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Ferroptosis-related differentially
expressed genes serve as new
biomarkers in ischemic stroke
and identification of therapeutic
drugs
Yinjiang Zhang1,2, Yashuo Zhang1,2, Rongfei Yao1,2, Xu He1,2,
Linyi Zhao1,2, Xiangyu Zuo1,2, Binan Lu1,2* and
Zongran Pang1,2*
1School of Pharmacy, Minzu University of China, Beijing, China, 2Key Laboratory of Ethnomedicine,
Minzu University of China, Ministry of Education, Beijing, China

Background: Iron is an essential nutrient element, and iron metabolism is

related to many diseases. Ferroptosis is an iron-dependent form of regulated

cell death associated with ischemic stroke (IS). Hence, this study intended to

discover and validate the possible ferroptosis-related genes involved in IS.

Materials and methods: GSE16561, GSE37587, and GSE58294 were retrieved

from the GEO database. Using R software, we identified ferroptosis-related

differentially expressed genes (DEGs) in IS. Protein-protein interactions (PPIs)

and enrichment analyses were conducted. The ROC curve was plotted to

explore the diagnostic significance of those identified genes. The consistent

clustering method was used to classify the IS samples. The level of immune

cell infiltration of different subtypes was evaluated by ssGSEA and CIBERSORT

algorithm. Validation was conducted in the test sets GSE37587 and GSE58294.

Results: Twenty-one ferroptosis-related DEGs were detected in IS vs. the

normal controls. Enrichment analysis shows that the 21 DEGs are involved

in monocarboxylic acid metabolism, iron ion response, and ferroptosis.

Moreover, their expression levels were pertinent to the age and gender of

IS patients. The ROC analysis demonstrated remarkable diagnostic values

of LAMP2, TSC22D3, SLC38A1, and RPL8 for IS. Transcription factors and

targeting miRNAs of the 21 DEGs were determined. Vandetanib, FERRIC

CITRATE, etc., were confirmed as potential therapeutic drugs for IS. Using 11

hub genes, IS patients were categorized into C1 and C2 subtypes. The two

subtypes significantly differed between immune cell infiltration, checkpoints,

and HLA genes. The 272 DEGs were identified from two subtypes and
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their biological functions were explored. Verification was performed in the

GSE37587 and GSE58294 datasets.

Conclusion: Our findings indicate that ferroptosis plays a critical role in the

diversity and complexity of the IS immune microenvironment.
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Introduction

There are genetic and environmental risk factors that
interact to cause ischemic stroke (IS). Society and families are
burdened by IS because it is the leading cause of disability
(1). IS patients must continue taking medication for a long
period after stroke onset, bringing about huge financial, mental,
and time-wise burdens. IS risk factors include hypertension,
diabetes, hyperlipidemia, and smoking. However, the molecular
mechanism remains undetermined. Studies showed that early
IS diagnosis can positively impact therapeutic outcomes
and prognoses (2). Therefore, a better understanding of IS
and identifying new biomarkers and therapeutic targets are
urgently needed.

Iron is the most abundant trace element in the human
body and is also considered indispensable for IS development
(3). Ferroptosis is a unique type of programmed cell death
distinguished by excessive iron buildup and lipid peroxidation
(4). A recent study suggested that ferroptosis played an essential
role in tumorigenesis and cancer progression (5). Additionally,
ferroptosis is highly involved in many other diseases, such
as IS and heart diseases (6). Moreover, research also proved
that ferroptosis-related gene signatures could be used as a
biomarker to diagnose, predict, and treat multiple diseases (7,
8). Nevertheless, the function of ferroptosis-related genes in
IS is yet unclear.

In addition, stroke is often followed by post-stroke infection
due to systemic immunosuppression, which has a worse
outcome (9). It has been shown that immunomodulatory
approaches, such as T-cell transfer and activators of
natural killer T cells (NKTs), can reduce post-stroke
immunosuppression (10). Immunomodulatory approaches
can effectively manage stroke and its complications by targeting
multiple elements of the immune system (11). Several well-
known drugs, like azithromycin and metformin, can change
the innate immune response. Both of these drugs are known
to protect the brain after a stroke (12). So, it is important to
figure out how immunosuppression works in stroke so that
these drugs can be used to treat people. However, the immune
mechanisms implicated in IS and IS-associated systemic
immunosuppression are still poorly understood.

