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Background: Gastro-oesophageal reflux disease (GORD) is a common

gastrointestinal dysfunction that significantly affects the quality of daily life,

and health interventions are challenging to prevent the risk of GORD. In this

study, we used Mendelian randomization framework to genetically determine

the causal associations between multifaceted modifiable factors and the risk

of GORD.

Materials and methods: Sixty-six exposures with available instrumental

variables (IVs) across 6 modifiable pathways were included in the

univariable MR analysis (UVMR). Summary-level genome-wide association

studies (GWAS) datasets for GORD were retrieved from the Neale Lab

(GORDNeale, Ncases = 29975, Ncontrols = 390556) and FinnGen (GORDFinn,

Ncases = 13141, Ncontrols = 89695). Using the METAL software, meta-

analysis for single nucleotide polymorphisms (SNPs) from GORDNeale and

GORDFinn was conducted with an inverse variance weighted (IVW) fixed-effect

model. Moreover, we leveraged partition around medoids (PAM) clustering

algorithm to cluster genetic correlation subtypes, whose hub exposures were

conditioned for multivariable MR (MVMR) analyses. P-values were adjusted

with Bonferroni multiple comparisons.

Results: Significant causal associations were identified between 26 exposures

(15 risk exposures and 11 protective exposures) and the risk of GORD. Among

them, 13 risk exposures [lifetime smoking, cigarette consumption, insomnia,

short sleep, leisure sedentary behavior (TV watching), body mass index (BMI),

body fat percentage, whole body fat mass, visceral adipose tissue, waist

circumference, hip circumference, major depressive disorder, and anxious

feeling], and 10 protective exposures (leisure sedentary behavior (computer

use), sitting height, hand grip strength (left and right), birth weight, life
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satisfaction, positive affect, income, educational attainment, and intelligence)

showed novel significant causal associations with the risk of GORD. Moreover,

13 exposures still demonstrated independent associations with the risk of

GORD following MVMR analyses conditioned for hub exposures (educational

attainment, smoking initiation and BMI). In addition, 12 exposures showed

suggestive causal associations with the risk of GORD.

Conclusion: This study systematically elucidated the modifiable factors

causally associated with the risk of GORD from multifaceted perspectives,

which provided implications for prevention and treatment of GORD.

KEYWORDS

Mendelian randomization, gastro-oesophageal reflux disease, modifiable factors,
meta-analysis, discovery phase, replication phase

Introduction

As a common digestive system disease, GORD clinically
presents with intraesophageal symptoms, such as acid
regurgitation, heartburn and chest pain, and extraesophageal
symptoms, including bronchial asthma, chronic cough, and
hoarseness (1). Long-term abnormal reflux also increases the
risk of pathological oesophageal stricture or even oesophageal
adenocarcinoma (2). Currently, the highest prevalence of
GORD is observed in North and Central America, followed by
Europe (3). GORD symptoms can be influenced by multiple
determinants, such as excessive acid exposure caused by
anatomical or physiological defects of the oesophagogastric
junction, the frequencies of reflux attacks and the acidity of
reflux fluid (4). Moreover, poor health status and lifestyle,
such as obesity (5, 6), smoking (6, 7), and sleep disorders
(8, 9), are common precipitating factors that unilaterally or
mutually affect the risk of GORD. However, there is insufficient
evidence to determine the causal relationship between each
factor and the risk of GORD due to limited studies, potential
confounding factors and reverse causalities. In this case, it is
of great significance to clarify the risk factors and protective
factors related to the causations of GORD in all aspects for the
prevention, clinical diagnosis and the treatment of GORD.

MR mainly relies on IVs to detect and quantify causality
between exposure and outcome (10). This design overcome
the effects of the potential residual confounders and the
reverse causalities (11). With the development of the genome-
wide association studies (GWAS) based on large sample sizes
(12), MR analysis offers a more accurate and representative
assessment of the causal associations between exposures and
outcomes by primarily using genetic variants. Firstly, according
to the Mendel’s second law, the inheritance of a trait is
independent of others with randomness. Therefore, the genetic
variants of the offspring will not be disturbed by environmental
confounding factors (13). Secondly, the distributions of the
genetic variants precede the acquired exposures and outcomes

including various diseases, so that the order of the three factors
is in line with the causal timing and is not affected by reverse
causality (14). Thirdly, genetic variants associated with specific
exposures will index lifetime differences and thus produce
causal estimates that are unsusceptible to the attenuation by
errors (regression dilution bias) (15). To date, central obesity
indicators (BMI, waist circumference, hip circumference) and
daily habits (smoking and alcohol consumption) have been
examined for their causal effects on the risk of GORD using MR
analysis (16). However, there have been no studies evaluating
factors that are causally associated with the risk of GORD as
comprehensively as possible.

In this study, we screened a total of 66 exposures across 6
modifiable pathways (daily habits, health status, nutritional and
biochemical biomarkers, nutritional and developmental status,
emotional factors, socioeconomic factors) for the purpose of
identifying the factors that causally associated with the risk
of GORD using MR analysis in the discovery and replication
phases. Moreover, a meta-analysis based on the above two-phase
determined the factors that were causally associated with the risk
of GORD to the greatest extent, and also enhanced the statistical
efficacy of MR results in the discovery and replication phases.

Materials and methods

Identification of exposures for
Mendelian randomization analysis

We retrieved factors from PubMed that were
associated with the risk of GORD with the query strategy
“((Gastroesophageal Reflux[Mesh] OR GERD[Title/Abstract]
OR GORD[Title/Abstract] OR Gastric Acid Reflux
[Title/Abstract] OR Gastric Acid Reflux[Title/
Abstract] OR Gastro Esophageal Reflux[Title/Abstract]
OR Gastro oesophageal Reflux[Title/Abstract] OR
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Gastroesophageal Reflux[Title/Abstract] OR Gastro-
oesophageal Reflux[Title/Abstract] OR Reflux,
Gastroesophageal[Title/Abstract] OR Esophageal Reflux
[Title/Abstract])) AND ((relative[Title/Abstract] AND
risk[Title/Abstract]) OR (relative risk[Text Word]) OR
(risks[Text Word])).” Reviews, meta-analyses and population-
based studies were included, and we identified 58 modifiable
factors (Supplementary Table 1) related to the risk of GORD.
We next determined the numerous exposures used for MR
analyses according to the definitions of the modifiable factors.
(1) Factor “smoking behaviors” corresponded to the exposures:
smoking initiation, lifetime smoking, cigarette consumption,
age of initiation of smoking, and smoking cessation. (2) Factor
“sleep disorders” corresponded to the exposures: insomnia,
short sleep, long sleep, daytime sleepiness and daytime napping.
(3) Factor “physical activity levels” corresponded to the
exposures: leisure sedentary behavior (TV watching), leisure
sedentary behavior (computer use), moderate to vigorous
physical activity levels, 10+ min vigorous activity, strenuous
sports or other exercises. (4) Factor “obesity” corresponded
to the exposures: BMI, body fat percentage, whole body
fat mass, visceral adipose tissue, waist circumference, hip
circumference, and waist-to-hip ratio. (6) Factor “height” was
categorized into exposures: standing height and sitting height.
(7) Factor “muscle mass” corresponded to the exposures: whole
body fat-free mass, hand grip strength (left and right). (8)
Factor “positive subjective well-beings” corresponded to the
exposures: life satisfaction and positive affect. Sex-specific and
disease-specific phenotypes, such as “sex-hormone-related
factors” and “common medications,” were excluded. Finally,
the 66 exposures (Table 1; Supplementary Table 2) across
6 modifiable pathways were identified to explore causal
associations with the risk of GORD.

Data sources of gastro-oesophageal
reflux disease

Neale Lab1 performed GWAS across more than 7,000
phenotypes from 6 ethnic groups (European, East Asian,
African, American, Central South Asian, and Middle Eastern)
with the UK Biobank (UKB) approval. Similarly, FinnGen2 is a
large public consortium for genetic and health data from Finnish
participants. The summary-level GWAS datasets in the Neale
Lab and FinnGen consortiums are free and publicly available.

For the outcome cohort, the “K21 Gastro-oesophageal
reflux disease” GWAS dataset obtained from the Neale Lab
(GORDNeale)3 was used for the discovery phase. GORDNeale
GWAS dataset, which contained 29975 cases and 390556

1 http://www.nealelab.is/uk-biobank

2 https://r6.finngen.fi/

3 https://pan.ukbb.broadinstitute.org/phenotypes

controls and was adjusted for covariates (age, sex, age∗sex, ageˆ2,
ageˆ2∗sex and the first 10 principal components), was analyzed
with Scalable and Accurate Implementation of Generalized
mixed model (SAIGE) (17), and implemented in the hail batch.4

In the replication phase, the “finngen_R6_K11_REFLUX”
GWAS dataset (13141 cases and 189695 controls) obtained
from FinnGen (GORDFinn) was analyzed using SAIGE (17)5

and adjusted for covariates including age, sex, 10 principal
components, and genotyping batch. Moreover, to effectively
complement and identify the causalities between the 66
exposures and the risk of GORD, we employed a sample-size-
weighted approach with METAL (18) to perform the IVW fixed-
effect meta-analysis (GORDmeta) for the SNPs of summary-level
GORDNeale and GORDFinnGen datasets.

Selection of instrumental variables

In this study, all IV data derived from European-descent
GWAS datasets followed the MR principles. Namely, IVs
should be closely related to exposures; IVs cannot affect
outcomes directly but rather through exposures, and no
associations were found between IVs and known or unknown
confounders. Moreover, genome-wide statistically significant
SNPs (P < 5∗10−8) without linkage disequilibrium (R2 > 0.001,
clumping Kb < 10000) were used as independent IVs.
Meanwhile, the effect values of exposures and outcomes were
harmonized to the same effect allele to ensure accurate MR
analysis (19).

Estimation of heritability and genetic
correlation

The linkage disequilibrium score regression (LDSC) is
an effective method for estimating heritability (h2

snp) and
genetic correlations (rg) between different phenotypes based
on summary-level GWAS datasets (20). According to the
European population-characterized LD score profiles of the
1000GenomesProjects6 (21), we calculated the heritability
using LDSC for 66 exposures in 6 modifiable pathways,
and identified 2,145 (66 exposures∗32.5) genetic correlations
between 66 exposures (including self-diagnosis), as well as
genetic correlations between 66 exposures and GORDNeale
and GORDFinn. P ≤ 0.05 was considered as the threshold of
statistical significance for genetic correlations. P ≤ 2.261E-05
(0.05/2145, Bonferroni multiple comparisons) was considered
as the threshold of genetic correlation with significantly
statistical significance.

4 https://hail.is/docs/batch/index.html

5 https://github.com/weizhouUMICH/SAIGE/tree/finngen_r6_jk

6 https://alkesgroup.broadinstitute.org/LDSCORE
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TABLE 1 Information of the 66 exposures included in MR analysis.

