Macrophomina
phaseolina) infection in geranium (Pelargonium graveolens),
followed by basil oil, while marjoram oil had no effect on the
pathogen’s growth (111). An in vivo postharvest study revealed
cardamon (1,000 µL L−1) and citronella (750 µL L−1) EOs
significantly inhibited Colletotrichum sp. and Lasiodiplodia sp.
growth, which cause anthracnose and stem-end rot of papaya,
respectively (95). In addition, it was demonstrated that applying
each EO or its major constituent resulted in slightly different
responses. Thyme oil activity is closely related to its major
constituent, thymol. However, the direct application of thymol
resulted in a delayed early A. alternata infection process, while
direct thyme oil only caused a delay in the infection process.
Thyme oil from leaves and thymol had MICs of 500 and 250
µg mL−1 against A. alternata, respectively; while a commercial
fungicide Nativo R© had a MIC of 1,250 µg mL−1 under the
same conditions (52). Vapor contact treatment had stronger
antifungal activity than direct contact treatment. The EO of
Origanum vulgare, as well as two of its primary components,
thymol and carvacrol, exhibited strong antifungal activity against
Botrytis cinerea. From an in vitro study, using direct contact
assays, thymol (17.56mg L−1) had the lowest EC50 against
B. cinerea mycelial growth, followed by carvacrol (26.22mg
L−1) and the EO (52.92mg L−1). In vapor contact assays,
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the EC50 values were substantially lower than those in direct
contact assays, with thymol (0.94mg L−1) having the lowest
EC50 value, followed by carvacrol (1.61mg L−1), and the EO
(16.44mg L−1). In vapor contact assays, the EO exhibited an
MIC of 31.25mg L−1 against B. cinerea spore germination and
an MFC of 62.5mg L−1. Thymol and carvacrol had identical
MIC and MFC values of 7.81 and 15.63mg L−1, respectively.
From an in vivo study, compared to the control, EO vapor
contact treatment reduced the deterioration of cherry tomatoes
by 70.44% at 62.5mg L−1. Fruit decay was reduced by 96.39%
at a concentration of 250mg L−1. Thymol and carvacrol at
62.5mg L−1 suppressed the development of B. cinerea lesions
by 94.13 and 95.37%, respectively, whereas they both completely
suppressed the development of B. cinerea at 125mg L−1 (85).

The mechanisms of EO antifungal activity could be:
(1) Cell wall and membrane disruption leading to cell
membrane permeability change and leakage of cell cytoplasm.
The ultrastructure analysis demonstrated that thymol, major
constituent of thyme oil, acted at the cellular level against fungi
by disrupting cell wall and plasma membrane with subsequent
cytoplasm disorder (52). The results from SEM and TEM
revealed that EO-damaged hyphae cell membranes and changed
the cell membrane permeability, leading to the changes in
the cytoplasm components, such as reducing soluble sugars,
proteins, and ergosterol (86). Another study using SEM and TEM
confirmed that mint oil could disrupt cell walls and destroy
the ultrastructure of hyphae and conidia, resulting in cellular
nucleic acids and proteins leakage and marked shriveling and
crinkling of the hyphae and conidia (84). (2) Influence cell
energy metabolism pathway. In one in vitro and in vivo study
on EOs against Aspergillus niger it was further reported that
EOs could probably inhibit glycolysis, which in turn influenced
cell energy metabolism of fungal pathogens (68). In another
study, it was shown that EOs can disrupt the integrity of plasma
membranes and cause mitochondrial dysfunction, inducing
metabolic stagnation in fungi. Moreover, EOs can modulate
mycotoxin gene expression in the aflatoxin biosynthesis pathway
on Aspergillus flavus (61). (3) Defense dysfunction. Essential
oils could destroy the normal morphology and activities of cell
wall and membrane and cause defense dysfunction against stress
response. Analyses of multiple metabolic pathways illustrated
that spore development, membrane permeability, oxidative
stress, and amino acid metabolism were all disturbed (64).
(4) Accumulation of ROS. It was reported that EOs could
stimulate accumulation of ROS in mycelia and spores and cause
a rapid increase in intracellular reactive oxygen species levels
(113). In other research, it was shown that intracellular ROS
generated by EOs damaged cell membranes and this might
have caused pathogen cell death (124). (5) Anti-aflatoxigenic
effect. Thyme EO significantly reduced the aflatoxin B1 (AFB1)
production of Aspergillus flavus in vitro. This anti-aflatoxigenic
property was attributed to the down-regulation of the secondary
metabolism gene laeA and to the modulation of hydrolase gene
expression involved in fungal colonization and establishment
(62). Rosemary EO could reduce the production of ergosterol and
the biomass of mycelium, and inhibit the production of aflatoxins
B1 and B2, indicating that the antiaflatoxigenic effect of rosemary

EO is independent of its antifungal effect and is likely due to its
direct action upon toxin biosynthesis (63). (6) Regulate specific
gene expression in the host. The expression of the pathogenesis-
related (PR) gene PR-8 in apple was induced by 2.5-fold by EOs
compared to untreated inoculated fruit, which suggested that
EOs induced resistance against pathogens through the priming
of defense responses (87).

Antibacterial Properties

Bacteria causing diseases on plants also have a considerable
economic impact. Plant pathogenic bacteria survive in diverse
environments, both in plants, as pathogens, and outside their
hosts as saprophytes. About 350 bacteria, which are pathovars or
subspecies belonging to the phyla Proteobacteria, Actinobacteria,
and Firmicutes, are known to be phytopathogenic [(158);
Table 2].

The antibacterial activities of EO are mostly expressed in
MIC, minimal bactericidal concentration (MBC), and ZOI.
Regarding in vitro antibacterial activities tests, overall Gram-
positive organisms are more susceptible to EO compared with
Gram-negative organisms, which is due to the structure of the
cellular membrane. It was reported that the susceptibility of
Gram-positive bacteria was observed to be greater than that
of Gram-negative bacteria when treated with EO distilled from
Citrus medica (159), Ocimum basilicum (160), Mentha spicata
(161), Nepeta ucrainica (162), Zanthoxylum schinifolium (163),
and Zingiber officinale (164).

The antibacterial activity of basil (Ocimum ciliatum) EO,
as a new source of methyl chavicol, was tested against ten
important phytopathogenic bacteria. The antibacterial test results
indicated that the EO had antibacterial activity against all
of the bacteria tested. The most vulnerable bacterium was
Brenneria nigrifluens, while the most resistant bacterium was
Pseudomonas tolaasii, based on the ZOI values. Moreover, the
EO had the lowest MIC values against Ralstonia solanacearum
and the lowest MBC was found to have the strongest bactericidal
property against the Xanthomonas citri (137). Eleven EOs were
screened for antibacterial activities and abilities to influence
the growth and virulence factors of Erwinia amylovora, causing
fire blight. According to ZOI values, Foeniculum vulgare and
Pimpinella anisum EOs showed strong antibacterial activity
and Artemisia aucheri and Heracleum persicum EOs had
moderate antibacterial activity. The other seven EOs did
not show substantial growth inhibition but could reduce the
production of virulence factors in E. amylovora at non-lethal
concentrations. Both A. aucheri and F. vulgare EOs indicated
the highest bacteriostatic (MBC 15.6µg/mL) and bactericidal
(MIC 7.8µg/mL) activities. In contrast, Citrus sinensis and Citrus
aurantifolia exhibited minimal bacteriostatic (MBC 250µg/mL)
and bactericidal (MIC 250 µg/ mL) activities. From an in vivo
study, EOs of Apium graveolens (celery seed) and Curcuma longa
(turmeric) demonstrated the greatest reduction in the impact of
E. amylovora virulence factors. They reduced disease progression
of E. amylovora on immature pear fruit by 41.71 and 30.17%, and
disease progression in pear seedling shoots by 26.9 and 16.7%,
respectively (144).
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The mechanisms of EO antibacterial activities have been
widely studied. In a recent study, the mechanisms of antibacterial
activity of finger citron essential oil were investigated by
observing changes of bacteria morphology according to scanning
electron microscopy, time-kill analysis, and permeability of
cell and membrane integrity. Morphology of Escherichia coli
and Staphylococcus aureus were changed and damaged more
seriously with higher concentration and longer exposure time
to finger citron EO. It significantly suppressed the growth
rate of surviving bacteria and led to lysis of the cell wall,
intracellular ingredient leakage, including small ions, nucleic
acids, and proteins, and finally cell death (159). Cinnamon EO
was reported to cause the leakage of small electrolytes, rapidly
increasing the electric conductivity of S. aureus and E. coli
within the first few hours of exposure, decreasing the bacterial
metabolic activity 3–5-fold. Furthermore, the concentration of
proteins and nucleic acids in cell suspension also increased with
increased cinnamon EO (165). Under the transmission electron
microscope, Cinnamomum longepaniculatum leaf EO decreased
cell size, and ruptured the cell walls and cell membranes of treated
bacteria. Moreover, nucleoplasm was reduced and gathered
onto the side, which might be attributed to its hydrophobicity
(166). In addition, as a result of post-contact effects, cell
constituents release assays, and ultrastructural analysis revealed
that the loss of integrity of the cell membranes and vital
intracellular constituents could be one of the mechanisms of
action of the green huajiao (Zanthoxylum schinifolium) EO
against selected foodborne pathogens (163). Electronmicroscopy
observation indicated that fennel seeds EO disrupt membrane
integrity, according to the leakage of electrolytes and the losses
of protein and sugar contents of targeted bacteria (163). In
other research, it was shown that the nanoemulsion amplified
the antibacterial activity of Thymus daenensis EO against E.
coli by increasing the EO ability to disrupt cell membrane
integrity. The results were investigated by measuring potassium,
protein, and nucleic acid leakage from the cells, and by electron
microscopy (167). Litsea cubeba EO can inhibit the respiratory
metabolism, the hexose monophosphate pathway and its key
enzyme (glucose-6-phosphate dehydrogenase) of methicillin-
resistant Staphylococcus aureus. Moreover, citral, the main
component of Litsea cubeba EO, could further form chimeras
with DNA of methicillin-resistant Staphylococcus aureus to
inhibit its biological activity (168).