In this study, by comparing IS and normal samples in
the GSE16561 dataset, differentially expressed genes (DEGs)
were identified, which were then intersected with ferroptosis-
related genes in the FerrDb database. We performed an
enrichment analysis, as well as an investigation of expression
levels and clinical significance. Unsupervised cluster analysis
was performed on patients based on hub gene expression, and
the characteristics of the immune microenvironment among
different subtypes were analyzed. Validation was carried out in
the GSE37587 and GSE58294 datasets (Figure 1).

Materials and methods

Data source

Data chips, microarrays, and gene expression data from
GEO1 are available for research and analysis (13). Datasets were
included and excluded according to the following criteria: (i)
genomic wide expression mRNA microarray data had to be
included, (ii) IS samples were required to be included, and (iii)
specimen numbers must be greater than 30.

Three gene expression datasets, GSE16561 (14) and
GSE37587 (15), derived from the GEO (GPL6883, Illumina
HumanRef-8 v3.0 expression bead chip, array, Homo sapiens)
were obtained with corresponding clinical data. GSE58294 (16)
derived from the GEO (GPL570, Affymetrix Human Genome
U133 Plus 2.0 Array, Homo sapiens) were obtained with
corresponding clinical data. Data of the datasets were extracted
from the total RNA of whole blood. Altogether, 39 IS and 24
normal whole blood samples were obtained from the GSE16561
cohort, 68 IS whole blood samples were obtained from the
GSE37587 cohort, and 69 IS and 23 normal whole blood samples
were obtained from the GSE16561 cohort.

A total of 388 ferroptosis-related genes were found
in the FerrDb database2 (17; Supplementary Table 1)
after removing duplicates. These genes include drivers,
suppressors, and markers.

1 http://www.ncbi.nlm.nih.gov/geo

2 http://www.zhounan.org/ferrdb/current/
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FIGURE 1

Workflow chart. DEGs, differentially expressed genes; TFs, transcriptional factors.

Quality control

GSE16561
The raw expression profile GSE16561_RAW.tar was

downloaded from the GEO database. Probes were annotated
to their respective gene symbols via the GPL6883 platform
file. Mean expression levels were used to compute gene
symbols from several probes. Quantile normalization and log2
transformations were applied to raw data. Two abnormal IS
samples (3100193_Stroke and 3100137_Stroke) were excluded
based on principal component analysis (PCA). The following
analysis included 37 IS and 24 normal samples. The GSE58294
dataset was also preprocessed according to the above process.

GSE37587
The raw expression profile GSE37587_non-

normalized.txt.gz was downloaded from the GEO database.
Probes were annotated to their corresponding gene symbols
using the GPL6883 annotation file. Mean expression levels
were used to compute gene symbols from several probes.
Following the log2-transformation and quantile normalization,
the raw expression files of the GSE16561 and the GSE37587
were combined. The batch correction was performed with the
ComBat algorithm of the “sva” R package.3 The final dataset
comprised 68 IS samples from GSE37587 and 24 normal
samples from GSE16561. According to PCA, 3 abnormal

3 https://bioconductor.org/packages/sva/

IS samples were deleted (GSM922927, GSM922908, and
GSM922905), thus 65 IS samples and 24 normal samples
were included in the subsequent analysis. At the same time, a
total of 107 IS samples from the two data sets were used for
cluster analysis.

Identification of ferroptosis-related
differentially expressed genes and
functional analysis

Limma4 (18) was used to identify DEGs between IS and
normal samples in the GSE16561 (adjustment p < 0.05 and
| log2FC| > 0.5). Heat maps were generated using the R
package “pheatmap,”5 exhibiting the top 20 genes with the
most significant upregulation or downregulation, respectively.
Twenty-one ferroptosis-related DEGs were obtained with a
Venn diagram using the R package “Venn,”6 and their
expression correlation was calculated with the R package
“corrplot”7 and visualized using the “circlize” package8 (19). The
ability of the 21 ferroptosis-related DEGs to distinguish between

4 https://bioconductor.org/packages/limma/

5 https://CRAN.R-project.org/package=pheatmap

6 https://CRAN.R-project.org/package=venn

7 https://CRAN.R-project.org/package=corrplot

8 https://CRAN.R-project.org/package=circlize
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FIGURE 2

GSE16561 data set preprocessing. Box plot showing the gene expression level between different samples before (A) and after (B) normalization.
2D and 3D PCA plots demonstrated the distribution of samples before (C,D) and after (E,F) pretreatment. PCA, principal components analysis.