Exposure Source Fa R2 (%)b N. SNPsc Samples Unit of
measurement

OR at 80%
statistical power

Daily habits

Alcohol consumption (33) 63.901 0.618 99 941280 Drinks per week 0.797/1.210

Coffee consumption (65) 86.083 0.743 29 335909 Cups of coffee per day 0.814/1.191

Caffeine consumption (66) 86.910 0.623 28 362316 mg per day 0.797/1.209

Smoking initiation (33) 44.684 35.082 378 1232091 Events 0.972/1.028

Lifetime smoking (67) 43.873 1.282 126 462690 Lifetime smoking index 0.858/1.144

Cigarette consumption (33) 87.547 1.374 55 337334 Cigarettes per day 0.863/1.140

Age of initiation of smoking (33) 41.386 0.085 10 341427 Years 0.470/1.577

Smoking cessation (33) 55.325 0.243 24 547219 Events 0.669/1.349

Intake of total sugar (68) 47.992 0.184 9 235391 Kcal/day 0.619/1.401

Intake of fat (68) 72.037 0.134 5 268922 Kcal/day 0.557/1.469

Intake of carbohydrate (68) 38.629 0.144 12 268922 Kcal/day 0.571/1.457

Breakfast skipping (69) 39.411 0.122 6 193860 Always/sometimes/never 0.571/1.456

Morning person (70) 45.210 1.289 122 403195 Events 0.853/1.149

Insomnia (71) 43.037 0.688 41 237627 Events 0.801/1.199

Short sleep (72) 37.585 0.465 26 411934 Events 0.759/1.241

Long sleep (72) 38.845 0.091 10 339926 Events 0.492/1.558

Daytime sleepiness (73) 42.395 0.122 42 452071 Never/sometimes/often/always 0.557/1.480

Daytime napping (74) 47.129 1.031 106 452633 Never or
rarely/sometimes/always

0.837/1.163

Leisure sedentary behavior (TV
watching)

(51) 42.762 1.370 141 408815 Hours 0.858/1.146

Leisure sedentary behavior
(computer use)

(51) 38.889 0.447 47 408815 Hours 0.752/1.257

Moderate to vigorous physical
activity levels

(75) 34.084 0.163 19 377234 MET-minutes/week 0.599/1.430

10+ min vigorous activity (75) 40.109 0.128 7 261055 Events 0.550/1.486

Strenuous sports or other
exercises

(75) 38.306 0.131 14 350492 Events 0.551/1.479

Health status

Childhood-onset asthma (76) 77.609 2.441 103 314633 Events 0.897/1.104

Adult-onset asthma (76) 63.801 0.877 46 327253 Events 0.829/1.175

Type 2 diabetes (77) 55.419 2.128 380 8318130 Events 0.890/1.112

Coronary artery disease (78) 73.439 3.564 145 296525 Events 0.915/1.086

Atrial fibrillation (79) 94.914 1.022 111 1030836 Events 0.841/1.162

Ulcerative colitis (80) 63.050 8.476 39 27432 Events 0.944/1.056

Crohn’s disease (80) 59.192 14.391 53 20883 Events 0.957/1.043

Nutritional and biochemical biomarkers

Fasting glucose (81) 125.237 3.020 69 281416 mmol/L 0.904/1.097

Fating insulin (81) 51.976 0.683 38 281416 pmol/L 0.800/1.205

2-h blood glucose (81) 57.248 0.264 14 281416 mmol/L 0.683/1.332

Glycosylated hemoglobin
(HbA1c)

(81) 103.014 2.632 73 281416 Percentage 0.897/1.105

HDL cholesterol (82) 110.137 1.134 145 1320016 mg/dL 0.843/1.159

LDL cholesterol (82) 187.847 1.565 112 1320016 mg/dL 0.867/1.135

Total cholesterol (82) 166.998 1.644 134 1320016 mg/dL 0.870/1.132

Triglycerides (82) 130.638 1.138 123 1320016 mg/dL 0.845/1.159

Adiponectin (83) 57.727 1.373 14 29347 ln(mg/dL) 0.858/1.145

(Continued)
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TABLE 1 (Continued)

Exposure Source Fa R2 (%)b N. SNPsc Samples Unit of
measurement

OR at 80%
statistical power

Leptin (84) 19.552 0.288 6 33987 log(ng/mL) 0.693/1.318

Vitamin C (85) 89.574 1.715 11 52018 µmol/L 0.873/1.129

25-Hydroxyvitamin D (86) 112.523 2.623 118 496946 nmol/L 0.897/1.104

Nutritional and developmental status

Body mass index MRC IEU (34)d 62.134 5.896 458 461460 Kg/m2 0.931/1.069

Body fat percentage MRC IEU (34) 58.238 4.841 395 454633 Percentage 0.924/1.077

Whole body fat mass MRC IEU (34) 61.138 5.626 435 454137 Kg 0.929/1.071

Whole body fat-free mass MRC IEU (34) 83.701 9.786 556 454850 Kg 0.947/1.054

Visceral adipose tissue (87) 58.878 3.331 201 325153 Kg 0.909/1.093

Waist circumference MRC IEU (34) 56.580 4.357 374 462166 cm 0.920/1.081

Hip circumference MRC IEU (34) 62.533 5.357 420 462117 cm 0.928/1.073

Waist-to-hip ratio (88) 64.130 3.106 355 697734 Percentage 0.905/1.096

Standing height MRC IEU (34) 138.651 22.252 773 461950 cm 0.965/1.036

Sitting height MRC IEU (34) 102.675 12.807 602 461536 cm 0.953/1.047

Hand grip strength (left) MRC IEU (34) 47.127 1.564 157 461026 Kg 0.866/1.135

Hand grip strength (right) MRC IEU (34) 47.585 1.734 176 461089 Kg 0.873/1.129

Birth weight (89) 53.403 3.044 178 298142 Kg 0.904/1.097

Childhood BMI (90) 50.951 2.635 18 34744 Kg/mˆ2 0.897/1.104

Emotional factors

Major depressive disorder (91) 38.704 0.503 50 361315 Events 0.766/1.240

Anxious feeling (92) 35.456 0.210 23 371318 Events 0.646/1.377

Schizophrenia (93) 21.293 10.819 189 320404 Events 0.951/1.050

Bipolar disorder (94) 22.702 0.452 53 413466 Events 0.765/1.246

Anorexia nervosa (95) 170.613 0.321 6 72517 Events 0.720/1.290

Life satisfaction (96) 39.714 3.682 80 80852 Life satisfaction score 0.913/1.088

Positive affect (96) 40.991 0.900 98 410063 Positive affect score 0.824/1.179

Socioeconomic factors

Income MRC IEU (34) 40.958 0.443 48 397751 Dollars 0.751/1.256

Educational attainment (32) 46.668 7.350 317 766345 Years 0.938/1.062

Intelligence (97) 42.540 2.616 167 269867 g phenotype 0.989/1.011

aF, F statistics, the indicator of evaluating weak IV bias.
bR2 (%), genetic explanations of phenotypic variance.
cN. SNPs, number of single nucleotide polymorphisms.
dMRC-IEU, the MRC IEU OpenGWAS data infrastructure.

Univariable Mendelian randomization
analysis

The process of UVMR is shown in Figure 1. In this
study, the two-sample UVMR was performed using the
“TwoSampleMR” package of R software. The IVW method
was principally employed to explore the causality between each
exposure and the risk of GORD, with the weighted median
method and MR-Egger method for enhancing the findings.
Under the premise of ensuring that all IVs are valid, the
IVW method uses the reciprocal of the variance of each IV
as a weight to calculate the causal estimate of a single IV,
and the causal estimate corresponding to each IV can be
summed into a weighted estimate as a whole (22, 23). The

weighted median estimate is the median of the distribution of
all IV estimates sorted by weight, and the weight of each IV
causal estimate depends on the accuracy of the estimation. In
cases where at least half of SNPs are valid IVs, the weighted
median provides a consistent estimate of the final effect (24).
The MR-Egger method does not force the regression line to
pass through the origin, allowing the included IVs to have
directional pleiotropy. When the intercept of MR-Egger analysis
is significantly different from 0, it indicates that there is
directional gene pleiotropy; when the intercept of the regression
is 0, or the intercept is not statistically significant (P > 0.05), the
slope of MR-Egger represents the causal estimate of exposure
on the outcome (25). Therefore, the MR-Egger method can
be utilized to examine and correct the horizontal pleiotropy.
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MR-PRESSO with the “MRPRESSO package” of R software was
applied to detect outliers (26). In this study, when outliers were
detected, they would be eliminated, and MR analysis would
be reconducted until no outliers remained. Causal associations
with P ≤ 7.576E-04 (0.05/66) were deemed as significant, and
causal associations with 7.576E-04 < P ≤ 0.05 were defined as
suggestive causal associations.

Genetic correlation clustering and
multivariable Mendelian randomization
analysis

We performed the PAM clustering algorithm to cluster
genetic correlation subgroups for exposures that were identified
to be significantly causally associated with the risk of GORD
(P ≤ 7.576E-04). A vital advantage of the PAM clustering
algorithm included the ability to robustly cluster different data
types within limited samples, minimizing the influences of
data noise and isolated points on the clustering results. Inter-
exposure similarity was measured using Euclidean distance,
80% of the exposures were taken at one time, 1,000 replicate
samplings were conducted, and the slope of the CDF curve and
area under the CDF curve determined the most appropriate
number of clusters to be placed. Exposures that were genetically
correlated with all other exposures with statistical significance
(P ≤ 0.05) in each cluster were defined as the hub exposures.
MVMR principle hypothesizes that genetic-level links existed in
individual exposures, and that SNPs are strongly associated with
at least one of these exposures (27). Thus, as shown in Figure 2,
to further clarify whether significant causal exposures were
directly causally associated with the risk of GORD rather than
being mediated by hub exposures, we chose significant causal
exposures that had statistically significant genetic correlations
with hub exposures for MVMR, which also included SNPs that
were identified as statistically significant from the genome-wide
level with at least one specific exposure (P < 5∗10−8) to be IVs
and GORDmeta GWAS dataset as the source of outcome GWAS
dataset. MVMR-IVW method (27) and MVMR-MR Egger
method (28) were employed for MVMR analyses. Horizontal
pleiotropy was examined by the MR-Egger intercept test.

Statistical analysis

Weak IV bias was evaluated using the F statistic [F
statistic = (Beta/SE)2]. The general assumption is that there
are no weak instrumental variable biases when the SNPs F
statistics are greater than 10 (29), and in this study, the SNPs
F statistics less than or equal to 10 were removed from MR
analysis. The Cochran’s Q test P-value and I2 were employed
to evaluate and quantify the heterogeneity of SNPs. In this
study, the multiplicative random effects model was adopted for

MR analysis with Cochran’s Q test P ≤ 0.05, and the fixed-
effect model was utilized to conduct MR analysis with Cochran’s
Q test P > 0.05 (30). When the number of SNPs involved
in MR analysis was less than or equal to 3, the fixed-effect
model was applied for MR analysis. The mRnd online tool was
used to calculate statistical power of MR analysis7 (31). In this
study, all data analysis and visualization were completed using
R software version 4.1.2.