In summary, EO antibacterial mechanisms might include
loss of integrity of the cell walls and membranes, leakage of
electrolytes, loss of intracellular constituents, increase of bacteria
electrical conductivity and nucleic acid concentration in cell
suspension, and inhibition of respiratory metabolism decrease
bacterial metabolic activity.

Arthropod Pest Management
Indiscriminate use of conventional synthetic chemical
insecticides has caused different types of environmental
and toxicological problems, such as environmental pollution,
toxicity to non-targeted organisms, and development of
pesticide resistance. Therefore, it is important to identify
more biodegradable alternatives that are less persistent in

the environment than chemical insecticides (169). Interest
in the potential use of natural and botanical products
for pest management, such as EOs or their derivatives,
has grown dramatically in the past two decades due to
their lower mammalian toxicity and faster environmental
degradation (170–172).

EOs have antimicrobial or insecticidal properties that can
protect plants from herbivores and microorganisms. In line
with the known synergistic effects of complex EO mixtures, the
knockdown and mortality rates, and biocidal activity against
some adult dipteran insects increased by up to 100% for certain
EO mixtures compared to individual EOs (173). Another study
indicated that citral can be synergistic to limonene and geranyl
acetate when their concentrations increase in the mixture.
Moreover, the binary mixture of the two major constituents
of lemongrass oil, citral and limonene, displayed synergistic
cytotoxicity on an ovarian cell line of the cabbage looper (174).
However, another comparison of toxicity and deterrent activity
with artificial blends as binary mixtures revealed that synergism
was not a generalized phenomenon and both species and blend
specific variations can occur (175).

Essential oils are believed to interfere with basic metabolic,
biochemical, physiological and behavioral functions of insects.
However, little is known about their complete modes of
action (169, 176). The mono- and sesquiterpenoid constituents
of EOs are fast-acting neurotoxins in insects and related
arthropods, possibly interacting with multiple types of receptors
in their nervous system (171). These compounds also display
potentially important sublethal behavioral effects on arthropods,
such as repellence; oviposition deterrence; ovicidal, larvicidal
pupicidal and antifeedant effects (169). Different EOs may
work via different mechanisms. The acute toxicity and feeding
deterrent activity of ten common EOs against three postharvest
stored-grain pests (Sitophilus oryzae, Tribolium castaneum, and
Rhyzopertha dominica) were evaluated (175). Thymol, carvacrol,
eugenol, and trans-anethole showed differential species-specific
toxicity, and acted as acute toxins rather than feeding deterrents.
However, linalool was a general feeding deterrent against all three
species. The antifeedant activity could be due to physiological
toxicity rather than interaction with gustatory receptors. The
authors further reported combined toxic and antifeedant effects
for various combinations of anethole, carvacrol, or linalool.
Moreover, the observed decreased beetle mortality, but increased
feeding deterrence, implied that the physiological toxicity
induced by acute toxins synergized with the deterrent activity of
a compound in a mixture, but the dose may not be sufficient to
kill (175).

Essential oils have also been used as insect attractants in pest
control programs.Coriandrum sativum andNerium indicum EOs
were strong attractants of both adults and nymphs of Cyrtorhinus
lividipennis, a major predator of the rice planthopper (177); Thus,
these OEs can be used in augmentative biological control against
rice pests. In addition, EOs are used as lures for detecting and
monitoring invasive ambrosia beetles (178, 179).

Essential oils were shown to control preharvest and
postharvest phytophagous insects during their development,
growth, and adult emergence (169). As of this writing, screening,
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discovery, and demonstration of bioactivity have been reported
in numerous studies of various EOs against various insect
pests (180). Ebadollahi et al. (181) summarized in their review
paper that the main components in the EOs extracted from the
Lamiaceae plant family exhibit insecticidal effects. For instance,
terpinen-4-ol displayed contact and fumigant toxicity against
adults of Cimex lectularius (182), α-pinene showed fumigant and
contact toxicities and repellency against adults of T. castaneum
(183), terpinolene demonstrated larvicidal and pupicidal activity
against Culex quinquefasciatus (184), and α-terpineol exhibited
fumigant toxicity against the adults of Sitophilus granaries (185).
In addition, Stepanycheva et al. (186) reported that the EOs
obtained fromMentha pulegium and Thymus mastichina showed
acute toxicity effects against western flower thrips (Frankliniella
occidentalis Perg.) by fumigation.

EOs have also been used against pestiferous mites and
nematodes. Lemongrass (Cymbopogon citratus) oil showed
promising miticidal activity and ovicidal effects against Sarcoptes
scabiei (187). Besides, Ozdemir and Gozel (188) tested 10 EOs
and discovered Lavandula officinalis,Artemisia absinthium, Piper
nigrum, Citrus bergamia and Mentha arvensis have the most
nematicidal effects against the root-knot nematode Meloidogyne
incognita. Other than the commonly seen EOs, some novel EOs
have also shown pesticidal properties. The EOs from Cuminum
cyminum and Pimpinella anisum were toxic to the agricultural
pests, Myzus persicae and Spodoptera littoralis, to the common
housefly Musca domestica and to the lymphatic filariasis and
Zika virus vector Culex quinquefasciatus, without affecting non-
target invertebrates (189). The EO of Eugenia uniflora is toxic to
the bronze bug, Thaumastocoris peregrinus, and selective to its
parasitoid, Cleruchoides noackae (190).

Even though there have been thousands of studies conducted
in which the bioactivities of EOs and their derivatives against
insects were documented, most of those studies are limited to
laboratory conditions and are on the R&D phase instead of the
product development end. Therefore, only a handful of EO-
based pesticides have been successfully commercialized, lagging
far behind relative to the extensive scientific literature devoted
to the area. Table 3 lists some of the current commercial EO-
based insecticides/miticides.

Isman (171) pointed out that commercial development of
EO-based bioinsecticides can follow several different pathways,
producing products with active ingredients including (1) a
mixture of EOs; (2) a single EO, or a single terpenoid constituent;
(3) a blend of synthetically produced terpenoids emulating a
plant EO; and (4) non-natural blends of terpenoids obtained
from different plant sources. Meanwhile, there are notable
challenges for the commercialization of EO-based pesticides: (1)
stability of EOs in storage and transport and persistence in field
application; (2) residual action and efficacy after application; (3)
phytotoxicity on crop and ornamental plants (191).

Formulation can be a potential method to improve EO-
based pesticide performance. Formulation technologies, which
involve using appropriate volumes of solvents and emulsifiers to
make aqueous emulsions, can enhance the stability of non-polar
EO constituents, thus increasing their efficacy and persistence,
slowing down release, and preventing rapid evaporation.

TABLE 1 | Examples of EOs acting against phytopathogenic fungi/oomycetes.