IS and normal samples was determined with PCA. Metascape
(20) was used for functional analysis. Cut-off value: P < 0.05.

Construct a diagnostic model of 21
ischemic stroke-associated ferroptosis
genes

A diagnostic model was constructed by the least absolute
shrinkage and selection operator (Lasso) analysis to analyze
and identify the redundancy factors. Finally, receiver operating
feature (ROC) scores were used to evaluate the diagnostic
performance of the model.

Bioinformatics analysis of 21
ferroptosis-related differentially
expressed genes

In this study, Wilcoxon rank sum tests were used to examine
the association between ferroptosis-related DEGs and age and
gender of IS patients. Via the Enrichr platform9 (21), the

9 http://amp.pharm.mssm.edu/Enrichr/

transcription factors, upstream miRNAs, and small-molecular
drugs of the 21 ferroptosis-related DEGs were predicted using
the TRRUST, miRTarBase, and DSigDB databases, respectively.
The ROC curve was generated using the “pROC” package10 (22)
and visualized with the “ggplot2” package11 (23).

Based on the STRING database (24), PPI networks were
constructed, in which the interactions with a score higher
than 0.4 were considered statistically significant. The hub genes
were selected with the plug-in CytoNCA (25) of the Cytoscape
software V3.7.1 (26) and subjected to functional enrichment
analysis using GeneMANIA12 (27). FDR < 0.05 was used
as a cutoff point.

Consensus clustering analysis

ConsensusClusterPlus (28) was used for cluster analysis.
We used an agglomerative km clustering algorithm with one
Pearson correlation distance and resampled 80% of the samples

10 https://CRAN.R-project.org/package=pROC

11 https://CRAN.R-project.org/package=ggplot2

12 http://genemania.org/
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10 times. Empirical cumulative distribution function plots were
used to determine the optimal number of clusters.

Immune cell infiltration analysis

Single sample gene set enrichment analysis (ssGSEA)
was used to analyze the infiltration levels of immune cells
based on 29 immune-related markers’ expression profiles.
Also, CIBERSORT (29) was used to further analyze immune
cell infiltration levels. Wilcoxon rank-sum tests were used
to determine differences in immune cell proportions. The
statistical significance threshold was set at p < 0.05.

Gene set variation analysis

The GSVA (30) approach was used to examine important
pathways and molecular processes by obtaining the
h.all.v7.4.symbols.gmt and c2.cp.kegg.v7.4.symbols.gmt subsets
from the Molecular Signatures Database (31). The minimum
gene set was set to 5 and the maximum gene set was set to 5,000,
and the enrichment scores were calculated for each sample in
each gene set. The final enrichment score matrix was obtained.
The differences in GSVA scores between subtypes for each gene
set were compared using the limma package. FDR < 0.05 was
used as a cutoff point.

Identification of differentially
expressed genes between different
subtypes

Differentially expressed genes were screened for subtypes in
the integrated dataset using the R package limma with | Fold
Change| > 1.5 and FDR < 0.05. The differential genes were
shown by volcano plot and heat map.

Functional enrichment analysis

Biological functions were analyzed using the ClusterProfiler
package (32), which includes GO and KEGG. Use the
Benjamini–Hochberg method to adjust the p-value for multiple
tests. P < 0.05 was used as a cutoff point.

Statistical analysis

Statistical analysis was performed using R 4.1.0. Wilcoxon
or Student’s t-test compared the two groups. Pearson’s or
Spearman’s test determined the variables’ correlation. A Chi-
square test was performed to compare two categorized variable
groups. The statistical significance threshold was set at p < 0.05.

Results

Data preprocessing

GSE16561
The box plot of the raw data demonstrated that gene

expression levels were unevenly distributed across different
samples (Figure 2A), which was processed via quantile
normalization (Figure 2B). According to the 2D and 3D PCA
plots (Figures 2C,D), two abnormal IS samples in the normal
controls were deleted. Further validation distinguished between
the groups and illustrated good clustering of samples within the
same group (Figures 2E,F).

GSE37587 test set
Normalized gene expression data exhibited a uniform

distribution in the samples (Supplementary Figure 1A).
Three abnormal IS samples were excluded from the normal
control based on the 2D and 3D PCA plots (Supplementary
Figures 1B,C). PCA was repeated and demonstrated excellent
discrimination between the groups and good clustering of
samples within the same group (Supplementary Figures 1D,E).