Results

Overall heritability and genetic
correlation of the 66 exposures

We estimated heritability and genetic correlation
using LDSC for 66 exposures, GORDNeale and GORDFinn

(Figures 3A–F; Supplementary Table 3). Total observed
scale heritability ranged from the lowest waist-to-hip ratio
(h2

snp = 0.011, SE = 4.000E-03) to highest schizophrenia
(h2

snp = 0.655, SE = 0.024). GORDNeale (h2
snp = 0.018,

SE = 1.500E-03) and GORDFinn (h2
snp = 0.015, SE = 2.500E-03)

possessed largely consistent heritability. The exposure-exposure,
exposure-GORDNeale, exposure-GORDFinn, and GORDNeale-
GORDFinn genetic correlations were shown in Figure 3G and
Table 2. Particularly, GORDNeale and GORDFinn shared a high
degree of genetic correlation (rg = 0.929, P = 3.389E-21), and
39 of 48 exposures that showed a statistically significant genetic
correlation with GORDNeale also had a similar pattern of genetic
correlation with GORDFinn.

Univariable Mendelian randomization
analysis in the discovery phase and
replication phase

In the discovery and replication phases, all causal
associations were examined by the MR-PRESSO method,
and outliers were eliminated. In the discovery phase, based
on the IVW method, a total of 34 exposures (Figure 4;
Supplementary Table 4) were causally associated with the
risk of GORD with statistical significance (P ≤ 0.05). Among
them, the following 20 exposures were causally associated
with an increased risk of GORD: smoking initiation, lifetime
smoking, cigarette consumption, smoking cessation, insomnia,
short sleep, daytime sleepiness, daytime napping, leisure
sedentary behavior (TV watching), type 2 diabetes, coronary
artery disease, BMI, body fat percentage, whole body fat mass,
visceral adipose tissue, waist circumference, hip circumference,
waist-to-hip ratio, major depressive disorder, and anxious

7 https://shiny.cnsgenomics.com/mRnd/
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TABLE 2 Statistically significant genetic correlation between 48 exposures and GORDNeale as well as GORDFinn.

Exposure/Outcome GORDNeale
a GORDFinn

b

rg c SE Z-score P-value rg SE Z-score P-value

Coffee consumption −0.091 0.040 −2.255 0.024 −0.055 0.055 −1.006 0.315

Caffeine consumption −0.161 0.041 −3.936 8.274E-05 −0.199 0.060 −3.313 9.216E-04

Smoking initiation 0.342 0.031 10.904 1.103E-27 0.219 0.051 4.326 1.518E-05

Lifetime smoking 0.438 0.033 13.212 7.499E-40 0.269 0.049 5.469 4.540E-08

Cigarette consumption 0.326 0.038 8.500 1.893E-17 0.275 0.058 4.741 2.125E-06

Age of initiation of regular smoking −0.401 0.044 −9.049 1.445E-19 −0.386 0.072 −5.385 7.254E-08

Smoking cessation 0.341 0.047 7.221 5.145E-13 0.185 0.070 2.629 8.573E-03

Breakfast skipping 0.238 0.056 4.286 1.823E-05 0.161 0.072 2.118 0.033

Insomnia 0.465 0.037 12.623 1.587E-36 0.397 0.054 7.298 2.932E-13

Short sleep 0.384 0.042 9.225 2.827E-20 0.257 0.050 5.100 3.401E-07

Long sleep 0.202 0.049 4.133 3.587E-05 0.191 0.068 2.820 4.797E-03

Daytime sleepiness 0.124 0.041 3.052 2.276E-03 0.182 0.059 3.099 1.940E-03

Daytime napping 0.160 0.037 4.288 1.804E-05 0.159 0.046 3.484 4.938E-04

Leisure sedentary behavior (TV watching) 0.393 0.036 11.039 2.492E-28 0.259 0.057 4.577 4.715E-06

Leisure sedentary behavior (computer use) −0.157 0.032 −4.943 7.691E-07 −0.140 0.049 −2.855 4.299E-03

10+ min vigorous activity −0.104 0.043 −2.430 0.015 −0.120 0.060 −1.995 0.046

Strenuous sports or other exercises −0.374 0.040 −9.369 7.346E-21 −0.252 0.056 −4.474 7.670E-06

Adult-onset asthma 0.292 0.040 7.315 2.573E-13 0.121 0.068 2.496 0.012

Type 2 diabetes 0.301 0.034 8.918 4.744E-19 0.256 0.045 5.712 1.119E-08

Coronary artery disease 0.311 0.032 9.646 5.115E-22 0.173 0.043 3.974 7.079E-05

Atrial fibrillation 0.091 0.042 2.191 0.028 0.063 0.052 1.221 0.222

Fasting glucose 0.136 0.050 2.743 6.088E-03 −0.004 0.065 −0.061 0.951

Fating insulin 0.121 0.060 2.028 0.043 0.117 0.071 1.636 0.102

HDL cholesterol −0.228 0.043 −5.342 9.189E-08 −0.180 0.073 −2.471 0.013

LDL cholesterol 0.131 0.059 2.228 0.026 0.050 0.081 0.615 0.538

Triglycerides 0.214 0.044 4.901 9.526E-07 0.235 0.060 3.921 8.830E-05

Leptin 0.180 0.081 2.220 0.026 0.104 0.112 0.926 0.354

25-Hydroxyvitamin D 0.078 0.032 2.450 0.014 0.017 0.041 0.425 0.671

Body mass index 0.369 0.027 13.826 1.768E-43 0.183 0.045 4.052 5.083E-05

Body fat percentage 0.393 0.027 14.714 5.279E-49 0.214 0.046 4.669 3.024E-06

Whole body fat mass 0.347 0.026 13.404 5.758E-41 0.168 0.045 3.749 1.772E-04

Whole body fat-free mass 0.067 0.025 2.662 7.768E-03 −0.021 0.040 −0.521 0.603

Visceral adipose tissue 0.422 0.028 15.286 9.440E-53 0.203 0.050 4.073 4.633E-05

Waist circumference 0.372 0.027 13.767 4.005E-43 0.186 0.046 4.029 5.600E-05

Hip circumference 0.234 0.025 9.202 3.516E-20 0.089 0.043 2.049 0.040

Waist-to-hip ratio 0.399 0.028 14.391 5.876E-47 0.218 0.041 5.344 9.089E-08

Standing height −0.147 0.027 −5.462 4.716E-08 −0.134 0.038 −3.549 3.871E-04

Sitting height −0.129 0.028 −4.619 3.852E-06 −0.114 0.037 −3.063 2.194E-03

Hand grip strength (left) −0.159 0.031 −5.159 2.487E-07 −0.179 0.046 −3.918 8.919E-05

Hand grip strength (right) −0.157 0.030 −5.259 1.450E-07 −0.201 0.046 −4.362 1.291E-05

Birth weight −0.127 0.034 −3.704 2.126E-04 −0.066 0.054 −1.228 0.219

Major depressive disorder 0.462 0.034 13.594 4.338E-42 0.531 0.055 9.607 7.438E-22

Anxious feeling 0.247 0.041 6.048 1.470E-09 0.369 0.059 6.303 2.919E-10

Life satisfaction −0.356 0.036 −9.839 7.687E-23 −0.399 0.053 −7.484 7.199E-14

Positive affect −0.337 0.036 −9.398 5.542E-21 −0.392 0.053 −7.403 1.336E-13

Income −0.421 0.037 −11.484 1.580E-30 −0.284 0.054 −5.215 1.841E-07

Educational attainment −0.484 0.027 −18.058 6.810E-73 −0.334 0.046 −7.257 3.967E-13

Intelligence −0.386 0.032 −12.078 1.383E-33 −0.195 0.047 −4.120 3.788E-05

GORDNeale 1.000 8.140E-07 1.229E + 06 0.000 0.929 0.098 9.450 3.389E-21

GORDFinn 0.929 0.098 9.450 3.389E-21 1.000 1.567E-05 6.383E + 04 0.000

aGORDNeale , summary-level GWAS dataset of GORD retrieved from Neale Lab.
bGORDFinn , summary-level GWAS dataset of GORD retrieved from FinnGen.
crg , genetic correlation.
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FIGURE 1

The flow chart of the UVMR analyses. In UVMR analysis, we assessed the causal associations between 66 exposures across 6 modifiable
pathways and the risk of GORD from discovery phase, replication phase, and IVW fixed-effect meta-analysis using METAL for SNPs from
GORDNeale and GORDFinn. The selection of IVs (SNPs) abided by 3 assumptions of MR analysis. (1) IVs should be closely related to exposure; (2)
IVs cannot affect outcome directly, but only through exposure; (3) IVs should not be associated with the known or unknown confounders.

feeling. The other 14 exposures showed causal associations
with a decreased risk of GORD: leisure sedentary behavior
(computer use), 10+ min vigorous activity, strenuous sports or
other exercises, height (standing and sitting), hand grip strength
(left and right), birth weight, life satisfaction, positive affect,
income, educational attainment, and intelligence. Moreover,
heterogeneities were observed in the SNPs corresponding to
the following exposures that causally were associated with the
risk of GORD (P ≤ 0.05): smoking initiation, lifetime smoking,
insomnia, short sleep, daytime sleepiness, daytime napping,
leisure sedentary behavior (TV watching), BMI, body fat
percentage, whole body fat mass, visceral adipose tissue, waist
circumference, hip circumference, waist-to-hip ratio, height
(standing and sitting), hand grip strength (left and right), birth
weight, anxious feeling, life satisfaction, positive affect, income,
educational attainment, and intelligence (Supplementary
Figures 1–5). Furthermore, no horizontal pleiotropy was

detected in the causal association between the exposures and
the risk of GORD.

In the replication phase (Figure 4; Supplementary Table 5),
a total of 29 exposures showed causal associations with
the risk of GORD (P ≤ 0.05), among which, the causal
associations between the following 25 exposures were consistent
with the results in the discovery phase: smoking initiation,
lifetime smoking, cigarette consumption, insomnia, short sleep,
leisure sedentary behaviors (TV watching and computer use),
strenuous sports or other exercises, type 2 diabetes, BMI, body
fat percentage, whole body fat mass, visceral adipose tissue,
waist circumference, waist-to-hip ratio, height (standing and
sitting), hand grip strength (left and right), birth weight, major
depressive disorder, life satisfaction, positive affect, income,
and educational attainment. Meanwhile, exposures “child-
onset asthma,” “ulcerative colitis,” “whole body fat-free mass,”
and “schizophrenia,” which had not previously shown causal
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FIGURE 2

The schematics of MVMR analyses. (A) The schematic of MVMR analyses with adjustment of educational attainment, smoking initiation, and BMI
for 11 significant causal exposures [cigarette consumption, insomnia, short sleep, leisure sedentary behavior (TV watching), waist-to-hip ratio,
height (standing and sitting), major depressive disorder, anxious feeling, life satisfaction, and positive affect]. (B) The schematic of MVMR
analyses with adjustment of educational attainment and BMI for four significant causal exposures [leisure sedentary behavior (computer use),
hand grip strength (left and right), and birth weight]. Exposures that respectively strongly genetically correlated with the BMI (body fat
percentage, whole body fat mass, visceral adipose tissue, and waist circumference), smoking initiation (lifetime smoking), and educational
attainment (income and intelligence) were excluded from MVMR analyses.

associations with the risk of GORD in the discovery phase,
also showed causal associations with the risk of GORD in
the replication phase. SNPs in the educational attainment,
BMI, smoking initiation, sitting height, waist circumference,
whole body fat mass, standing height, body fat percentage,
birth weight, type 2 diabetes, visceral adipose tissue and short
sleep suggested heterogeneities (Supplementary Figures 1–5).
Although horizontal pleiotropy (P = 0.029, MR-Egger intercept
test) was detected in the causal association between the smoking
initiation and the risk of GORD, the result from MR-Egger
method was still robust (P = 0.022, MR-Egger method).