Essential oil distilled from

plant species

Target fungi Disease

caused

References

Cymbopogon nardus Alternaria

alterna

Black rot and

leaf bligt

(45)ab

Thymbra spicata, Lavandula

stoechas, Foeniculum

vulgare

(46)a

Laurus nobilis (47)ab

Mentha x piperita (48)a

Cinnamon oil, origanum oil (49)ab

Cinnamomum zeylanicum,

Eugenia caryophyllus

(50)ab

Mentha arvensis (51)ab

Thymus vulgaris (52)ab

Juniperus polycarpos (53)a

Armeniaca sibirica Alternaria

brassicae

(54)ab

Satureja hortensis Alternaria citri (55)a

Artemisia spp. Alternaria

solani

(56)a

Lippia alba (57)a

Simmondsia chinensis,

Zingiber officinale Roscoe,

Allium sativum, Syzygium

aromaticum, Sesamum

indicum, Eucalyptus

glabulus, Cinnamon

zylanicum, Ricinus

communis, Citrus limon,

Brassica nigra

(58)ab

Armeniaca sibirica (54)ab

Allium sativum Alternaria

tenuissima

(59)a

Daucus carota Alternaria

triticina

(60)a

Curcuma longa Aspergillus

flavus

Ear rot (61)ab

Thymus vulgaris (62)a

Rosmarinus officinalis (63)a

Perilla frutescens (64)a

Ammodaucus leucotrichus (65)a

Zhumeria majdae (66)a

Perilla frutescens Aspergillus

glaucus

Black mold (67)a

Thyme oil, clove oil Aspergillus

niger

(68)ab

Rosmarinus officinalis (69)a

Eugenia caryophyllata, Piper

nigrum

(70)ab

Ammodaucus leucotrichus Aspergillus

ochraceus

(65)a

Cymbopogon citratus,

Eucalyptus globulus,

Origanum vulgare, Ruta

graveolens, Salvia officinalis,

Satureja Montana

Aspergillus

parasiticus

(71)a

Allium cepa Aspergillus

spp.

(72)a

(Continued)
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TABLE 1 | Continued

Essential oil distilled from

plant species

Target fungi Disease

caused

References

Cymbopogon citratus,

Thymus vulgaris, Origanum

vulgare, Syzygium

aromaticum

(73)ab

Zhumeria majdae Aspergillus

tubingensis

Leaf spot (66)a

Cinnamomum tamala Bipolaris

australiensis

(74)a

Lippia sidoides Bipolaris

maydis

(75)ab

Heteranthera reniformis Bipolaris

oryzae

(76)a

Rosmarinus officinalis (77)a

Daucus carota Bipolaris

sorokiniana

(60)a

Ocimum basilicum Bipolaris spp. (78)a

Myrtaceae spp. Biscogniauxia

mediterranea

Charcoal

canker

(79)a

Mentha spicata,

Cymbopogon martini

Botrytis

cinerea

Gray mold (80)ab

Syzygium aromaticum,

Thymus vulgaris

(81)a

Melaleuca alternifolia (82)ab

Tetraclinis articulata (83)ab

Mentha sp. (84)ab

Origanum vulgare (85)ab

Litsea cubeba (86)a

Satureja montana, Thymus

vulgaris

(87)b

Zhumeria majdae (66)a

Cinnamon zeylanicum,

Zataria multiflora

(88)ab

Cinnamomum tamala Choanephora

cucurbitarum

Flower and

fruit rot

(74)a

Zhumeria majdae Cladosporium

cladosporioides

Leaf spot (66)a

Thymus vulgaris,

Cinnamomum zeylanicum

Colletotrichum

acutatum

Anthracnoe (89)ab

Cinnamomum sp. (90)a

Thymus vulgaris, Salvia

officinalis, Mentha piperita

(91)ab

Schinus molle Colletotrichum

gloeosporioides

(92)a

Bunium persicum Colletotrichum

lindemuthianum

(93)ab

Thymus vulgaris Colletotrichum

musae

(94)ab

Elettaria cardamomum,

Cymbopogon nardus

Colletotrichum

sp.

(95)a

Juniperus polycarpos Colletotrichum

trichellum

(53)a

Juniperus polycarpos Curvularia

fallax

Black sheath

spot

(53)a

Cedrus deodara Curvularia

lunata

Leaf spot (96)a

(Continued)

TABLE 1 | Continued

Essential oil distilled from

plant species

Target fungi Disease

caused

References

Cymbopogon citratus (97)ab

Juniperus polycarpos Cytospora

sacchari

Cytospora

canker

(53)a

Piper auritum Fusarium

equiseti

Root rot (98)a

Zingiber officinale Fusarium

graminearum

Fusarium

head blight

(99)a

Baccharis dracunculifolia,

Pogostemon cablin

(100)a

Juniperus polycarpos Fusarium

oxysporum

Fusarium wilt (53)a

Syzygium aromaticum (101)ab

Eugenia caryophyllata, Piper

nigrum

(70)ab

Piper auritum (98)a

Cymbopogon sp. Fusarium

solani

Root rot (102)ab

Mentha piperita Fusarium

sporotrichioides

Fusarium

head blight

(103)a

Allium cepa Fusarium spp. (72)a

Eucalyptus camaldulensis (104)a

Zhumeria majdae (66)a

Rosmarinus officinalis Fusarium

verticillioides

Stalk rot and

ear rot

(105)a

Curcuma longa (106)a

Mentha × piperita Geotrichum

citri

Sour rot (107)a

Elettaria cardamomum,

Cymbopogon nardus

Lasiodiplodia

sp.

Dieback and

blights

(95)a

Melaleuca alternifolia Lasiodiplodia

theobromae

(108)ab

Juniperus polycarpos Macrophomina

phaseolina

Charcoal rot (53)a

Mentha sp., Lippia gracilis (109)a

Mentha viridis, Mentha

piperita

(110)ab

Mentha piperita, Ocimum

basilicum

(111)ab

Lavandula spp. Monilinia

fructicola

Brown rot (112)ab

Tea tree oil (113)ab

Origanum vulgare Monilinia laxa (114)b

Syzygium aromaticum Penicillium

digitatum

Green mod (115)ab

(116)ab

Citrus aurantium (117)ab

Cymbopogon citratus Penicillium

expansum

(118)b

Allium sativum Penicillium

funiculosum

(119)a

Melaleuca alternifolia Penicillium

griseofulvum

(120)a

Citrus aurantium Penicillium

italicum

(117)ab

(Continued)
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TABLE 1 | Continued

Essential oil distilled from

plant species

Target fungi Disease

caused

References

Thymus vulgaris Penicillium

paneum

(121)ab

Allium cepa Penicillium

spp.

(72)a

Melaleuca alternifolia Penicillium

verrucosum

(120)a

Cinnamomum zeylanicum Phytophthora

colocasiae

Leaf blight (122)a

Allium sativum Phytophthora

nicotianae

Root and fruit

rot, leaf and

stem infection

(123)ab

Thymus vulgaris, Satureja

hortensis

Raffaelea

quercus-

mongolicae

Oak wilt (124)a

Cinnamomum tamala Rhizoctonia

solani

Leaf spot and

root rot

(74)a

Lippia alba (125)ab

Thymus vulgaris, Satureja

hortensis

(124)a

Lippia sidoides Rhizopus

stolonifer

Soft rot (126)ab

Citrus sinensis (127)a

Cinnamon zeylanicum,

Zataria multiflora

(88)ab

Zhumeria majdae Sclerotinia

sclerotiorum

Soft rot (66)a

Ziziphora clinopodioides (128)ab

Piper aduncum (129)a

Murraya paniculata (130)a

Origanum dubium (131)a

Daucus carota Ustilago

segetum

Loose smut (60)a

Thymus sp. Verticillium

dahlia

Verticillium

wilt

(132)ab

Cinnamomum spp. Villosiclava

virens

Rice false

smut

(133)a

Only treatments that displayed staitically significant antifungal effects are included; consult

the references for treatment details; a in vitro study; b in vivo study; abboth in vitro

and in vivo study.

Nanoformulation technologies, including nano-emulsification
and nanoencapsulation, are expected to improve EO chemical
activity and persistence, and enable penetration into insect
tissues, thus enhancing their insecticidal activity (192–194).
In addition, almost any oil can be phytotoxic if applied as
an aqueous emulsion at concentrations exceeding 2%, and in
some cases, the phytotoxic concentration can be as low as
1%. Formulation is also a highly promising way to mitigate or
eliminate phytotoxicity.