Ferroptosis-related differentially
expressed genes differentiate ischemic
stroke patients from normal controls

According to | log2FC | > 0.5 and adjustment p < 0.05,
584 DEGs were obtained from the GSE16561 dataset, including
319 genes up-regulated and 265 genes down-regulated in IS
samples (Figure 3A; Supplementary Table 2). The top 20 genes
with the most significant upregulation or downregulation were
selected to plot the Heat map (Figure 3B). To investigate the
association between IS and ferroptosis, 21 intersecting genes
were obtained between 584 DEGs and 388 ferroptosis-related
genes (Figure 3C). Correlation analysis suggested correlations
between the expression of those genes in the GSE16561 dataset
(Figure 3D). Prominently, the 21 genes fully differentiated IS
cases from normal controls in the GSE16561 dataset as analyzed
by PCA (Figures 3E,F), which was verified in the test set
GSE37587 (Figures 3G,H). Taken together, the 21 ferroptosis-
related genes were highly heterogeneous between normal and IS
tissues, and their expression changes may play a vital role in the
initiation and development of IS.

Enrichment analysis

The box plot described the expression pattern of the 21
ferroptosis-related DEGs in IS and normal samples. In the
two datasets, most of the 21 genes exhibited upregulation
in IS tissues vs. normal tissues, except for LPIN1, RPL8,
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FIGURE 3

Analysis of differentially expressed genes. (A) Screening of DEGs shown by volcano plot. (B) Heatmap of the 40 genes expressed differently in IS
samples compared to normal samples. (C) Venn diagram showing 21 ferroptosis-related DEGs. (D) Circle diagram showing the correlation of 21
ferroptosis-related DEGs. (E,F) 2D and 3D PCA plots showing PCA analysis based on 21 ferroptosis-related genes in GSE16561. (G,H) 2D and 3D
PCA plots showing PCA analysis based on 21 ferroptosis-related genes in GSE37587. DEGs, differentially expressed genes; IS, ischemic stroke;
PCA, principal components analysis.

SLC38A1, and XBP1, which showed down-regulated expression
(Figures 4A,B). Among 21 genes examined by enrichment
analysis, monocarboxylic acid metabolism, iron ion responses,
and ferroptosis were primarily enriched (Figure 4C).

Clinical correlation analysis

The expression levels of HIF1A, GABARAPL2, LAMP2,
SLC2A14, NCF2, ELOVL5, ACSL4, and XBP1 in patients

≥78 years old were significantly higher than those in
patients < 78 years old in both the GSE16561 and GSE37587
datasets (Figures 5A,B). In the GSE16561 cohort, as compared
to female patients, male patients displayed remarkably
higher expression of HIF1A, GABARAPL2, SLC2A1,
NCF2, and ELOVL5, while lower expression of TLR4 and
SLC40A1 (Figure 5C). In the test set GSE37587, higher
expression of HIF1A, GABARAPL2, SLC2A14, and NCF2
was also observed in male patients vs. female patients

Frontiers in Nutrition 06 frontiersin.org

https://doi.org/10.3389/fnut.2022.1010918
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-1010918 November 5, 2022 Time: 15:7 # 7

Zhang et al. 10.3389/fnut.2022.1010918

FIGURE 4

Enrichment analysis. Box plot described the expression pattern of the 21 ferroptosis-related genes between IS and normal samples in GSE16561
(A) and GSE37587 (B). (C) 21 ferroptosis-related genes enrichment analysis. IS, ischemic stroke. *p < 0.05, **p < 0.01, and ***p < 0.001.

(Figure 5D). Therefore, the expression of these ferroptosis-
related genes was interrelated with the age and gender of IS
patients.

Receiver operating feature analysis

The ROC curves of the GSE16561 dataset revealed
excellent accuracy of LAMP2 (AUC = 0.98), TSC22D3

(AUC = 0.90), SLC38A1 (AUC = 0.89), and RPL8 (AUC = 0.89)
in distinguishing between the outcomes of normal and
IS groups (Figures 6A–C). The ROC curves of the test
set GSE37587 manifested moderate accuracy of LAMP2
(AUC = 0.92), RPL8 (AUC = 0.85), SLC38A1 (AUC = 0.80),
and TSC22D3 (AUC = 0.78) in terms of differentiating
between the outcomes of normal and IS groups (Figures 6D–
F). In the GSE16561 dataset, based on lasso regression, we
constructed a model composed of seven genes (LAMP2,
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FIGURE 5

Clinical correlation analysis. Box plot showing the expression pattern of the 21 ferroptosis-related genes between <78 and ≥78 patients in
GSE16561 (A) and GSE37587 (B). Box plot showing the expression pattern of the 21 ferroptosis-related genes between male and female patients
in GSE16561 (C) and GSE37587 (D). ns: p ≥ 0.05, *p < 0.05, **p < 0.01, and ***p < 0.001.
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FIGURE 6

ROC analysis. Diagnostic ROC analysis of 21 ferroptosis-related genes in GSE16561 (A–C) and GSE37587 (D–F). ROC, receiver operating
characteristic; AUC, area under curve; FPR, false positive rate; TPR, true positive rate.