Meta-analysis for the discovery phase
and replication phase

We performed UVMR for the 66 exposures and GORDmeta,
which contained 43116 GORD cases and 580251 controls from
the GORDNeale and GORDFinn, to complement and consolidate
the causal associations between exposures and the risk of
GORD. In total, as shown in Figure 4 and Supplementary
Tables 6, 26 exposures were finally identified to be significantly

causally associated with the risk of GORD (P ≤ 7.463E-
04), which included 15 risk exposures: smoking initiation
(OR = 1.284, P = 5.867E-06), lifetime smoking (OR = 1.971,
P = 9.127E-14), cigarette consumption (OR = 1.211, P = 3.944E-
05), insomnia (OR = 2.351, P = 1.957E-06), short sleep
(OR = 3.450, P = 5.867E-06), leisure sedentary behavior (TV
watching) (OR = 1.606, P = 1.835E-14), BMI (OR = 1.391,
P = 1.859E-32), body fat percentage (OR = 1.494, P = 4.751E-
22), whole body fat mass (OR = 1.297, P = 3.035E-19), visceral
adipose tissue (OR = 1.314, P = 2.002E-13), waist circumference
(OR = 1.402, P = 9.657E-18), hip circumference (OR = 1.151,
P = 1.614E-06), waist-to-hip ratio (OR = 1.371, P = 1.978E-
19), major depressive disorder (OR = 1.539, P = 1.084E-
24), and anxious feeling (OR = 1.926, P = 3.214E-05); 11
protective exposures: leisure sedentary behavior (computer use)
(OR = 0.721, P = 1.599E-04, FDR = 1.124E-04), height (standing
and sitting) (OR = 0.900, P = 7.002E-07 and OR = 0.875,
P = 1.739E-08), hand grip strength (left and right) (OR = 0.739,
P = 9.596E-06 and OR = 0.771, P = 7.802E-05), birth weight
(OR = 0.861, P = 4.522E-05), life satisfaction (OR = 0.412,
P = 1.464E-11), positive affect (OR = 0.426, P = 6.869E-
13), income (OR = 0.619, P = 5.427E-12), educational
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FIGURE 3

Estimations of heritability and genetic correlations for 66 exposures using LDSC. (A–F) Estimations of heritability for 66 exposures across 6
modifiable pathways (daily habits, health status, nutritional and biochemical biomarkers, nutritional and developmental status, emotional
factors, and socioeconomic factors). Mean with SEM was represented with error bar. (G) Genetic correlations between 66 exposures. Totally,
there were 2,145 (66 exposures*32.5) genetic correlations among 66 exposures. The sizes and colors of squares respectively represented the
significance level and genetic correlation directions. If P ≤ 0.05 (the threshold of genetic correlation with statistical significance), the squares
would be full-sized. P ≤ 2.331E-05 (0.05/2145, Bonferroni multiple comparisons) was considered as the threshold of genetic correlation with
significantly statistical significance between two exposures, whose squares would be showed with asterisk.

attainment (OR = 0.540, P = 1.121E-127), and intelligence
(OR = 0.754, P = 2.252E-12). Meanwhile, smoking cessation,
daytime sleepiness, daytime napping, adult-onset asthma, type
2 diabetes, coronary artery disease, ulcerative colitis suggestively

causally increased risk of GORD, and strenuous sports or
other exercises, HDL cholesterol, LDL cholesterol, leptin, and
whole body fat-free mass suggestively causally decreased risk
of GORD.
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FIGURE 4

The statistically significant results of MR analysis in the discovery phase or replication phase and meta-analysis (P ≤ 0.05). (A–D) The forest plots
graphically illustrated the aggregated results for 40 exposures that have statistically significant causal associations with the risk of GORD based
on the IVW method in the discovery phase, replication phase, or meta-analysis, where “Neale Lab,” “FinnGen,” and “Meta-analysis,” respectively,
denoted the MR results in the discovery phase, replication phase, and meta-analysis. The causal effects were represented as odds ratios (ORs)
with IVW method (blue box). The MR results of the discovery phase, replication phase, and meta-analysis with IVW method, weighted median
method, MR-Egger method, and MR-PRESSO method were summarized in Supplementary Tables 4–6 in detail.

Causalities independent of hub
exposures

According to the results of the Bonferroni multiple
comparisons from UVMR analyses, 26 causal exposures were
identified to have significant causal effects on the risk of GORD.
K = 3 (cluster A, cluster B, and cluster C) (Figures 5A–
D) was used as the standard of the PAM algorithm to
cluster 351 genetic correlations between 26 significant causal
exposures (Figure 5E). Among them, educational attainment,
smoking initiation and BMI in clusters A, B, and C were

genetically correlated with all the other exposures individually,
and were defined as hub exposures. MVMR analysis suggested
that educational attainment (MVMR-IVW: OR = 0.579,
P = 1.426E-20; MVMR-Egger: OR = 0.579, P = 1.235E-18),
smoking initiation (MVMR-IVW: OR = 1.114, P = 0.036;
MVMR-Egger: OR = 1.114, P = 0.037), and BMI (MVMR-
IVW: OR = 1.214, P = 8.715E-09; MVMR-Egger: OR = 1.214,
P = 1.641E-08) all showed independent causal effects on the
risk of GORD. As the results of statistically significant genetic
correlation of the other exposures with educational attainment,
smoking initiation and BMI, we evaluated the independent
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causal effects of cigarette consumption, insomnia, short sleep,
leisure sedentary behavior (TV watching), waist-to-hip ratio,
height (standing and sitting), major depressive disorder, anxious
feeling, life satisfaction and positive affect with adjustment
of educational attainment (32), smoking initiation (33), and
BMI (34), and independent causal effects of leisure sedentary
behavior (computer use), hand grip strength (left and right) and
birth weight with adjustment of educational attainment (32)
and BMI (34). Exposures that respectively strongly genetically
correlated with the BMI [body fat percentage (rg = 0.902,
P = 0.000), whole body fat mass (rg = 0.912, P = 0.000), visceral
adipose tissue (rg = 0.932, P = 0.000), waist circumference
(rg = 0.900, P = 0.000), and hip circumference (rg = 0.849,
P = 0.000)], smoking initiation [lifetime smoking (rg = 0.921,
P = 0.000)], and educational attainment [income (rg = 0.804,
P = 0.000) and intelligence (rg = 0.807, P = 0.000)] were excluded
from MVMR analyses. After MVMR analyses (Figure 5F;
Supplementary Table 7), it was found that insomnia (MVMR-
IVW: OR = 2.286, P = 1.176E-07; MVMR-Egger: OR = 1.747,
P = 3.283E-04), short sleep (MVMR-IVW: OR = 2.788,
P = 2.134E-05; MVMR-Egger: OR = 2.795, P = 9.198E-05),
waist-to-hip ratio (MVMR-IVW: OR = 1.195, P = 1.837E-04;
MVMR-Egger: OR = 1.196, P = 2.075E-04), height (standing
and sitting) (standing: MVMR-IVW: OR = 0.944, P = 0.013;
MVMR-Egger: OR = 0.944, P = 0.013; sitting: MVMR-IVW:
OR = 0.928, P = 5.544E-03; MVMR-Egger: OR = 0.928,
P = 5.735E-03), hand grip strength (left and right) (left: MVMR-
IVW: OR = 0.838, P = 0.031; MVMR-Egger: OR = 0.839,
P = 0.035; right: MVMR-IVW: OR = 0.820, P = 0.027; MVMR-
Egger: OR = 0.820, P = 0.827), birth weight (MVMR-IVW:
OR = 0.811, P = 6.940E-03; MVMR-Egger: OR = 0.811,
P = 7.215E-03), major depressive disorder (MVMR-IVW:
OR = 1.361, P = 7.761E-11; MVMR-Egger: OR = 1.362,
P = 1.919E-10), anxious feeling (MVMR-IVW: OR = 1.485,
P = 3.753E-04; MVMR-Egger: OR = 1.485, P = 3.993E-04),
life satisfaction (MVMR-IVW: OR = 0.462, P = 4.673E-07;
MVMR-Egger: OR = 0.461, P = 7.215E-07), and positive affect
(MVMR-IVW: OR = 0.519, P = 1.597E-05; MVMR-Egger:
OR = 0.518, P = 2.017E-05) retained their causal effects on
the risk of GORD, similar to the UVMR analyses. Moreover,
cigarette consumption and leisure sedentary behaviors (TV
watching and computer use) did not exhibit independent
causal associations with the risk of GORD following MVMR
analyses.

Discussion

Previous MR studies examined the causal associations
between smoking initiation, asthma, type 2 diabetes, BMI,
waist circumference, waist-to-hip ratio, standing height, and the
risk of GORD primarily among European-ancestry individuals
in the UKB database (16, 35–37), whose MR findings were

also replicated in this study with larger-scale GORD GWAS
datasets from Neale Lab and FinnGen consortium. In this study,
we systematically examined causal associations between 66
exposures across 6 modifiable pathways and the risk of GORD
in order to comprehensively elucidate the causal modifiable
factors that were associated with the risk of GORD. Totally,
26 significant causal associations and 12 suggestive causal
associations were observed. Meanwhile, after MVMR analyses,
15 significant causal exposures among smoking behaviors,
sleep disorders, obesity, muscle mass, height (standing and
sitting), negative emotions, positive subjective well-beings, and
socioeconomic factors retained independent causal associations
with the risk of GORD.

Novel significant risk causal
associations

Obesity, especially central obesity, contributes the risk
of GORD by increasing the frequency of the transient
lower oesophageal sphincter relaxation (TLESR) (38), intra-
abdominal pressure (39) and the possibility of oesophageal acid
exposure (40). We further extended MR analyses to include
body fat percentage, whole body fat mass, visceral adipose
tissue, waist circumference, hip circumference, and waist-to-hip
ratio to systematically demonstrate causal associations between
central obesity and the risk of GORD. A higher waist-to-hip
ratio is observed to be a better indicator of the occurrence
of GORD than BMI (41), and is also associated with the
development of GORD (42). In this study, it was further
confirmed that the waist-to-hip ratio, whether it was adjusted for
BMI or not, presented a strong causal association with the risk of
GORD. At present, there are few epidemiological investigations
on the association between height and the pathogenesis of
GORD. We speculated that taller people have less abdominal
pressure and were therefore less likely to develop GORD.
The BMI-adjusted and BMI-unadjusted MVMR analyses also
verified the independent reverse causalities of the height
(standing and the sitting) with the risk of GORD.