Three core constraints determining the potential for EO-based
biopesticide production are (1) availability and consistency of the
source plant, (2) cost, and (3) regulatory approval (171). The
price largely depends on the availability of the EO materials.

TABLE 2 | Examples of EO acting against phytopathogenic bacteria.

Essential oil

distilled from plant

species:

Target

bacteria

Disease

caused:

References

Satureja hortensis Gram-

positive

Clavibacter

michiganensis

Bacterial wilt

and canker

(134)ab

Origanum vulgare (135)ab

Allium sativum

Ocimum basilicum

Cinnamomum

zeylanicum

Syzygium

aromaticum

Thymus vulgaris

Allium sativum Rhodococcus

fascians

Leafy gall

syndrome

(136)a

Ocimum ciliatum (137)a

Teucrium polium Streptomyces

scabies

Common

scab

(138)a

Allium sativum Gram-

negative

Agrobacterium

tumefaciens

Crown gall (136)a

Eriocephalus

africanus

(139)a

Cinnamomum

verum

(140)a

Pinus halepensis (141)a

Dysphania

ambrosioides

(142)a

Ocimum ciliatum Agrobacterium

vitis

Crown gall (137)a

Ocimum ciliatum Brenneria

nigrifluens

Canker (137)a

Teucrium polium (138)a

Eriocephalus

africanus

Dickeya solani Soft rot (139)a

Pinus halepensis (141)a

Citharexylum

spinosum

(143)a

Bougainvilla

spectabilis

Allium sativum Erwinia

amylovora

Fire blight (136)a

Apium graveolens (144)ab

Curcuma longa

Eriocephalus

africanus

(139)a

Dysphania

ambrosioides

(142)a

Eugenia

caryophylata

Erwinia

carotovora

Black stem

and soft rot

(145)ab

Cinnamomum

zelanicum

Datura metel

Origanum vulgare Erwinia

rhapontici

Crown rot (146)a

Cinnamomum

cassia

Klebsiella

pneumoniae

Block root

respiration

(147)a

(Continued)
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TABLE 2 | Continued

Essential oil

distilled from plant

species

Target

bacteria

Disease

caused

References

Teucrium polium Pantoea

agglomerans

Bacterial

blight

(138)a

Ocimum ciliatum Pantoea

stewartii

Stewart’s wilt

and leaf

blight

(137)a

Pinus halepensis Pectobacterium

atrosepticum

Soft rot (141)a

Bougainvilla

spectabilis

Pectobacterium

carotovorum

Soft rot (143)a

Eucalyptus globulus Pseudomonas

aeruginosa

Bacterial

root rot

(148)a

Thymus vulgaris (149)a

Origanum majorana

Eriocephalus

africanus

Pseudomonas

cichorii

Bacterial leaf

blight

(139)a

Thymus serpyllum Pseudomonas

savastanoi

Bacterial

canker

(150)a

Origanum syriacum

Satureja hortensis Pseudomonas

syringae

(134)ab

Ocimum ciliatum (137)a

Cynara cardunculus (151)a

Dysphania

ambrosioides

(142)a

Lantana camara Ralstonia

solanacearum

Bacterial wilt (152)a

Corymbia citriodora (153)a

Cinnamomum spp. (154)a

Tagetes patula (155)a

Solanum torvum (155)a

Teucrium polium (138)a

Pinus halepensis (141)a

Ocimum ciliatum (137)a

Origanum vulgare (135)ab

Allium sativum

Ocimum basilicum

Cinnamomum

zeylanicum

Syzygium

aromaticum

Thymus vulgaris

Thymbra spicata Rhizobium

radiobacter

Crown gall (150)a

Thymus serpyllum

Origanum syriacum

Teucrium polium (138)a

Teucrium polium Rhizobium vitis Crown gall (138)a

Cinnamomum

cassia

Serratia

marcescens

Leaf Spot (147)ab

Thymus vulgaris Solanum

lycopersicum

Late blight (156)ab

Cymbopogon

citratus

(Continued)

TABLE 2 | Continued

Essential oil

distilled from plant

species

Target

bacteria

Disease

caused

References

Satureja hortensis Xanthomonas

axanopodis

bacterial

canker

(134)ab

Thymus vulgaris (156)ab

Cymbopogon

citratus

solanum torvum (155)a

Satureja hortensis Xanthomonas

campestris

Black rot (134)ab

Teucrium polium (138)a

Origanum vulgare (146)a

Ocimum ciliatum Xanthomonas

citri

Citrus

bacterial

canker

(137)a

Citrus aurantium (157)a

Citrus aurantifolia

Ocimum ciliatum Xanthomonas

oryzae

Bacterial

blight

(137)a

Cynara cardunculus Xanthomonas

perforans

Bacterial

spot

(151)a

Only treatments that displayed statistically significant antibacterial effects are included;

consult the references for treatment details; a in vitro study; b in vivo study; abboth in vitro

and in vivo study.

Widely used oils, such as for the fragrance and flavoring
industries, produced on amassive scale can reduce the price level.
In contrast, producing rarely used oils will result in extremely
high prices for pest management products. One of the least
expensive EOs is orange oil. The fruit peel used for extraction
is a waste product of the orange juice industry, and the oil can
be produced by cold pressing rather than hydrodistillation (191).
Many EOs and some pure EO constituents are exempt from USA
federal regulations on pesticides because of their minimal risk
to human, animal, and environmental health (171, 191). While
these low toxicity products aremore likely to be allowed for use in
organic systems, each product must be evaluated for compliance
to the NOP federal rule prior to use in USA organic systems.

Overall, EO-based pesticides appear to be safer alternatives
to conventional synthetic chemical insecticides in integrated
pest management. They display toxic, repellent, and antifeedant
activity against various insect and mite species. However, the
commercialization of EO-based pesticides faces some challenges,
including achieving necessary stability, persistence, efficacy,
and mitigating phytotoxicity. Nanoformulation is a promising
approach to improve the performance of EO-based pesticides.
Further studies are required to develop novel formulations that
would increase efficacy with lower costs.

Weed Management
Weeds can interfere with the productivity of horticultural crops,
reducing the yield and quality of fresh and processed products.
Since the 1940s, when synthetic herbicides were discovered, their
application has become the primary technique utilized for weed
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TABLE 3 | Currently available commercially formulated insecticides/miticides based on plant essential oils.

Product Producer Active ingredient(s) USDA organic

compliant

Crop(s) Target pest(s)

EcoTrolTM EcoIPM (USA) 10% rosemary oil Yes, OMRI listed Vegetables

Cucurbits

Small fruits & Berries

Citrus, Pome & Stone fruits

Nuts

Herbs & Spices

Whiteflies, spider mites, aphids, pacific

mites,

EcoTrol® Plus KeyPlex (USA) 10% rosemary oil

5% geraniol

2% peppermint oil

Yes, OMRI listed Vegetables

Cucurbits

Alfalfa

Herbs & Spices

Small fruits & Berries

Grape & Hops

Stone fruits & Pome fruits

Citrus & Subtropicals

Nuts

Field crops

Christmas trees

Mushrooms

Aphids, beetles, early stages of

caterpillars, flies, leafhoppers, leafminers,

mealybugs, mites, softscales, thrips,

whiteflies

GC-MiteTM JH Biotech (USA) 40% cottonseed oil

20% clove oil

10% garlic oil

Yes, OMRI listed Berries

Fruit trees

Grapes

Vegetables

Melons & Cucurbits

Peppermint & Herbs

Flowers & Ornamentals

Mites (most spider mites, two-spotted

mite, european red mite, Texas

six-spotted spider mite, pacific mite,

willamette mite, persea mite, rust mite,

silver mite), thrips (avocado thrips, citrus

thrips, flower thrips, greenhouse thrips),

aphids (cabbage aphid, green peach

aphid, black aphid, brown aphid)

Thyme Guard® Agro Research

International (USA)

23% thyme oil extract Yes, Washington

State Dept of

Agriculture

All crops, turf, and ornamentals. Sucking insects, such as psyllid, spider

mite, scale and whitefly

Cedar gardTM Natural Resources

Group (USA)

16% cedar oil Yes, OMRI listed Field crops

Horticulture & Vegetables

Grapes, tree fruit, citrus, nuts, berries,

stone fruits

Grass & Turf

Biting, sucking, and rasping insect pests

TetraCURBTM Kemin crop

technologies (USA)

50% rosemary oil Yes, OMRI listed Food and non-food crops, indoor and

outdoor production systems

Mites (such as spider mites), small,

soft-bodied insects (such as aphids and

whiteflies)