TABLE 1 Transcriptional factor targets of 21
ferroptosis-related genes in IS.

Term P-value Odds ratio Combined score

IRF8 5.74E-05 233.5672515 2280.803907

HMGA1 1.41E-04 140.0982456 1241.768431

STAT6 6.97E-06 100.7373737 1196.206221

CREM 3.10E-04 91.33180778 737.7313505

PGR 3.10E-04 91.33180778 737.7313505

ATF2 5.11E-04 69.99649123 530.5117162

USF2 0.001103204 46.62923977 317.5235245

CEBPB 0.001791576 36.15426497 228.6634283

SPI1 0.001911633 34.94561404 218.7524601

EGR1 0.003806749 24.34883721 135.6468757

IS, ischemic stroke.

LPIN1, TLR4, SLC2A3, LRRFIP1, PANX2, and GABARAPL2)
to distinguish healthy subjects from IS patients (Supplementary
Figures 2A,B). The AUC of GSE16561 was 1.000 in the
training set, and the values of GSE37587 and GSE58294
AUC in the verification set were 0.961 and 0.730, respectively
(Supplementary Figures 2C–E). Overall, these ferroptosis-
related genes had remarkable diagnostic significance for IS
patients.

TABLE 2 MicroRNA targets of 21 ferroptosis-related genes in IS.

Term P-value Odds ratio Combined score

hsa-miR-548ag 5.92E-05 47.40238095 461.4566536

hsa-miR-625-3p 7.60E-04 56.73399716 407.4703927

hsa-miR-329-5p 1.65E-04 33.13166667 288.5803973

hsa-miR-606 0.001973063 34.37100949 214.0684295

hsa-miR-548ba 0.002429044 30.82198142 185.5562669

hsa-miR-548ai 2.50E-03 30.37376049 182.0091651

hsa-miR-570-5p 2.57E-03 29.93834586 178.5755424

hsa-miR-8076 0.003081354 27.20710868 157.3220116

hsa-miR-4798-3p 2.59E-02 41.57291667 151.8276652

hsa-miR-4499 3.32E-03 26.18289474 149.4851799

IS, ischemic stroke.

Transcript factor, upstream miRNA, and
drug prediction

The transcription factors, upstream miRNAs, and related
drugs of the 21 ferroptosis-related genes were predicted
via the Enrichr platform. STAT6, IRF8, and HMGA1 were
the main transcription factors retrieved from the TRRUST
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TABLE 3 Drug targets of 21 ferroptosis-related genes in IS.

Term P-value Odds ratio Combined score

Vandetanib CTD 00004046 4.60E-08 151.4079696 2557.873945

FERRIC CITRATE CTD
00001186

6.89E-05 210.2 2014.429518

Flufenamic acid-(benzoic
ring-13C6) TTD 00008058

9.48E-05 175.1491228 1622.485755

p-Phenylenediamine CTD
00001400

2.74E-07 93.78352941 1416.922104

CHLOROBENZENE CTD
00001495

1.25E-04 150.112782 1349.226508

Gossypol PC3 UP 3.67E-07 86.81917211 1286.427251

Tributyltin CTD 00000610 6.39E-06 103.890625 1242.619131

Dequalinium chloride HL60
DOWN

5.14E-07 79.44167498 1150.427383

Oligomycin CTD 00006434 1.59E-04 131.3355263 1148.713528

Mephentermine HL60 UP 7.87E-07 70.99108734 997.7694472

IS, ischemic stroke.

database (Table 1). Hsa-miR-548ag, hsa-miR-329-5p and hsa-
miR-625-3p were the major upstream miRNAs according to the
miRTarBase database (Table 2). Vandetanib, FERRIC CITRATE,
etc., were the primary drugs predicted from the DSigDB
database (Table 3). The identified transcription factors and

miRNAs might be of prominent importance in the development
of IS, and the predicted drugs can serve as potential drugs for IS.