Several large cohort studies and meta-analyses have
demonstrated evidence linking smoking to GORD (3, 43,
44). Currently, it is believed that smoking causes GORD
by prolonging the acid gap time, decreasing the secretion
of saliva and neutralizing bases (45) and loosening the
lower oesophageal sphincter (LES) (46). In this study, the
causalities between smoking behaviors and the risk of GORD
were explored systematically from smoking initiation, lifetime
smoking, cigarette consumption, and smoking cessation, and
the independent positive causal associations between smoking
initiation and the risk of GORD were also demonstrated.

Poor sleep quality appeared to be closely related to
the risk of GORD. Mody et al. recorded 68.3% of 11685
GORD respondents with sleep difficulties, 49.1% experiencing
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FIGURE 5

PAM clustering and MVMR analyses. (A) The PAM clustering matrix heatmap when K = 3. (B) The change of slope of CDF curve in PAM clustering
for 26 exposures. (C) The change of area under CDF curve in PAM clustering for 26 exposures. (D) Principal component analysis (PCA) for 26
exposures in cluster A, cluster B, and cluster C. (E) Genetic correlations between 26 exposures. The size and color of squares respectively
represented the significance level and genetic correlation directions. Genetic correlations with P ≤ 0.05 would be showed with asterisks. (F) The
forest plot showed the results of the causal associations between 15 exposures and the risk of GORD after MVMR analyses with adjustment of
educational attainment, smoking initiation, or BMI. The causal effects were represented as ORs with MVMR-IVW method (orange box) and
MVMR-Egger method (purple box). The MVMR results estimated with MVMR-IVW method and MVMR-Egger method were summarized in
Supplementary Table 7 in detail.

difficulty falling sleep, and 58.3% struggling to stay asleep
(47). This study provided genetic evidence that insomnia
and short sleep contributed to the risk of GORD. At
present, the associations between insomnia, short sleep and
BMI as well as smoking initiation have been demonstrated
(48, 49). We performed MVMR analyses with adjustment
of educational attainment, BMI and smoking initiation for
insomnia and short sleep and confirmed the independence

of the causal association between insomnia, short sleep, and
the risk of GORD.

As of now, epidemiological studies are lacking regarding
the direct impact of sedentary behavior on the risk of GORD.
In a UK prospective cohort study, sedentary occupations had
a higher risk of Barrett’s oesophagitis comparing with standing
occupations (50). In this study, a significant positive causality
was found between prolonged TV watching time and the
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risk of GORD; in contrast, prolonged computer use time
had a significant negative causality with the risk of GORD.
Furthermore, we also attempted to assess whether sedentary
behavior had an independent causal effect on the risk of GORD
to rule out the potential causal effects of the remaining factors,
such as BMI, smoking behaviors, and educational attainment
(51), on the risk of GORD. Following MVMR analyses for
TV watching and computer use, we detected that the strong
causal effects were attenuated in comparison with the original,
which exactly evidenced that sedentary behaviors including TV
watching and computer use did not have causal effects on the
risk of GORD independently.

Gastro-oesophageal reflux disease is common in individuals
with anxious feeling and depression. A recent large cross-
sectional study based on 19,099 participants provided evidence
that anxious feeling and depression were associated with an
increased risk of GORD (52). Corticotropin-releasing hormone
(CRH) is a key mediating factor for emotional stress. Broers
et al. illustrated that CRH increased oesophageal sensitivity
along with increased oesophageal contractility and decreased
relaxation of LES, thus causing reflux symptoms (53). In
the investigation of GORD pathogenesis, anxious feeling and
depression might also be implicated in a similar pattern.
GORD may be exacerbated by anxious feeling and depression
by reducing the visceral sensitivity index (VSI), enhancing
reflux hypersensitivity, and functional heartburn (54). Our
study further highlighted the independent causalities of anxious
feeling and depression on the risk of GORD.

Novel significant protective causal
associations

Hand grip strength are customarily considered as surrogates
for skeletal muscle mass, which is typically influenced by
malnutrition and aging (55, 56). In this study, we found that
hand grip strength (left and right) had significant negative
causal associations with the risk of GORD regardless of BMI
and educational attainment. The relationship between muscle
mass and the risk of GORD was preliminarily investigated
in a context of previous cohort study. A cohort study based
on 574 patients with sarcopenia indicated that sarcopenia was
positively associated with a high risk of GORD (OR = 1.170, 95%
CI = 1.016–1.346) (57). Although the underlying mechanisms
of the relationship between muscle mass and the risk of
GORD are still obscure, this study suggested that there was
a deterministic reverse causal association between muscle
mass and the risk of GORD at the genetic level, which
might serve as a catalyst for further mechanistic studies.
Currently, adults with low birth weight are closely bound
up with the risk of GORD (58). Current researches support
the hypothesis that GORD is a chronic disease that will
last throughout the whole life. It usually begins in infancy,

but does not progress in childhood, while becomes clinically
significant in adulthood (59, 60). In this study, we confirmed an
independently inverse causal association between birth weight
based on a GWAS dataset from a long-term population study
and the risk of GORD.

It has been demonstrated that specific negative emotions
have causal effects on the increased risk of GORD; however,
there have been rare studies to investigate the correlations
between positive emotions and the risk of GORD. An
enlightening finding revealed that effective psychological
intervention therapy has been shown to significantly
improve GORD symptoms, such as globus sensation and
non-cardiac chest pain (61), or, to put it another way,
there was a theoretical possibility that protective effects of
positive emotions on GORD could be achieved. Our study
replenished these protective causalities by confirming that
the positive subjective feelings (such as positive affect and
life satisfaction) were significantly causally associated with
a decreased risk of GORD. It could also be interpreted that
positive subjective feelings contributed to protection against
the risk of GORD.

Socioeconomic factors are also strongly associated with
the risk of GORD in many aspects as well. According
to a global meta-analysis containing 102 studies (3), the
low-income groups had a higher prevalence of GORD
compared with the middle-income groups (OR: 1.58, 95%
CI: 1.20–2.08) or the high-income groups (OR: 1.68, 95%
CI: 1.38–2.05); those with lower educational levels had a
higher prevalence of GORD than the individuals at medium
educational levels (OR: 1.47, 95% CI: 1.25–1.73) and the
individuals with higher educational levels (OR: 1.78, 95% CI:
1.39–2.28). In this study, reverse causal associations between
income, educational attainment as well as intelligence and
the risk of GORD were also established. Typically, a higher
educational level correlates with healthier lifestyles, better
economic status, healthier cognition and more consummate
medical care (62, 63). Socioeconomic factors, including income,
educational attainment and intelligence, all played protective
roles in the risk of GORD, while focusing on a single
social factor and discrediting it as confounding was also
unreasonable for the risk of GORD. Perhaps the causal
associations of the socioeconomic factors on the risk of
GORD can also be regarded as the consequence of a wide-
ranging interaction.

Strengths and limitations

We reviewed and summarized the modifiable factors and
previous MR results that were associated with the risk of GORD
to expand the scope of exposures included in the MR analysis to
the largest extent, ensuring comprehensiveness of MR analysis.
This study was also the first to rigorously and systematically
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examine genetic liabilities of modifiable factors for the risk
of GORD, mitigating the impacts of potential confounders
and reverse causalities as much as possible. Moreover, MR
results in the discovery phase and replication phase were
complementary, and meta-analysis for the above two phases
enhanced the causal associations between exposures and the
risk of GORD. MVMR analyses adjusted for hub exposures
(educational attainment, smoking initiation, or BMI) estimated
from PAM clustering algorithm also revealed novel insights
into the independent causal effects of specific exposures on
the risk of GORD.

Some limitations were also taken into consideration in
this study. Firstly, despite the fact that we systematically
searched and summarized the factors related to the risk of
GORD and SNPs recruited from exposures, the limitations
of review scope design, as well as the lack of SNPs for
some exposures might result in omissions or deviations
when assessing causal associations. Secondly, it is generally
accepted in MR analysis that there are two mechanisms
for pleiotropy: one is that a genetic variant directly affects
multiple phenotypes, which is defined as type I pleiotropy
(horizontal pleiotropy), and the second is that a genetic
variant affects one exposure, while simultaneously also affecting
other phenotypes through this expose, which is defined as
type II pleiotropy (vertical pleiotropy) (64). As a general
rule, type II pleiotropy (vertical pleiotropy) has no biased
effects on causality. Therefore, we supplemented the MR-
Egger method and MR-PRESSO methods in the MR analysis
in order to minimize the bias with the detection of type
I pleiotropy (horizontal pleiotropy) as much as possible.
Thirdly, given that this study was mainly based on the
European population, extrapolating the causal associations
in this study to other ethnic populations may result in
deviations due to genetic heterogeneities among different
ethnic populations.

Conclusion

In summary, we performed MR analysis in this
study to identify the factors causally associated with the
risk of GORD from 66 exposures across 6 modifiable
pathways, which also provided references on the public
preventive and therapeutic strategies for GORD from
multiple perspectives, such as weight loss, proper high-
level physical activities, high-quality sleep, non-smoking, and
positive mental state.

Data availability statement

The original contributions presented in this study
are included in the article/Supplementary material,

further inquiries can be directed to the corresponding
author.

Ethics statement

Consents for GWAS datasets were all acquired from public
database.

Author contributions

YS and JJ designed this study. YS, XC, and KS drafted the
manuscript. YS, XC, DC, YC, KS, ZJ, and JJ conducted data
collection and analysis. YW and JJ provided medical ethical
reference. All authors contributed to the article and approved
the submitted version.