Trilogy® Certis biologicals

(USA)

70% clarified

hydrophobic extract of

neem oil

Yes, OMRI listed Legume & Vegetables

Nuts

Small fruits & Berries

Miscellaneous crops

Aphids, mealybugs, mites, soft scales,

whiteflies, thrips

Eco-oil® Organic Crop

Protectants (AUS)

2% blend of tea tree

(Melaleuca) and

eucalyptus oils

Yes, ACO Certified

(Australian Certified

Organic Input)

Vegetables

Ornamental plants

Citrus

Olive trees

Scale, aphids, two-spotted mite, whitefly,

mealybugs and citrus leafminer

Akabrown® Green Corp

Biorganiks (MEX)

1.25% cinnamon oil

1.0% peppermint oil

0.5% clove oil

0.25% oregano oil

Yes, OMRI listed Vegetables

Berries

Spider mites

management (43). Conventional synthetic herbicides are water
soluble, polar, and heat stable; therefore it is difficult to diminish
and reduce the lethality (195). That causes evolution of herbicide-
resistant weed biotypes, and soil and water pollution, which
may eventually adversely influence humans. Thus, more selection
of safe, efficient, and cost-effective organic herbicides, featuring
diverse classes of compounds and having dissimilar mechanisms
of action, are urgently needed.

The study of plant-plant interactions via the release of
secondary metabolites could be a start for discovering of new
substances with herbicidal activity (196). Essential oils and
their constituents, primarily terpenoids, are good candidates as
alternatives to synthetic herbicides. Utilization of EOs in weed
management is mainly due to their allelochemical compounds
(197). The term allelopathy refers to a plant-plant interaction,
whereby allelochemicals released by one plant influence the
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physiological and biochemical processes of other surrounding
plants directly or indirectly (198). Allelochemicals are a broad
category of complex compounds that include, but are not
limited to, EOs, carbohydrates, amino acids, salicylates, alkaloids,
phenolics, flavonoids, jasmonates, momilactones, hydroxamic
acids, brassinosteroids, and glucosinolates (199).

Generally, both monoterpenoids and sesquiterpenoids
contribute to the phytotoxic and allelopathic effects of EOs
(200, 201). However, their herbicidal activity often seems
to be selective (202). For instance, at all doses tested, Cistus
ladanifer EO totally inhibited Amaranthus hybridus germination
and nearly stopped Conyza canadensis and Parietaria judaica
germination. The EO had less impact on Portulaca oleracea,
only limiting its germination at higher dosages tested. It had
no effect on the germination of Chenopodium album. The EO
displayed high phytotoxic activity in terms of seedling length,
and it was effective at all concentrations tested (203). Whatever
effect an active EO component has against one target species
will not always be maintained against another species, even if
they are in the same family or genus (202). This is a critical
characteristic because herbicides require activity specificity. As a
result, the primary task would be to discover the most effective
chemicals for the various target weed species. Moreover, these
compounds can function independently in certain situations, but
also synergistically or antagonistically in others. Therefore, the
nature of the interaction cannot be predicted in general based on
the individual chemicals operating alone (202).

The phytotoxic and herbicidal potential of EOs against weeds
has been extensively studied (Table 4). Essential oils have been
investigated for their potential impact on seed germination rate
and physiological growth. Rosemary EO, rich in 1,8-cineole,
was found to significantly increase the amounts of proline
and the relative membrane permeability of leaves, as well as
strongly inhibit the germination of seeds and the growth of
two weed species, amaranth weed (Amaranthus retroflexus) and
radish (Rhaphanus sativus) (199). Citrus aurantiifolia EO and its
major constituents, limonene (∼41%) and citral (∼28%), were
demonstrated to affect mitotic activity and induce chromosomal
abnormalities in three grassy agricultural weeds [Avena fatua,
Echinochloa crus-galli, and Phalaris minor; (235)]. Citral was
shown to be the most toxic followed by C. aurantiifolia oil
and limonene through phytotoxicity and cytotoxicity assays.
However, not all EOs display an herbicidal effect. For example,
Achillea gypsicola EO was shown to be ineffective against the
germination of Chenopodium album and Rumex crispus seeds
(236). Moreover, EO from Pinus radiata was found to exhibit
an herbicidal effect that was significantly more effective on
dicots than monocots (222). The herbicidal potential of Thymbra
capitata, Mentha × piperita, and Santolina chamaecyparissus
EOs were evaluated on Avena fatua, Echinochloa crus-galli,
Portulaca oleracea, and Amaranthus retroflexus. Both Thymbra
capitata and Mentha × piperita EOs showed a broad spectrum
of activity, with Thymbra capitata at the highest doses applied
(12 µL mL−1) killing plants of all weed species except for
Portulaca oleracea at 90%. Mentha × piperita at the highest
dose (20 µL mL−1) completely controlled Avena fatua and
Amaranthus retroflexus plants but displayed 90 and 40% efficacy

on Portulaca oleracea and Echinochloa crus-galli, respectively.
Although Santolina chamaecyparissus EO was less active than the
other EOs, it demonstrated an excellent selective activity, being
highly effective against A. retroflexus, showing 90% efficacy at the
highest dose, 20 µL mL−1 (230).

Regarding phytotoxic effects of EO, visible symptoms such
as inhibition of germination and seedling development, along
with necrosis and chlorosis (237), or leaf burning (238), were
previously reported to be related to the following mechanisms of
action (43, 239).

(1) Essential oils and their pure components induce oxidative
damage and loss of membrane integrity by generation of ROS,
causing ion or electrolyte leakage, membrane depolarization,
cuticular wax interruption, stomata clogging, and epidermal
cell shrinkage. Citronellol was reported to inhibit root and
shoot growth of Triticum aestivum by ROS-mediated membrane
disruption. ROS production could result in lipid peroxidation,
membrane damage, and solute leakage (240). As a consequence
of the disruption of the membrane integrity, Citronellal-treated
weed leaves showed cuticular wax interruption, stomata clogging,
epidermal cell shrinkage, and rapid electrolyte leakage (241).

(2) Inhibition of DNA synthesis and mitosis. It is widely
believed that EO phytotoxic effects are mediated by suppression
of DNA synthesis, interfering with mitotic activity, or disrupting
surrounding membranes of mitochondria and nuclei in some
organelles such as mitochondria (242). The compound 1,8-
cineole, the major component of rosemary and mentha EOs, was
suggested to inhibit DNA synthesis and mitotic activity in both
cell nuclei and organelles in root apical meristem of Brassica
campestris (243, 244).

(3) Reduction of cellular and mitochondrial respiration.
Most of the fundamental cellular activities, including cell
division, ion and solute transportation across membranes, and
synthesis of molecules such as membrane lipids, chlorophyll,
proteins, and nucleic acids, require a source of metabolic
energy. Mitochondrial respiration supplies ATP to support
these processes (239). Abrahim et al. (245) confirmed that α-
pinene, a major component of rosemary EO, strongly impaired
mitochondrial energy metabolism and inhibited ATP production
of maize seedlings by uncoupling of oxidative phosphorylation
and inhibition of electron transfer. They further illustrated
that α-pinene can inhibit or completely suppress mitochondrial
respiration depending on its dose.

(4) Inhibition of photosynthesis. It was demonstrated that
the EOs from Cymbopogon nardus and Eucalyptus citriodora
as well as pure citronellal reduced chlorophyll content and
total protein content in crabgrass (Digitaria horizontalis) and
burrgrass (Cenchrus echinatus) by more than 80 and 90%,
respectively (201). Origanum vulgare EO was confirmed to
negatively affect nitrogen assimilation into glutamine, causing
excessive accumulation of toxic ammonia in leaf cells as well
as oxidative stress. Afterward, a series of events that suppress
the effectiveness or efficiency of PSII, producing oxidative stress
and, ultimately, a significant decrease in plant growth and
development, followed by leaf necrosis and plant death (246).

(5) Microtubule polymerization. Chaimovitsh et al.
(247) indicated that both limonene and citral could disrupt
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TABLE 4 | Examples of EOs presenting herbicidal properties.