Hub gene analysis

Based on the 21 ferroptosis-related genes, a PPI network was
generated based on the STRING online database (Figure 7A).
Hub genes were analyzed using the plug-in cytoNCA. The top
11 hub genes were identified by calculating the Betweenness,
Closeness, and Degree (Figures 7B,C). Based on enrichment
analysis, the top 11 hub genes were highly enriched in fatty acid
metabolism, hypoxia response, and angiogenesis (Figure 7D).

Clustering analysis based on hub genes

We performed an unsupervised consistency clustering
analysis on IS samples based on 11 hub genes (Supplementary
Figures 3A–C). According to the average consistency evaluation
within the cluster group, we choose the number of clusters
as K = 2 (Figures 8A,B). We named these two subtypes
C1 and C2, respectively. PCA analysis revealed significant
differences between subtypes (Figure 8C). There was significant
heterogeneity in the expression of 11 hub genes between

FIGURE 7

Hub gene analysis. (A) Based on the 21 ferroptosis-related genes, a PPI network was generated based on the STRING online database. (B) Hub
genes were analyzed using the plug-in cytoNCA. (C) The top 11 hub genes were identified by calculating the betweenness, closeness, and
degree. (D) Enrichment analysis of 11 hub genes by GeneMANIA online database.
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FIGURE 8

Unsupervised clustering of 11 hub genes. (A) Consensus matrix heatmap when k = 2. (B) Tracking plot showing the sample classification when
k = 2–10. (C) PCA plots showing a remarkable difference in transcriptome between two subtypes. (D) Heatmap showing the expression of 11
hub genes in two subtypes. (E) Age ratio distribution in the two subtypes. (F) Gender ratio distribution in the two subtypes. PCA, principal
components analysis.
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FIGURE 9

The features of the immunological microenvironment differ between subtypes. Box plots showing that there were differences in hub genes (A),
immune checkpoints (B), HLA genes (C), and immune cell infiltration (D) between the two subtypes. *p < 0.05, **p < 0.01, and ***p < 0.001.

subtypes (Figure 8D), and there was some association
between subtypes and the age and sex of IS patients
(Figures 8E,F).

Characteristics of immune
microenvironment in different
subtypes

Figure 9A showed that most of the hub genes were
expressed at higher levels in C1 subtype than in C2. Most
of the immune checkpoints and HLA genes were significantly
upregulated in C1 compared to C2 subtype (Figures 9B,C).
The C2 subtype was more immunoactive (p53 pathway,
complement, IL6-JAK-STAT3 signaling, TNFA signaling via
NFKB, chemokine signaling pathway, etc.) than the C1 subtype,
as shown in Supplementary Figure 4. Based on the results of the
ssGSEA algorithm, most immune cell infiltration levels differed
significantly between C1 and C2 subtypes (Figure 9D). And the
CIBERSORT algorithm analysis revealed a significant difference
between C1 and C2 subtypes in terms of T cell infiltration
(Supplementary Figures 5A,B).

Functional enrichment analysis
between different subtypes

Two hundred seventy-two DEGs were obtained from
Cluster 1 and Cluster 2, of which 49 DEGs were upregulated
in Cluster 1 and 223 DEGs were downregulated in Cluster
1 (Figure 10A). According to the heat map, two molecular
subtypes could be distinguished by these DEGs (Figure 10B).
Afterward, we analyzed DEGs among the two subtypes.
As illustrated in Figures 10C,D, these DEGs were mainly
associated with immune responses (immune system process,
cell activation, leukocyte activation, etc.). Based on KEGG
enrichment analysis, these DEGs were mainly associated
with ribosomes, osteoclast differentiation, and autophagy
(Figures 10E,F).

External dataset validation

At the same time, we use GSE58294 to verify our analysis
results and get similar results. First, we normalized the
GSE58294 data set (Supplementary Figures 6A–C). Most
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FIGURE 10

Functional analysis between two different subtypes. The DEGs were shown by volcano plot (A) and heat map (B) between two subtypes. (C) GO
enrichment analysis was performed on the DEGs. GO terms are represented on the y-axis, gene ratios are shown on the x-axis, circle sizes refer
to gene numbers, and colors represent p-values. (D) GO enrichment analysis of the DEGs. Different colors represent various significant GO
terms and related enriched genes. (E) KEGG pathway analysis was performed on the DEGs. The y-axis represents different pathways, gene ratios
enriched in relative pathways by the x-axis, circles represent gene numbers, and colors represent p-values. (F) KEGG pathway analysis of the
DEGs. Different colors represent various significant pathways and related enriched genes. DEGs, differentially expressed genes; KEGG, Kyoto
Encyclopedia of Genes and Genomes; GO, Gene Ontology.