Funding

This work was supported by the National Natural Science
Foundation of China, Grant/Award numbers: 81874279 and
82002932, Jilin Province Department of Finance, Grant/Award
number: JLSWSRCZX2020-010, Health Commission of Jilin
Province, Grant/Award number: 2021JC002, and Scientific
and Technological Development Program of Jilin Province,
Grant/Award number: 20200201326JC.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be
found online at: https://www.frontiersin.org/articles/10.3389/
fnut.2022.1009122/full#supplementary-material

Frontiers in Nutrition 15 frontiersin.org

https://doi.org/10.3389/fnut.2022.1009122
https://www.frontiersin.org/articles/10.3389/fnut.2022.1009122/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnut.2022.1009122/full#supplementary-material
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-1009122 October 26, 2022 Time: 13:34 # 16

Sun et al. 10.3389/fnut.2022.1009122

References

1. Ali T, Miner PB. New developments in gastroesophageal reflux disease
diagnosis and therapy. Curr Opin Gastroenterol. (2008) 24:502–8. doi: 10.1097/
MOG.0b013e3283025c6d

2. El-Serag HB, Sweet S, Winchester CC, Dent J. Update on the epidemiology
of gastro-oesophageal reflux disease: a systematic review. Gut. (2014) 63:871–80.
doi: 10.1136/gutjnl-2012-304269

3. Eusebi LH, Ratnakumaran R, Yuan Y, Solaymani-Dodaran M, Bazzoli F, Ford
AC. Global prevalence of, and risk factors for, gastro-oesophageal reflux symptoms:
a meta-analysis. Gut. (2018) 67:430–40. doi: 10.1136/gutjnl-2016-313589

4. Gyawali CP, Kahrilas PJ, Savarino E, Zerbib F, Mion F, Smout AJPM, et al.
Modern diagnosis of GERD: the Lyon consensus. Gut. (2018) 67:1351–62. doi:
10.1136/gutjnl-2017-314722

5. Richter JE, Rubenstein JH. Presentation and epidemiology of gastroesophageal
reflux disease. Gastroenterology. (2018) 154:267–76. doi: 10.1053/j.gastro.2017.07.
045

6. Ness-Jensen E, Hveem K, El-Serag H, Lagergren J. Lifestyle intervention in
gastroesophageal reflux disease. Clin Gastroenterol Hepatol. (2016) 14:175–82.e3.
doi: 10.1016/j.cgh.2015.04.176

7. Ness-Jensen E, Lagergren J. Tobacco smoking, alcohol consumption and
gastro-oesophageal reflux disease. Best Pract Res Clin Gastroenterol. (2017) 31:501–
8. doi: 10.1016/j.bpg.2017.09.004

8. Lim KG, Morgenthaler TI, Katzka DA. Sleep and nocturnal gastroesophageal
reflux: an update. Chest. (2018) 154:963–71. doi: 10.1016/j.chest.2018.05.030

9. Oh JH. Gastroesophageal reflux disease: recent advances and its association
with sleep. Ann N Y Acad Sci. (2016) 1380:195–203. doi: 10.1111/nyas.13143

10. Lawlor DA, Harbord RM, Sterne JAC, Timpson N, Davey Smith G.
Mendelian randomization: using genes as instruments for making causal inferences
in epidemiology. Stat Med. (2008) 27:1133–63.

11. Burgess S, Timpson NJ, Ebrahim S, Davey Smith G. Mendelian
randomization: where are we now and where are we going? Int J Epidemiol.
(2015) 44:379–88. doi: 10.1093/ije/dyv108

12. Wang MH, Cordell HJ, Van Steen K. Statistical methods for genome-wide
association studies. Semin Cancer Biol. (2019) 55:53–60. doi: 10.1016/j.semcancer.
2018.04.008

13. Smith GD, Lawlor DA, Harbord R, Timpson N, Day I, Ebrahim S.
Clustered environments and randomized genes: a fundamental distinction between
conventional and genetic epidemiology. PLoS Med. (2007) 4:e352. doi: 10.1371/
journal.pmed.0040352

14. Sekula P, Del Greco MF, Pattaro C, Köttgen A. Mendelian randomization as
an approach to assess causality using observational data. J Am Soc Nephrol. (2016)
27:3253–65.

15. Smith GD, Ebrahim S. Mendelian randomization: prospects, potentials, and
limitations. Int J Epidemiol. (2004) 33:30–42.

16. Yuan S, Larsson SC. Adiposity, diabetes, lifestyle factors and risk of
gastroesophageal reflux disease: a Mendelian randomization study. Eur J Epidemiol.
(2022) 37:747–54. doi: 10.1007/s10654-022-00842-z

17. Zhou W, Nielsen JB, Fritsche LG, Dey R, Gabrielsen ME, Wolford BN,
et al. Efficiently controlling for case-control imbalance and sample relatedness in
large-scale genetic association studies. Nat Genet. (2018) 50:1335–41. doi: 10.1038/
s41588-018-0184-y

18. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of
genomewide association scans. Bioinformatics. (2010) 26:2190–1. doi: 10.1093/
bioinformatics/btq340

19. Hartwig FP, Davies NM, Hemani G, Davey Smith G. Two-sample Mendelian
randomization: avoiding the downsides of a powerful, widely applicable but
potentially fallible technique. Int J Epidemiol. (2016) 45:1717–26. doi: 10.1093/ije/
dyx028

20. Bulik-Sullivan BK, Loh P-R, Finucane HK, Ripke S, Yang J, Patterson N, et al.
LD Score regression distinguishes confounding from polygenicity in genome-wide
association studies. Nat Genet. (2015) 47:291–5. doi: 10.1038/ng.3211

21. Zheng J, Erzurumluoglu AM, Elsworth BL, Kemp JP, Howe L, Haycock PC,
et al. LD Hub: a centralized database and web interface to perform LD score
regression that maximizes the potential of summary level GWAS data for SNP
heritability and genetic correlation analysis. Bioinformatics. (2017) 33:272–9. doi:
10.1093/bioinformatics/btw613

22. Pierce BL, Burgess S. Efficient design for Mendelian randomization studies:
subsample and 2-sample instrumental variable estimators. Am J Epidemiol. (2013)
178:1177–84. doi: 10.1093/aje/kwt084

23. Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis
with multiple genetic variants using summarized data. Genet Epidemiol. (2013)
37:658–65. doi: 10.1002/gepi.21758

24. Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in
Mendelian randomization with some invalid instruments using a weighted median
estimator. Genet Epidemiol. (2016) 40:304–14. doi: 10.1002/gepi.21965

25. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid
instruments: effect estimation and bias detection through Egger regression. Int J
Epidemiol. (2015) 44:512–25. doi: 10.1093/ije/dyv080

26. Verbanck M, Chen C-Y, Neale B, Do R. Detection of widespread horizontal
pleiotropy in causal relationships inferred from Mendelian randomization between
complex traits and diseases. Nat Genet. (2018) 50:693–8. doi: 10.1038/s41588-018-
0099-7

27. Burgess S, Thompson SG. Multivariable Mendelian randomization: the use
of pleiotropic genetic variants to estimate causal effects. Am J Epidemiol. (2015)
181:251–60. doi: 10.1093/aje/kwu283

28. Rees JMB, Wood AM, Burgess S. Extending the MR-Egger method for
multivariable Mendelian randomization to correct for both measured and
unmeasured pleiotropy. Stat Med. (2017) 36:4705–18. doi: 10.1002/sim.7492

29. Bowden J, Del Greco MF, Minelli C, Davey Smith G, Sheehan NA,
Thompson JR. Assessing the suitability of summary data for two-sample Mendelian
randomization analyses using MR-Egger regression: the role of the I2 statistic. Int J
Epidemiol. (2016) 45:1961–74. doi: 10.1093/ije/dyw220

30. Hemani G, Bowden J, Davey Smith G. Evaluating the potential role of
pleiotropy in Mendelian randomization studies. Hum Mol Genet. (2018) 27:R195–
208. doi: 10.1093/hmg/ddy163

31. Brion M-JA, Shakhbazov K, Visscher PM. Calculating statistical power in
Mendelian randomization studies. Int J Epidemiol. (2013) 42:1497–501. doi: 10.
1093/ije/dyt179

32. Lee JJ, Wedow R, Okbay A, Kong E, Maghzian O, Zacher M, et al. Gene
discovery and polygenic prediction from a genome-wide association study of
educational attainment in 1.1 million individuals. Nat Genet. (2018) 50:1112–21.
doi: 10.1038/s41588-018-0147-3

33. Liu M, Jiang Y, Wedow R, Li Y, Brazel DM, Chen F, et al. Association studies of
up to 1.2 million individuals yield new insights into the genetic etiology of tobacco
and alcohol use. Nat Genet. (2019) 51:237–44. doi: 10.1038/s41588-018-0307-5

34. Elsworth B, Lyon M, Alexander T, Liu Y, Matthews P, Hallett J, et al. The MRC
IEU OpenGWAS data infrastructure. bioRxiv [Preprint]. (2020). doi: 10.1101/2020.
08.10.244293

35. Lai FY, Nath M, Hamby SE, Thompson JR, Nelson CP, Samani NJ. Adult
height and risk of 50 diseases: a combined epidemiological and genetic analysis.
BMCMed. (2018) 16:187. doi: 10.1186/s12916-018-1175-7

36. Freuer D, Linseisen J, Meisinger C. Asthma and the risk of gastrointestinal
disorders: a Mendelian randomization study. BMCMed. (2022) 20:82. doi: 10.1186/
s12916-022-02283-7

37. Green HD, Beaumont RN, Wood AR, Hamilton B, Jones SE, Goodhand
JR, et al. Genetic evidence that higher central adiposity causes gastro-oesophageal
reflux disease: a Mendelian randomization study. Int J Epidemiol. (2020) 49:1270–
81. doi: 10.1093/ije/dyaa082

38. Wu JC, Mui L-M, Cheung CM, Chan Y, Sung JJ. Obesity is associated with
increased transient lower esophageal sphincter relaxation. Gastroenterology. (2007)
132:883–9.

39. Varela JE, Hinojosa M, Nguyen N. Correlations between intra-abdominal
pressure and obesity-related co-morbidities. Surg Obes Relat Dis. (2009) 5:524–8.
doi: 10.1016/j.soard.2009.04.003

40. El-Serag HB, Ergun GA, Pandolfino J, Fitzgerald S, Tran T, Kramer JR.
Obesity increases oesophageal acid exposure. Gut. (2007) 56:749–55.