Essential oil distilled from Tested plant References

Ambrosia artemisiifolia Poa annua (204)

Setaria viridis

Amaranthus retroflexus

Medicago sativa

Artemisia fragrans Convolvulus arvensis (205)

Baccharis spp. Lactuca sativa (206)

Bidens pilosa

Carum carvi Echinochloa crus-galli (207)

Chromolaena odorata Echinochloa crus-galli (208)

Amaranthus viridis

Copaifera especies Mimosa pudica (209)

Eryngium triquetrum Lepidium sativum (210)

Smyrnium olusatrum

Eucalyptus citriodora Angallis arvensis (211)

Ocimum basilicum Cyperus rotundus

Mentha arvensis Cynodon dactylon

Eucalyptus globulus Portulaca oleracea (212)

Foeniculum vulgare Triticum aestivum (213)

Lavandula angustifolia Lolium multiflorum (214)

Litsea pungens Lolium perenne (215)

Bidens pilosa

Mentha longifolia Cyperus rotundus (216)

Echinochloa crus-galli

Monarda didyma Papaver rhoeas (217)

Taraxacum officinale

Avena fatua

Raphanus sativus

Lepidium sativum

Nepeta flavida Lepidium sativum (218)

Raphanus sativus

Eruca sativa

Ocimum basilicum Abutilon theophrasti (219)

Thymus vulgaris

Melissa officinalis

Origanum vulgare Amaranthus retroflexus (220)

Rosmarimum officinalis Portulaca oleracea

Convolvulus arvensis

Eruca sativa

Papaver rhoeas

Pimpinella anisum Anagalis arvensis (221)

Malva parviflora

Pinus radiate Sinapis arvensis (222)

Trifolium campestre

Piper cubeba Bidens pilosa (223)

Piper nigrum Echinochloa crus-galli

Pogostemon benghalensis Avena fatua (224)

Phalaris minor

Ruta graveolens Amaranthus retroflexus (225)

Citrus bergamia Convolvulus arvensis

Rumex crispus

Salvia rosmarinus Acacia saligna (226)

(Continued)

TABLE 4 | Continued

Essential oil distilled from Tested plant References

Satureja hortensis Amaranthus retroflexus (227)

Chenopodium album

Tagetes erecta Echinochloa cruss-galli (228)

Thymbra capitata Erigeron canadensis (229)

Sonchus oleraceus

Chenopodium album

Setaria verticillata

Avena fatua

Solanum nigrum

Amaranthus retroflexus

Portulaca oleracea

Echinochloa crus-galli

Thymbra capitata Avena fatua (230)

Mentha × piperita Echinochloa crus-galli

Portulaca oleracea

Amaranthus retroflexus

Thymus eigii Lactuca sativa (231)

Lepidium sativum

Portulaca oleracea

Thymus kotschyanus maranthus retroflexus (232)

Panicum miliaceum

Thymus proximus Amaranthus retroflexus (233)

Poa anuua

Trachystemon orientalis Cuscuta campestris (234)

Only treatments that displayed statistically significant herbicidal effects are included;

consult the references for treatment details.

microtubules and that limonene could also cause membrane
leakage. Limonene displayed dual capacity in terms of
microtubules and membrane functionality.

(6) Proline accumulation and lipid peroxidation. In plants,
proline functions as a mediator of osmotic adjustment and
plasma membrane integrity and protection. Its accumulation
could be related to the increase of protein hydrolysis caused
by stress (248). The phytotoxicity of various EOs on weeds can
be determined by the expression and accumulation of oxidative
stress products, such as proline and lipid peroxidase. Khare et al.
(211) foundmentha EO emulsion injures weeds by disturbing the
membrane integrity and inducing oxidative stress to the weed
as indicated by relatively higher levels of electrolyte leakage,
proline and lipid peroxidase. In general, EOs inhibit electron
flow in mitochondria, resulting in an increase in the generation
of ROS, which promotes lipid peroxidation. It is possible that
membrane breakdown might result in lipid release inside the
cytoplasm of targeted cells, because fatty acids and other lipids are
known to be structural components of membranes. The liberated
lipids in the cytoplasm might then become the target of oxidative
activity (211). Cymbopogon citratus EO also demonstrated strong
phytotoxic activity against barnyard grass (Echinochloa crus-galli)
by increasing relative electrolyte leakage and lipid peroxidase
activity (249).
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TABLE 5 | Currently available commercially formulated organic herbicides based

on essential oils or plant extracts (196, 250).

Product Source Main component

GreenMatch Marrone Bio Innovations (CA) 55% d-limonene

Matratec Brandt Consolidated (IL) 50% clove oil

WeedZap JH Biotech (CA) 45% clove oil + 45%

cinnamon oil

GreenMatch

EX

Marrone Bio Innovations (CA) 50% lemongrass oil

Avenger Weed

Killer

Avenger Products (GA) 70% d-limonene

Weed Slayer Agresearch International (TX) 6% eugenol

BioWeed Barmac (AUS) derived from Pinus radiata

Beloukha Grochem (AUS) derived from Brassica

napus

Essential oils are promising candidates for the development
of novel bio-herbicides due to their strong phytotoxic activity.
Currently available EO-based commercial organic herbicides are
listed in Table 5. The primary challenges are (1) developing
appropriate formulations to minimize their high volatility and
optimize effectiveness while permitting field application. So far,
most of the tests are done in a small scale under laboratory
conditions. (2) determining their modes of action. Because EOs
are a complex mixture of biologically active molecules capable of
affecting multiple targets at the same time, they might be useful
in preventing the formation of resistant weeds. Combining the
classical analytical techniques with new -omics approaches, such
as genomics, transcriptomics, proteomics, and metabolomics,
would speed up discovering new mechanisms of action (196).

In the future, a better understanding of mechanisms of action
would promote the development of bio-herbicides, especially
focusing on the potential synergism among single molecules.
Therefore, it may help to reduce the herbicides application
doses, avoid herbicide resistance in weeds, and hit multiple
targets simultaneously.

ESSENTIAL OIL FORMULATIONS AND
APPLICATIONS IN THE FOOD INDUSTRY

Despite proven efficacy of EOs, they still do not enjoy widespread
application due to their high volatility, low stability, low
water solubility, composition variability, a strong influence
on organoleptic properties, and phytotoxic effects. Essential
oils are also very sensitive to light radiation, especially
UV, and elevated temperature, which could cause oxidation,
isomerization, polymerization, dehydrogenation, and eventually
degradation (251). The degradation may alter the biological
properties of the EO as well as exerting potent toxicity due to the
presence of alteration compounds (43). Due to these limitations,
many EOs are not suitable for use in their raw form (252).
To break through these limitations and improve the efficiency
and persistence of EOs, formulation techniques applied to EOs
has a bright and promising future. A product formulation is a

homogeneous and stable combination of an active ingredient
and inactive materials as additives that involve specialized
processing of the product to improve its biological qualities,
durability, and stability (253). Formulations are commonly used
for pesticides and herbicides. A recent study demonstrated that
polydopamine microcapsules templated by Pickering emulsions
stabilized by cinnamoyl chloride modified cellulose nanocrystals
for EO encapsulation. The EO (turpentine) functioned as a
botanical pesticide and a solvent for the herbicide. The system
improved active ingredients encapsulation efficiency, exhibited
excellent multi-active ingredients encapsulation, adhesive and
UV resistance properties, and controlled release of active
compound (254). Therefore, formulation technique should be
applicable to EOs in the food industry to achieve comparable
advantages (43). In this section, non-compliant and compliant
raw materials, processing methods, and formulations (products)
are discussed to allow for a more complete presentation of
essential oils and their applications.

Emulsification
An emulsion is defined as a combination of two immiscible
liquids, containing spherical droplets as the dispersed phase
and the addition of surfactant as the continuous phase (255).
Emulsions are primarily classified based on their particle size
and kinetic stability as macroemulsions (or coarse emulsions),
microemulsions, and nanoemulsions (256). Macroemulsions
are opaque and are thermodynamically metastable and
susceptible to breakdown. Microemulsions are transparent
and thermodynamically stable, but their stability is affected by
slight environmental condition variations such as composition
and temperatures. Nanoemulsions are thermodynamically
metastable as phase separation occurs over time, however, they
have kinetic stability because there is no gravitational separation
and droplet aggregation due to the attractive force between the
tiny sized droplets is minimal (255, 257).

Emulsion-based delivery systems can be formulated with
food-grade ingredients to disseminate EOs to areas where
microorganisms grow and proliferate (258). The nanoemulsions
are more suitable than microemulsions or free EOs for these
applications because their kinetic stability is not affected by
physical and chemical variations, such as temperature and
pH. Thus, they need fewer surfactants for preparation and
are more cost-effective (255, 259). Furthermore, because of
their subcellular size and improved diffusion, nanoemulsions
can improve product physicochemical stability and reduce the
influence on the organoleptic characteristics of foods while
increasing bioactivity (259).