21 genes exhibited upregulation in IS tissues vs. normal
tissues (Supplementary Figure 6D). The ROC curves also
revealed excellent accuracy of LAMP2 (AUC = 0.94), TSC22D3
(AUC = 0.80), and SLC38A1 (AUC = 0.82) in distinguishing
between the outcomes of normal and IS groups (Supplementary

Figures 6E–G). We performed an unsupervised consistency
clustering analysis on IS samples based on 11 hub genes
and divided IS samples into two subtypes, C1 and C2
(Supplementary Figure 7A). Most of the immune checkpoints
and HLA genes were significantly upregulated in C1 compared
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to C2 subtype (Supplementary Figures 7B,C). Most immune
cell infiltration levels differed significantly between C1 and C2
subtypes (Supplementary Figure 7D). The C2 subtype was
more immunoactive (complement, B cell receptor signaling
pathway, VEGF signaling pathway, chemokine signaling
pathway, etc.) than the C1 subtype (Supplementary Figure 7E).

Discussion

Ferroptosis is a unique type of programmed cell death
involved in metabolism, redox biology, and various diseases
(33), such as degenerative disorders, carcinogenesis, stroke,
and traumatic brain injury. A recent study demonstrated that
ferroptosis is critical for the progress of cerebral stroke (34).
By understanding the association between ferroptosis and IS,
new biomarkers and approaches to diagnosis and treatment
can be developed.

In the present study, using GSE16561 dataset, 21 ferroptosis-
related DEGs were identified. IS-related pathways like
monocarboxylic acid metabolism, iron ion response, and
ferroptosis were enriched. Monocarboxylic acids such as lactic
acid (35), pyruvate (36), and ketone body (37) are closely related
to IS. ACSL4 was reported to be a potential therapeutic target
for IS, as it could aggravate IS by promoting ferroptosis (38).
Therefore, the 21 ferroptosis-related DEGs identified in this
study may contribute significantly to IS through these pathways.

Furthermore, clinical correlation analysis indicated that the
expression of DEGs was related to patients’ age and gender. It
has been long recognized that stroke incidence is higher in men
than in women globally (39). Moreover, men have a higher age-
adjusted incidence of stroke than women (40).

Further analysis revealed that LAMP2, RPL8, and SLC38A
exhibited excellent diagnostic performance for IS patients
in both the GSE16561 and GSE37587 datasets. Tao et al.
(41) revealed that miR-207 mediated the ischemic injury and
spontaneous recovery by participating in the lysosome pathway
via regulating LAMP2. After intracerebral hemorrhage, human
brain RPL8 mRNA expression increased, suggesting it may be a
therapeutic target (42). To conclude, the 21 ferroptosis-related
DEGs might be critical to IS.

The transcription factors, upstream miRNA, and drugs
that correspond to the 21 ferroptosis-related DEGs were also
confirmed in this study. The transcription factors identified
mainly were STAT6, IRF8, and HMGA1. STAT6/Arg1 promoted
microglia/macrophage efferocytosis and inflammation
resolution in stroke mice (43); IRF8 protected against cerebral
ischemic-reperfusion injury (44); has-miR-196a alleviated
ischemic brain injury in mice by directly targeting HMGA1
(45). The three miRNAs identified were hsa-miR-548ag,
hsa-miR-329-5p, and hsa-miR-625-3p. The expression of
hsa-miR-625-3p was correlated with cholesterol levels (46)
and hsa-miR-625-3p was reported to be interrelated with

cerebral infarction (47). Given these findings, the identified
transcription factors and miRNAs were essential to the
ferroptosis dysfunction in IS. Among the drugs, vandetanib
could be used to treat thyroid and non-small cell lung cancer
(48), and it might serve as a potential drug for IS.

Protein-protein interaction analysis identified 11 hub genes
out of the 21 ferroptosis-related genes, which were majorly
enriched in fatty acid metabolic process, response to hypoxia,
and angiogenesis. Research showed that the fatty acid metabolic
process was closely correlated with stroke (49). Hypoxia could
induce IS (50), while angiogenesis-associated factors could act
as biomarkers for IS patients (51). Therefore, the 11 hub genes
are presumably of vital importance in IS.