41. Ringhofer C, Lenglinger J, Riegler M, Kristo I, Kainz A, Schoppmann SF.
Waist to hip ratio is a better predictor of esophageal acid exposure than body mass
index. Neurogastroenterol Motil. (2017) 29:e13033. doi: 10.1111/nmo.13033

42. Edelstein ZR, Bronner MP, Rosen SN, Vaughan TL. Risk factors for Barrett’s
esophagus among patients with gastroesophageal reflux disease: a community
clinic-based case-control study. Am J Gastroenterol. (2009) 104:834–42. doi: 10.
1038/ajg.2009.137

43. Hallan A, Bomme M, Hveem K, Møller-Hansen J, Ness-Jensen E. Risk
factors on the development of new-onset gastroesophageal reflux symptoms.
A population-based prospective cohort study: the HUNT study. Am J
Gastroenterol. (2015) 110:393–400; quiz 401. doi: 10.1038/ajg.2015.18

Frontiers in Nutrition 16 frontiersin.org

https://doi.org/10.3389/fnut.2022.1009122
https://doi.org/10.1097/MOG.0b013e3283025c6d
https://doi.org/10.1097/MOG.0b013e3283025c6d
https://doi.org/10.1136/gutjnl-2012-304269
https://doi.org/10.1136/gutjnl-2016-313589
https://doi.org/10.1136/gutjnl-2017-314722
https://doi.org/10.1136/gutjnl-2017-314722
https://doi.org/10.1053/j.gastro.2017.07.045
https://doi.org/10.1053/j.gastro.2017.07.045
https://doi.org/10.1016/j.cgh.2015.04.176
https://doi.org/10.1016/j.bpg.2017.09.004
https://doi.org/10.1016/j.chest.2018.05.030
https://doi.org/10.1111/nyas.13143
https://doi.org/10.1093/ije/dyv108
https://doi.org/10.1016/j.semcancer.2018.04.008
https://doi.org/10.1016/j.semcancer.2018.04.008
https://doi.org/10.1371/journal.pmed.0040352
https://doi.org/10.1371/journal.pmed.0040352
https://doi.org/10.1007/s10654-022-00842-z
https://doi.org/10.1038/s41588-018-0184-y
https://doi.org/10.1038/s41588-018-0184-y
https://doi.org/10.1093/bioinformatics/btq340
https://doi.org/10.1093/bioinformatics/btq340
https://doi.org/10.1093/ije/dyx028
https://doi.org/10.1093/ije/dyx028
https://doi.org/10.1038/ng.3211
https://doi.org/10.1093/bioinformatics/btw613
https://doi.org/10.1093/bioinformatics/btw613
https://doi.org/10.1093/aje/kwt084
https://doi.org/10.1002/gepi.21758
https://doi.org/10.1002/gepi.21965
https://doi.org/10.1093/ije/dyv080
https://doi.org/10.1038/s41588-018-0099-7
https://doi.org/10.1038/s41588-018-0099-7
https://doi.org/10.1093/aje/kwu283
https://doi.org/10.1002/sim.7492
https://doi.org/10.1093/ije/dyw220
https://doi.org/10.1093/hmg/ddy163
https://doi.org/10.1093/ije/dyt179
https://doi.org/10.1093/ije/dyt179
https://doi.org/10.1038/s41588-018-0147-3
https://doi.org/10.1038/s41588-018-0307-5
https://doi.org/10.1101/2020.08.10.244293
https://doi.org/10.1101/2020.08.10.244293
https://doi.org/10.1186/s12916-018-1175-7
https://doi.org/10.1186/s12916-022-02283-7
https://doi.org/10.1186/s12916-022-02283-7
https://doi.org/10.1093/ije/dyaa082
https://doi.org/10.1016/j.soard.2009.04.003
https://doi.org/10.1111/nmo.13033
https://doi.org/10.1038/ajg.2009.137
https://doi.org/10.1038/ajg.2009.137
https://doi.org/10.1038/ajg.2015.18
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-1009122 October 26, 2022 Time: 13:34 # 17

Sun et al. 10.3389/fnut.2022.1009122

44. Cheng Y, Kou F, Liu J, Dai Y, Li X, Li J. Systematic assessment of
environmental factors for gastroesophageal reflux disease: an umbrella review of
systematic reviews and meta-analyses. Dig Liver Dis. (2021) 53:566–73. doi: 10.
1016/j.dld.2020.11.022

45. Kahrilas PJ, Gupta RR. The effect of cigarette smoking on salivation and
esophageal acid clearance. J Lab Clin Med. (1989) 114:431–8.

46. Kahrilas PJ, Gupta RR. Mechanisms of acid reflux associated with cigarette
smoking. Gut. (1990) 31:4–10.

47. Mody R, Bolge SC, Kannan H, Fass R. Effects of gastroesophageal reflux
disease on sleep and outcomes. Clin Gastroenterol Hepatol. (2009) 7:953–9. doi:
10.1016/j.cgh.2009.04.005

48. Dashti HS, Ordovás JM. Genetics of sleep and insights into its relationship
with obesity. Annu Rev Nutr. (2021) 41:223–52. doi: 10.1146/annurev-nutr-
082018-124258

49. Boakye D, Wyse CA, Morales-Celis CA, Biello SM, Bailey MES, Dare S, et al.
Tobacco exposure and sleep disturbance in 498 208 UK Biobank participants. J
Public Health (Oxf). (2018) 40:517–26. doi: 10.1093/pubmed/fdx102

50. Lam S, Alexandre L, Luben R, Hart AR. The association between physical
activity and the risk of symptomatic Barrett’s oesophagus: a UK prospective
cohort study. Eur J Gastroenterol Hepatol. (2018) 30:71–5. doi: 10.1097/MEG.
0000000000000998

51. van de Vegte YJ, Said MA, Rienstra M, van der Harst P, Verweij N.
Genome-wide association studies and Mendelian randomization analyses for
leisure sedentary behaviours. Nat Commun. (2020) 11:1770. doi: 10.1038/s41467-
020-15553-w

52. Choi JM, Yang JI, Kang SJ, Han YM, Lee J, Lee C, et al. Association between
anxiety and depression and gastroesophageal reflux disease: results from a large
cross-sectional study. J Neurogastroenterol Motil. (2018) 24:593–602. doi: 10.5056/
jnm18069

53. Broers C, Melchior C, Van Oudenhove L, Vanuytsel T, Van Houtte B,
Scheerens C, et al. The effect of intravenous corticotropin-releasing hormone
administration on esophageal sensitivity and motility in health. Am J Physiol
Gastrointest Liver Physiol. (2017) 312:G526–34. doi: 10.1152/ajpgi.00437.2016

54. Losa M, Manz SM, Schindler V, Savarino E, Pohl D. Increased visceral
sensitivity, elevated anxiety, and depression levels in patients with functional
esophageal disorders and non-erosive reflux disease. Neurogastroenterol Motil.
(2021) 33:e14177. doi: 10.1111/nmo.14177

55. Abe T, Loenneke JP, Thiebaud RS. Fat-free adipose tissue mass: impact on
peak oxygen uptake (VO) in adolescents with and without obesity. Sports Med.
(2019) 49:9–15. doi: 10.1007/s40279-018-1020-3

56. Norman K, Stobäus N, Gonzalez MC, Schulzke J-D, Pirlich M. Hand grip
strength: outcome predictor and marker of nutritional status. Clin Nutr. (2011)
30:135–42. doi: 10.1016/j.clnu.2010.09.010

57. Kim YM, Kim J-H, Baik SJ, Jung DH, Park JJ, Youn YH, et al. Association
between skeletal muscle attenuation and gastroesophageal reflux disease: a health
check-up cohort study. Sci Rep. (2019) 9:20102. doi: 10.1038/s41598-019-56702-6

58. Kaijser M, Akre O, Cnattingius S, Ekbom A. Preterm birth, low birth weight,
and risk for esophageal adenocarcinoma. Gastroenterology. (2005) 128:607–9.

59. El-Serag HB, Gilger M, Carter J, Genta RM, Rabeneck L. Childhood GERD is
a risk factor for GERD in adolescents and young adults. Am J Gastroenterol. (2004)
99:806–12. doi: 10.1111/j.1572-0241.2004.30098.x

60. Waring JP, Feiler MJ, Hunter JG, Smith CD, Gold BD. Childhood
gastroesophageal reflux symptoms in adult patients. J Pediatr Gastroenterol Nutr.
(2002) 35:334–8.

61. Riehl ME, Kinsinger S, Kahrilas PJ, Pandolfino JE, Keefer L. Role of a
health psychologist in the management of functional esophageal complaints. Dis
Esophagus. (2015) 28:428–36. doi: 10.1111/dote.12219

62. Lawrence EM. Why do college graduates behave more healthfully than those
who are less educated? J Health Soc Behav. (2017) 58:291–306. doi: 10.1177/
0022146517715671

63. Stringhini S, Sabia S, Shipley M, Brunner E, Nabi H, Kivimaki M, et al.
Association of socioeconomic position with health behaviors and mortality. JAMA.
(2010) 303:1159–66. doi: 10.1001/jama.2010.297

64. Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for
causal inference in epidemiological studies. Hum Mol Genet. (2014) 23:R89–98.
doi: 10.1093/hmg/ddu328

65. Zhong VW, Kuang A, Danning RD, Kraft P, van Dam RM, Chasman DI, et al.
A genome-wide association study of bitter and sweet beverage consumption. Hum
Mol Genet. (2019) 28:2449–57. doi: 10.1093/hmg/ddz061

66. Said MA, van de Vegte YJ, Verweij N, van der Harst P. Associations of
observational and genetically determined caffeine intake with coronary artery

disease and diabetes mellitus. J Am Heart Assoc. (2020) 9:e016808. doi: 10.1161/
JAHA.120.016808

67. Wootton RE, Richmond RC, Stuijfzand BG, Lawn RB, Sallis HM, Taylor GMJ,
et al. Evidence for causal effects of lifetime smoking on risk for depression and
schizophrenia: a Mendelian randomisation study. Psychol Med. (2020) 50:2435–43.
doi: 10.1017/S0033291719002678

68. Meddens SFW, de Vlaming R, Bowers P, Burik CAP, Linnér RK, Lee C,
et al. Genomic analysis of diet composition finds novel loci and associations with
health and lifestyle. Mol Psychiatry. (2021) 26:2056–69. doi: 10.1038/s41380-020-0
697-5

69. Dashti HS, Merino J, Lane JM, Song Y, Smith CE, Tanaka T, et al. Genome-
wide association study of breakfast skipping links clock regulation with food
timing. Am J Clin Nutr. (2019) 110:473–84. doi: 10.1093/ajcn/nqz076

70. Jones SE, Lane JM, Wood AR, van Hees VT, Tyrrell J, Beaumont RN, et al.
Genome-wide association analyses of chronotype in 697,828 individuals provides
insights into circadian rhythms. Nat Commun. (2019) 10:343. doi: 10.1038/s41467-
018-08259-7

71. Lane JM, Jones SE, Dashti HS, Wood AR, Aragam KG, van Hees VT, et al.
Biological and clinical insights from genetics of insomnia symptoms. Nat Genet.
(2019) 51:387–93. doi: 10.1038/s41588-019-0361-7

72. Dashti HS, Jones SE, Wood AR, Lane JM, van Hees VT, Wang H, et al.
Genome-wide association study identifies genetic loci for self-reported habitual
sleep duration supported by accelerometer-derived estimates. Nat Commun. (2019)
10:1100. doi: 10.1038/s41467-019-08917-4

73. Wang H, Lane JM, Jones SE, Dashti HS, Ollila HM, Wood AR, et al. Genome-
wide association analysis of self-reported daytime sleepiness identifies 42 loci that
suggest biological subtypes. Nat Commun. (2019) 10:3503. doi: 10.1038/s41467-
019-11456-7

74. Dashti HS, Daghlas I, Lane JM, Huang Y, Udler MS, Wang H, et al. Genetic
determinants of daytime napping and effects on cardiometabolic health. Nat
Commun. (2021) 12:900. doi: 10.1038/s41467-020-20585-3

75. Klimentidis YC, Raichlen DA, Bea J, Garcia DO, Wineinger NE, Mandarino
LJ, et al. Genome-wide association study of habitual physical activity in over
377,000 UK Biobank participants identifies multiple variants including CADM2
and APOE. Int J Obes (Lond). (2018) 42:1161–76. doi: 10.1038/s41366-018-0120-3

76. Ferreira MAR, Mathur R, Vonk JM, Szwajda A, Brumpton B, Granell R, et al.
Genetic Architectures of childhood- and adult-onset asthma are partly distinct. Am
J Hum Genet. (2019) 104:665–84. doi: 10.1016/j.ajhg.2019.02.022