Edible coatings and films based on nanoemulsions of EOs
have been investigated to prolong fresh produce shelf life.
Several main types of matrices were usually used as the
base to create EO nanoemulsions for use as edible coatings.
These matrices have included starch, chitosan, sodium alginate,
hydroxypropyl methylcellulose, and carnauba wax (260). As EOs
are emulsified, they have been found to have higher stability
and lower influence on food sensory qualities, and reduced
interaction with other food matrix ingredients, while delivering
enhanced biological activity due to the increased surface area
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and small droplet size (261). It was also demonstrated that
for a film-forming formulation the addition of lemongrass
EO emulsions by emulsification with two emulsifiers (Tween
80/pectin) to glycerol-plasticized cassava starch resulted in
both EO and emulsifier phases showing good interaction and
compatibility. Emulsification caused crucial changes in the active
starch films, such as improved colorimetric attributes, thermal
stability, moisture barrier properties, and mechanical properties
(increasing extensibility, resistance, and stiffness). This film-
forming formulation further increases the potential application
of EO in the food packaging industry (262).

To summarize, nanoemulsion-based delivery systems could
be a suitable method for developing EO products with higher
kinetic stability and bioactivity, less organoleptic impact, and
more cost-effectiveness than free EOs.

Encapsulation
Essential oils include components that are extremely sensitive
to volatilization, and chemical changes due to oxygen, light,
humidity, and heat exposure (263). Hence, EO encapsulation has
been widely utilized to protect those sensitive compounds from
undesired conditions, and improve their activity duration and
functional performance (264). Moreover, encapsulation increases
EO solubility, and provides targeted delivery and controlled
release of EOs (265). The process of enveloping a particle or
molecule of interest with a coating or constructing a functional
barrier between a bioactive core and wall material in order to
minimize physical and chemical interactions between the core
and the outside molecules is referred to as EO encapsulation
(266). Generally, polymeric particles (50), liposomes (267), and
solid lipid nanoparticles (268) have been used as wall materials to
protect the EOs from degradation.

Polymeric particles such as methacrylate polymer (269),
poly(D,L-lactic-co-glycolic acid) (PLGA) (270), poly-ε-
caprolactone (PCL) (271), poly (lactic acid) (PLA) (272),
poly (L-lactide-co-ε-caprolactone)/silk fibroin (PLCL/SF) (273),
β-cyclodextrin (274), cellulose nanofibrils (275), alginate (276),
starch (277), chitosan (278), gum arabic, maltodextrin, and inulin
(279), were commonly used as wall materials individually or as
a mixture. For EO encapsulation in polymeric particles, spray
drying, coacervation, nanoprecipitation, and rapid expansion of
supercritical solutions (RESS) are widely used technologies (263).

Spray drying is a popular method of producing microparticles
since it is a simple, rapid, and reproducible technique
that produces stable final products with lower cost and
allows continuous industry-scale production (280–282). In this
process, the mixture solution of the active ingredient and the
encapsulating materials are fed to the spray-dryer and atomized
by hot gas, resulting in extremely rapid water evaporation and,
as a result, quasi-instantaneous entrapment of the EO in a rapid-
formed crust (43, 283).

Coacervation is defined as the phase separation of one or
many hydrocolloids from the initial colloidal solution (284).
One phase is rich in polymer and is known as the coacervate
phase, while the other does not contain polymer and is known
as the equilibrium solution. Coacervation techniques can be
simple or complex depending on the number of polymers used.

There is just one polymer in simple coacervation, but complex
coacervation involves the interaction of two oppositely charged
colloids (263).

Nanoprecipitation, also known as solvent displacement or
interfacial deposition, was invented by Fessi et al. (285). Two
miscible phases are involved: an organic phase (the solvent)
and an aqueous phase (the non-solvent). This method is
suitable for encapsulating hydrophobic compounds such as
EOs. For EO encapsulation by nanoprecipitation, the polymer
and the EO are solubilized in an organic solvent, then added
to water under moderate magnetic stirring, which causes the
interfacial deposition of a polymer after the organic solvent has
been displaced. Afterward, the organic solvent is evaporated
with a rotavapor to form the nanoparticles suspension in
water (286).

The RESS procedure has recently been regarded as an effective
method for producing free-solvent particles with consistent
morphology and size distribution (287). Supercritical carbon
dioxide (ScCO2) is considered to be a promising supercritical
fluid for use in RESS because it is non-toxic, inflammable, and
cheap, with a low critical temperature (31.3 ◦C) and pressure
(73.8 bar) (288).

Liposomes are colloidal, vesicular structures composed of one
or more phospholipid bilayers that define one or more aqueous
compartments surrounded by a lipid membrane. Phospholipids
are amphiphilic molecules that spontaneously self-assemble in
aqueous environments (263). These liposomes form sphere-
like shells and encapsulate hydrophilic compounds (such as
EOs) as well as lipophilic or even amphiphilic molecules in
the inner aqueous phase with oil-soluble substances in the lipid
bilayer membrane (289). Encapsulation of EOs in liposomes
often uses thin film hydration, reverse phase evaporation, and
supercritical fluid methods (263). The thin film method, first
developed by Bangham et al. (290), is one of the most widely
used and simplest techniques for formulating of liposomes.
However, due to low production capacity, the presence of organic
solvent residues in the final product, and heterogeneous size
distribution, this technique has limited commercial applicability
(291). Several approaches are used to homogenize and reduce size
of liposomes formed by the thin film hydration method, such
as sonication, extrusion, and freeze-thaw (263). The extrusion
refers to multiple times passage of heterogeneous sized particles
via a track-etched polycarbonate membrane with holes of varying
sizes, including hot-melt extrusion, melt injection extrusion
process, co-extrusion, and electrostatic extrusion (292). Freeze-
thaw cycles increase interactions between the lipid film and
the EO to incorporate and display high encapsulation efficiency
(293). The process of reverse phase evaporation involves mixing a
phospholipid organic phase with the lipophilic active substances
in an aqueous phase to form oil-in-water emulsion. Then
the organic solvent is evaporated, yielding large unilamellar
vesicles (294).

Two methods for supercritical fluid technology are modified
RESS and particles from gas saturated solutions (PGSS)-drying
of emulsion (263). In the process of modified RESS, liposomal
materials and EO are dissolved in a supercritical CO2/ethanol
solvent, and the solution is then sprayed into a buffer solution
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using a coaxial nozzle to create a liposome suspension (295).
The process of PGSS was to create encapsulated particles by
saturating the suspension of the bioactive chemical and the wall
material with CO2 at a proper pressure and temperature to
lower the viscosity. At atmospheric pressure, the vaporization
and expansion of CO2 are triggered through a nozzle, which
creates an intense cooling effect, resulting in forming a very fine
and dry powder (296).

Solid lipid nanoparticles (SLNs) are nanocarriers containing
lipids or lipid-like molecules, solid at room temperature.
Compared to other colloidal carriers, liquid lipid is replaced by
solid lipid in SLNs. The use of solid lipid rather than liquid lipid is
advantageous since it has been demonstrated to enhance control
over the release kinetics of encapsulated chemicals and the
stability of integrated chemically-sensitive lipophilic components
(297). Solid lipid nanoparticles can improve the stability and
solubility of EOs in water, avoid the use of organic solvents,
display high drug payload and no biotoxicity of the carrier,
increase the bioavailability of entrapped bioactives, provide
controlled release of EOs, and favor large scale production.
However, SLNs also demonstrate some disadvantages, such as
high pressure-induced drug degradation, lipid crystallization
and drug incorporation, and unpredictable gelation phenomena
(298). Solid lipid nanoparticles are mainly prepared by high
pressure homogenization or micro emulsification (297).

For the preservation of fruits and vegetables,
encapsulation methods have been extensively researched.
Protein/polysaccharides were usually used as wall materials of EO
microcapsules, such as β-cyclodextrin, pectin, chitosan, starch–
gellan, alginate, sodium alginate, gelatin, and carboxymethyl
cellulose (299). In a recent study, lemongrass EO-containing
poly(lactic acid) nanocapsules were made to achieve long-term
thermal stability of the EO. Compared to the apples treated
with non-encapsulated lemongrass EO, the fruit treated with
encapsulated EO showed three times smaller bitter rot lesions
(272). López-Gómez et al. (300) tested the effect of different
sized active packages (including β-cyclodextrin-EOs inclusion
complex) on the quality of grapes, nectarines, and lettuces,
representing berry fruit, stone fruit, and leafy vegetables. The
EOs–β-cyclodextrin inclusion complex was dissolved in water-
diluted lacquer, then sprayed on all internal surfaces of the
packages. They found active cardboard packages with greater
active surface better preserved quality of grapes, nectarines and
lettuce, for which the sensory quality was acceptable after 30, 25,
and 14 days, respectively.