In this study, using consistent clustering, we identified two
subtypes (C1 and C2) in IS samples based on 11 ferroptosis-
related genes. C1 contained 50 samples, and C2 contained 57
samples. Significant heterogeneity between the two subgroups
was confirmed by immunoassay and enrichment analysis. At the
same time, we use GSE58294 to verify our analysis results and
get similar results. According to many studies, ferroptosis plays
a vital role in immunity (52, 53). It is thought that ferroptotic
cells activate innate immunity and release pro-inflammatory
factors in various diseases, attracting many different immune
cells to the area (54). In IS, BBB breaks down, allowing immune
cells to flood into the central nervous system. Our findings
suggested that NK and mast cells infiltrated less in C1 than
in C2. Kong et al. (55) reported that the number of NK
cells was reduced in IS patients. The mast cells contributed
to the development of IS by speeding up BBB disruption
and magnifying neuroinflammation by releasing cytokines
(56). Two limitations in this study warrant mention. The
ferroptosis-related DEGs with significance in IS might not be
comprehensively included. Moreover, validations are required
in further in vivo and in vitro experiments.

Conclusion

The current study identified 21 ferroptosis-related DEGs in
IS, which were pertinent to the age and gender of IS patients and
had an excellent diagnostic performance. Vandetanib, FERRIC
CITRATE, etc., were identified as potential drugs for IS. In
addition, we proposed a molecular classification based on
ferroptosis-related genes, namely C1 and C2 subtypes in IS. In
conclusion, our findings may help to design immunotherapies
for IS patients.
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SUPPLEMENTARY FIGURE 1

GSE37587 data set preprocessing. (A) Box plots showing gene
expression levels between different samples after normalization. 2D and
3D PCA plots demonstrated the distribution of samples before (B,C) and
after (D,E) pretreatment. PCA, principal components analysis.

SUPPLEMENTARY FIGURE 2

Construct a diagnostic model of 21 IS-associated ferroptosis genes. (A)
Least absolute shrinkage and selection operator (LASSO) coefficient
profiles of 21 IS-related ferroptosis genes. (B) Plots of the 10-fold
cross-validation error rates. (C–E) The model’s discrimination ability for
healthy and IS samples was analyzed by ROC curve and evaluated by
AUC value. IS, ischemic stroke; ROC, receiver operating characteristic;
AUC, area under curve; FPR, false positive rate; TPR, true positive rate.

SUPPLEMENTARY FIGURE 3

Cluster parameter analysis. (A) Cumulative distribution curve when
k = 2–10. (B) Relative alterations in the area under CDF curve. (C)
Sample clustering consistency when k = 2–10.

SUPPLEMENTARY FIGURE 4

Two subtypes differ in biological function. Heatmap showing the
enrichment levels of Hallmark (A) and KEGG (B) gene sets
in two subtypes.

SUPPLEMENTARY FIGURE 5

CIBERSORT to assess immune cell infiltration. (A) Bar plot showing the
proportion of 22 immunocytes in two subtypes. (B) Violin plot showing
the ratio of immune cells between two subtypes.

SUPPLEMENTARY FIGURE 6

The expression level and diagnostic value of 21 IS-associated ferroptosis
genes were verified in the GSE58294 data set. (A) Box plot showing the
gene expression level between different samples after normalization.
(B,C) 2D and 3D PCA plots demonstrated the distribution of samples
after pretreatment. (D) Box plot described the expression pattern of the
21 ferroptosis-related genes between IS and normal samples. (E–G)
Diagnostic ROC analysis of 21 ferroptosis-related genes in GSE58294.
PCA, principal components analysis; IS, ischemic stroke; ROC, receiver
operating characteristic; AUC, area under curve; FPR, false positive rate;
TPR, true positive rate. Ns: p ≥ 0.05, *p < 0.05, **p < 0.01, and
***p < 0.001.

SUPPLEMENTARY FIGURE 7

The unsupervised cluster analysis of 11 hub genes was verified in the
GSE58294 data set. (A) Based on 11 hub gene expression levels, IS
samples were divided into two subtypes, C1 and C2. Box plots showing
that there were differences in immune checkpoints (B), HLA genes (C),
and immune cell infiltration (D) between the two subtypes. (E) Heatmap
showing the enrichment levels of KEGG gene sets in two subtypes.
KEGG, Kyoto Encyclopedia of Genes and Genomes. *p < 0.05,
**p < 0.01, and ***p < 0.001.
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