77. Mahajan A, Taliun D, Thurner M, Robertson NR, Torres JM, Rayner NW,
et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-
density imputation and islet-specific epigenome maps. Nat Genet. (2018) 50:1505–
13. doi: 10.1038/s41588-018-0241-6

78. van der Harst P, Verweij N. Identification of 64 novel genetic loci provides
an expanded view on the genetic architecture of coronary artery disease. Circ Res.
(2018) 122:433–43. doi: 10.1161/CIRCRESAHA.117.312086

79. Nielsen JB, Thorolfsdottir RB, Fritsche LG, Zhou W, Skov MW, Graham SE,
et al. Biobank-driven genomic discovery yields new insight into atrial fibrillation
biology. Nat Genet. (2018) 50:1234–9. doi: 10.1038/s41588-018-0171-3

80. Liu JZ, van Sommeren S, Huang H, Ng SC, Alberts R, Takahashi A, et al.
Association analyses identify 38 susceptibility loci for inflammatory bowel disease
and highlight shared genetic risk across populations. Nat Genet. (2015) 47:979–86.
doi: 10.1038/ng.3359

81. Chen J, Spracklen CN, Marenne G, Varshney A, Corbin LJ, Luan J, et al.
The trans-ancestral genomic architecture of glycemic traits. Nat Genet. (2021)
53:840–60. doi: 10.1038/s41588-021-00852-9

82. Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, Kanoni S, et al.
Discovery and refinement of loci associated with lipid levels. Nat Genet. (2013)
45:1274–83. doi: 10.1038/ng.2797

83. Dastani Z, Hivert M-F, Timpson N, Perry JRB, Yuan X, Scott RA, et al.
Novel loci for adiponectin levels and their influence on type 2 diabetes and
metabolic traits: a multi-ethnic meta-analysis of 45,891 individuals. PLoS Genet.
(2012) 8:e1002607. doi: 10.1371/journal.pgen.1002607

84. Kilpeläinen TO, Carli JFM, Skowronski AA, Sun Q, Kriebel J, Feitosa MF,
et al. Genome-wide meta-analysis uncovers novel loci influencing circulating leptin
levels. Nat Commun. (2016) 7:10494. doi: 10.1038/ncomms10494

85. Zheng J-S, Luan J, Sofianopoulou E, Imamura F, Stewart ID, Day FR,
et al. Plasma vitamin C and type 2 diabetes: genome-wide association study and
Mendelian randomization analysis in European populations. Diabetes Care. (2021)
44:98–106. doi: 10.2337/dc20-1328

86. Revez JA, Lin T, Qiao Z, Xue A, Holtz Y, Zhu Z, et al. Genome-
wide association study identifies 143 loci associated with 25 hydroxyvitamin D
concentration. Nat Commun. (2020) 11:1647. doi: 10.1038/s41467-020-15421-7

Frontiers in Nutrition 17 frontiersin.org

https://doi.org/10.3389/fnut.2022.1009122
https://doi.org/10.1016/j.dld.2020.11.022
https://doi.org/10.1016/j.dld.2020.11.022
https://doi.org/10.1016/j.cgh.2009.04.005
https://doi.org/10.1016/j.cgh.2009.04.005
https://doi.org/10.1146/annurev-nutr-082018-124258
https://doi.org/10.1146/annurev-nutr-082018-124258
https://doi.org/10.1093/pubmed/fdx102
https://doi.org/10.1097/MEG.0000000000000998
https://doi.org/10.1097/MEG.0000000000000998
https://doi.org/10.1038/s41467-020-15553-w
https://doi.org/10.1038/s41467-020-15553-w
https://doi.org/10.5056/jnm18069
https://doi.org/10.5056/jnm18069
https://doi.org/10.1152/ajpgi.00437.2016
https://doi.org/10.1111/nmo.14177
https://doi.org/10.1007/s40279-018-1020-3
https://doi.org/10.1016/j.clnu.2010.09.010
https://doi.org/10.1038/s41598-019-56702-6
https://doi.org/10.1111/j.1572-0241.2004.30098.x
https://doi.org/10.1111/dote.12219
https://doi.org/10.1177/0022146517715671
https://doi.org/10.1177/0022146517715671
https://doi.org/10.1001/jama.2010.297
https://doi.org/10.1093/hmg/ddu328
https://doi.org/10.1093/hmg/ddz061
https://doi.org/10.1161/JAHA.120.016808
https://doi.org/10.1161/JAHA.120.016808
https://doi.org/10.1017/S0033291719002678
https://doi.org/10.1038/s41380-020-0697-5
https://doi.org/10.1038/s41380-020-0697-5
https://doi.org/10.1093/ajcn/nqz076
https://doi.org/10.1038/s41467-018-08259-7
https://doi.org/10.1038/s41467-018-08259-7
https://doi.org/10.1038/s41588-019-0361-7
https://doi.org/10.1038/s41467-019-08917-4
https://doi.org/10.1038/s41467-019-11456-7
https://doi.org/10.1038/s41467-019-11456-7
https://doi.org/10.1038/s41467-020-20585-3
https://doi.org/10.1038/s41366-018-0120-3
https://doi.org/10.1016/j.ajhg.2019.02.022
https://doi.org/10.1038/s41588-018-0241-6
https://doi.org/10.1161/CIRCRESAHA.117.312086
https://doi.org/10.1038/s41588-018-0171-3
https://doi.org/10.1038/ng.3359
https://doi.org/10.1038/s41588-021-00852-9
https://doi.org/10.1038/ng.2797
https://doi.org/10.1371/journal.pgen.1002607
https://doi.org/10.1038/ncomms10494
https://doi.org/10.2337/dc20-1328
https://doi.org/10.1038/s41467-020-15421-7
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-1009122 October 26, 2022 Time: 13:34 # 18

Sun et al. 10.3389/fnut.2022.1009122

87. Karlsson T, Rask-Andersen M, Pan G, Höglund J, Wadelius C, Ek WE, et al.
Contribution of genetics to visceral adiposity and its relation to cardiovascular
and metabolic disease. Nat Med. (2019) 25:1390–5. doi: 10.1038/s41591-019-
0563-7

88. Pulit SL, Stoneman C, Morris AP, Wood AR, Glastonbury CA, Tyrrell J,
et al. Meta-analysis of genome-wide association studies for body fat distribution
in 694 649 individuals of European ancestry. Hum Mol Genet. (2019) 28:166–74.
doi: 10.1093/hmg/ddy327

89. Warrington NM, Beaumont RN, Horikoshi M, Day FR, Helgeland Ø, Laurin
C, et al. Maternal and fetal genetic effects on birth weight and their relevance to
cardio-metabolic risk factors. Nat Genet. (2019) 51:804–14. doi: 10.1038/s41588-
019-0403-1

90. Felix JF, Bradfield JP, Monnereau C, van der Valk RJP, Stergiakouli E, Chesi
A, et al. Genome-wide association analysis identifies three new susceptibility loci
for childhood body mass index. Hum Mol Genet. (2016) 25:389–403. doi: 10.1093/
hmg/ddv472

91. Howard DM, Adams MJ, Clarke T-K, Hafferty JD, Gibson J,
Shirali M, et al. Genome-wide meta-analysis of depression identifies 102
independent variants and highlights the importance of the prefrontal
brain regions. Nat Neurosci. (2019) 22:343–52. doi: 10.1038/s41593-018-
0326-7

92. Nagel M, Watanabe K, Stringer S, Posthuma D, van der Sluis S. Item-level
analyses reveal genetic heterogeneity in neuroticism. Nat Commun. (2018) 9:905.
doi: 10.1038/s41467-018-03242-8

93. Trubetskoy V, Pardiñas AF, Qi T, Panagiotaropoulou G, Awasthi S, Bigdeli
TB, et al. Mapping genomic loci implicates genes and synaptic biology in
schizophrenia. Nature. (2022) 604:502–8. doi: 10.1038/s41586-022-04434-5

94. Mullins N, Forstner AJ, O’Connell KS, Coombes B, Coleman JRI, Qiao Z,
et al. Genome-wide association study of more than 40,000 bipolar disorder cases
provides new insights into the underlying biology. Nat Genet. (2021) 53:817–29.
doi: 10.1038/s41588-021-00857-4

95. Watson HJ, Yilmaz Z, Thornton LM, Hübel C, Coleman JRI, Gaspar HA,
et al. Genome-wide association study identifies eight risk loci and implicates
metabo-psychiatric origins for anorexia nervosa. Nat Genet. (2019) 51:1207–14.
doi: 10.1038/s41588-019-0439-2

96. Baselmans BML, Jansen R, Ip HF, van Dongen J, Abdellaoui A, van de Weijer
MP, et al. Multivariate genome-wide analyses of the well-being spectrum. Nat
Genet. (2019) 51:445–51. doi: 10.1038/s41588-018-0320-8

97. Savage JE, Jansen PR, Stringer S, Watanabe K, Bryois J, de Leeuw CA,
et al. Genome-wide association meta-analysis in 269,867 individuals identifies new
genetic and functional links to intelligence. Nat Genet. (2018) 50:912–9. doi: 10.
1038/s41588-018-0152-6

Frontiers in Nutrition 18 frontiersin.org

https://doi.org/10.3389/fnut.2022.1009122
https://doi.org/10.1038/s41591-019-0563-7
https://doi.org/10.1038/s41591-019-0563-7
https://doi.org/10.1093/hmg/ddy327
https://doi.org/10.1038/s41588-019-0403-1
https://doi.org/10.1038/s41588-019-0403-1
https://doi.org/10.1093/hmg/ddv472
https://doi.org/10.1093/hmg/ddv472
https://doi.org/10.1038/s41593-018-0326-7
https://doi.org/10.1038/s41593-018-0326-7
https://doi.org/10.1038/s41467-018-03242-8
https://doi.org/10.1038/s41586-022-04434-5
https://doi.org/10.1038/s41588-021-00857-4
https://doi.org/10.1038/s41588-019-0439-2
https://doi.org/10.1038/s41588-018-0320-8
https://doi.org/10.1038/s41588-018-0152-6
https://doi.org/10.1038/s41588-018-0152-6
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/

	Genetic estimation of correlations and causalities between multifaceted modifiable factors and gastro-oesophageal reflux disease
	Introduction
	Materials and methods
	Identification of exposures for Mendelian randomization analysis
	Data sources of gastro-oesophageal reflux disease
	Selection of instrumental variables
	Estimation of heritability and genetic correlation
	Univariable Mendelian randomization analysis
	Genetic correlation clustering and multivariable Mendelian randomization analysis
	Statistical analysis

	Results
	Overall heritability and genetic correlation of the 66 exposures
	Univariable Mendelian randomization analysis in the discovery phase and replication phase
	Meta-analysis for the discovery phase and replication phase
	Causalities independent of hub exposures

	Discussion
	Novel significant risk causal associations
	Novel significant protective causal associations
	Strengths and limitations

	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