To sum up, encapsulation could be an effective formulation
method, which could address some of the drawbacks associated
with the usage of EOs in their raw form. In particular,
encapsulation protects EOs from light, air, and humidity, allows
targeted delivery and controlled release of EOs, boosts EO
solubility and bioactivities, and reduces degradation during
storage, such as through oxidation or volatilization.

Edible Coatings
Edible coatings have attracted great attention among various
postharvest packaging technologies due to their cost-
effectiveness, environmentally friendly characteristics, and

ability to carry bioactive substances. An edible coating is defined
as a thin layer of edible material on a food surface, which can
be digested by the human body or are biodegradable in the
environment, used as a barrier to protect the product from
physical damage and chemical reactions (301, 302). So far,
edible coatings are widely used on whole or fresh-cut fruits
and vegetables to prolong their shelf life and maintain their
sensory qualities.

Different kinds of EOs, such as ginger (303), oregano (304),
cinnamon (305), lemongrass (306), and lavender (307) have
been incorporated into edible coating as anti-microbial agents.
Direct application of EOs to fresh commodity surfaces is
limited due to their instability, hydrophobicity, and organoleptic
effect. However, emulsification and encapsulation of EOs that is
compatible with coating systems can maintain the bioactivity,
control the release, increase the effective rate, minimize the
organoleptic impact, and increase the contact area and duration
on food surfaces (308).

The name, EO-edible coatings, refers to coatings in which
a thin layer of a mixture of EOs and biological polymers
that are able to carry EOs are used to create a food coating.
Three types of biological polymers are commonly used for
EO-edible coatings: polysaccharides, proteins, and lipids (301).
Natural gum, chitosan, starch, pectin, and alginate are commonly
used polysaccharides for EO-edible coatings. The protein-based
coatings typically contain gluten, collagen, zein, casein, or whey
proteins. The lipid-based coatings mainly include wax, acyl
glycerol, and fatty acids (301). In addition, composite coatings
refer to the combination of water colloids and lipids, which
could provide multiple benefits (309, 310). Four manufacturing
methods of EO-edible coatings are: (1) dipping (for thick and
uniformmaterials), (2) spraying (for thin and uniformmaterials),
(3) spreading (for medium thickness and a little uniform
materials), and (4) thin film hydration (for poor uniformity of
liposome particle size materials) (301).

In brief, EOs encapsulated in edible coating have better
stability and show good fresh-keeping potential. Further research
should keep exploring novel combinations of basic materials and
EOs for coatings that can be used on a variety of food items,
which are safe, economic, and effective.

FUTURE PROSPECTS

Overall, EOs demonstrate antimicrobial, pesticidal, and
herbicidal effects in both in vitro and in vivo studies. They
display great potential in organic product cultivation and
food preservation. However, most of the studies that have
been conducted are limited to laboratory conditions and
in-field analysis of product efficacy is needed. Currently, the
number of commercially available biocontrol products using
EOs as active components is limited. The reasons could be
(1) Their effectiveness is selective. Their efficacies are variable
among different pathogen species, sometimes even within the
same pathogen species but different strains. (2) EOs can be
a double-edged sword. They may display anti-fungal effects
and phytotoxicity effects at the same time. It would be hard to
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find a proper application concentration for every crop at every
developmental stage that can totally suppress the pathogens

without damaging the plants. 3 Our understanding of the
anti-pathogen, pesticidal, and herbicidal effects of EOs and
their components is still developing. More work is needed to
elucidate their modes of actions, cost-effectiveness, and potential
impacts on non-targeted species. There is enormous potential
for selecting plants to produce EOs with enhanced efficacy,
such as blending EOs to achieve synergistic effects or a broader
spectrum of action and formulated with other materials to extend
residual effects. As people are more concerned about human and
environmental health and are willing to pay more for organic
commodities, theoretical and practical studies of EOs should
continue simultaneously and more focus should be placed on the
development, extension, and market entry of newly formulated
EO products.

In the food industry, EOs have great potential to be used as
organic food preservatives. Nanoemulsions of EOs have been
found to enhance quality and shelf life of fresh commodities.
Encapsulation should be used to mask the strong organoleptic
impact of EOs while maintaining their preservative effects.
Nevertheless, the pungent odor of EOs will remain a big problem.
Some valuable research topics can include methods to minimize
the odor of EOs or discover effective EO combinations in
which the unique EO odor is compatible with or enhances
the original food flavor. Furthermore, since EOs are relatively

expensive, the development of economic, simple, and stable
EO extraction techniques on an industrial scale would support
product innovation and expand adoption.
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207. Synowiec A, Możdżeń K, Krajewska A, Landi M, Araniti F. Carum carvi
L. essential oil: a promising candidate for botanical herbicide against
Echinochloa crus-galli (L.) P. Beauv. in maize cultivation. Ind Crops Prod.
(2019) 140:111652. doi: 10.1016/j.indcrop.2019.111652

208. Poonpaiboonpipat T, Krumsri R, Kato-Noguchi H. Allelopathic and
herbicidal effects of crude extract from Chromolaena odorata (L.) RM King
and H. Rob. on Echinochloa crus-galli and Amaranthus viridis. Plants. (2021)
10:1609. doi: 10.3390/plants10081609

209. Gurgel ESC, de Oliveira MS, Souza MC, da Silva SG, de Mendonca MS, da
Silva Souza Filho AP. Chemical compositions and herbicidal (phytotoxic)
activity of essential oils of three Copaifera species (Leguminosae-
Caesalpinoideae) from Amazon-Brazil. Ind Crops Prod. (2019) 142:111850.
doi: 10.1016/j.indcrop.2019.111850

210. Merad N, Andreu V, Chaib S, de Carvalho Augusto R, Duval
D, Bertrand C, et al. Essential oils from two apiaceae species as
potential agents in organic crops protection. Antibiotics. (2021) 10:636.
doi: 10.3390/antibiotics10060636

211. Khare P, Srivastava S, Nigam N, Singh AK, Singh S. Impact of essential
oils of E. citriodora, O. basilicum and M. arvensis on three different weeds
and soil microbial activities. Environ Technol Innovat. (2019) 14:100343.
doi: 10.1016/j.eti.2019.100343

212. Pinto M, Soares C, Martins M, Sousa B, Valente I, Pereira R, et al. Herbicidal
effects and cellular targets of aqueous extracts from young Eucalyptus
globulus Labill leaves. Plants. (2021) 10:1159. doi: 10.3390/plants10061159

213. Kaur P, Gupta S, Kaur K, Kaur N, Kumar R, Bhullar MS. Nanoemulsion
of Foeniculum vulgare essential oil: a propitious striver against
weeds of Triticum aestivum. Ind Crops Prod. (2021) 168:113601.
doi: 10.1016/j.indcrop.2021.113601

214. Ibáñez MD, Blázquez MA. Phytotoxic effects of commercial Eucalyptus
citriodora, Lavandula angustifolia, and Pinus sylvestris essential
oils on weeds, crops, invasive species. Molecules. (2019) 24:2847.
doi: 10.3390/molecules24152847

215. Kong Q, Zhou L, Wang X, Luo S, Li J, Xiao H, et al. Chemical composition
and allelopathic effect of essential oil of Litsea pungens. Agronomy. (2021)
11:1115. doi: 10.3390/agronomy11061115

216. Singh N, Singh HP, Batish DR, Kohli RK, Yadav SS. Chemical
characterization, phytotoxic, and cytotoxic activities of essential oil
of Mentha longifolia. Environ Sci Pollut Res. (2020) 27:13512–23.
doi: 10.1007/s11356-020-07823-3

217. Ricci D, Epifano F, Fraternale D. The essential oil of Monarda didyma
L(Lamiaceae) exerts phytotoxic activity in vitro against various weed seed.
Molecules. (2017) 22:222. doi: 10.3390/molecules22020222

218. Bozok F. Herbicidal activity of Nepeta flavida essential oil. J Essential Oil Bear
Plants. (2018) 21:1687–93. doi: 10.1080/0972060X.2019.1577183
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