
fnut-09-1021868 November 16, 2022 Time: 14:19 # 1

TYPE Review
PUBLISHED 22 November 2022
DOI 10.3389/fnut.2022.1021868

OPEN ACCESS

EDITED BY

Carol Coricelli,
Western University, Canada

REVIEWED BY

Cassandra Justine Lowe,
Western University, Canada
Soyoung Park,
German Institute of Human Nutrition
Potsdam-Rehbruecke (DIfE), Germany

*CORRESPONDENCE

Alaina L. Pearce
azp271@psu.edu

SPECIALTY SECTION

This article was submitted to
Nutritional Epidemiology,
a section of the journal
Frontiers in Nutrition

RECEIVED 17 August 2022
ACCEPTED 04 November 2022
PUBLISHED 22 November 2022

CITATION

Pearce AL, Fuchs BA and Keller KL
(2022) The role of reinforcement
learning and value-based
decision-making frameworks
in understanding food choice
and eating behaviors.
Front. Nutr. 9:1021868.
doi: 10.3389/fnut.2022.1021868

COPYRIGHT

© 2022 Pearce, Fuchs and Keller. This
is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided
the original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which
does not comply with these terms.

The role of reinforcement
learning and value-based
decision-making frameworks in
understanding food choice and
eating behaviors
Alaina L. Pearce1,2*, Bari A. Fuchs2 and Kathleen L. Keller1,2,3

1Social Science Research Institute, Pennsylvania State University, University Park, PA, United States,
2Department of Nutritional Sciences, Pennsylvania State University, University Park, PA,
United States, 3Department of Food Science, Pennsylvania State University, University Park, PA,
United States

The obesogenic food environment includes easy access to highly-

palatable, energy-dense, “ultra-processed” foods that are heavily marketed to

consumers; therefore, it is critical to understand the neurocognitive processes

the underlie overeating in response to environmental food-cues (e.g., food

images, food branding/advertisements). Eating habits are learned through

reinforcement, which is the process through which environmental food

cues become valued and influence behavior. This process is supported by

multiple behavioral control systems (e.g., Pavlovian, Habitual, Goal-Directed).

Therefore, using neurocognitive frameworks for reinforcement learning and

value-based decision-making can improve our understanding of food-choice

and eating behaviors. Specifically, the role of reinforcement learning in

eating behaviors was considered using the frameworks of (1) Sign-versus

Goal-Tracking Phenotypes; (2) Model-Free versus Model-Based; and (3) the

Utility or Value-Based Model. The sign-and goal-tracking phenotypes may

contribute a mechanistic insight on the role of food-cue incentive salience

in two prevailing models of overconsumption–the Extended Behavioral

Susceptibility Theory and the Reactivity to Embedded Food Cues in

Advertising Model. Similarly, the model-free versus model-based framework

may contribute insight to the Extended Behavioral Susceptibility Theory and

the Healthy Food Promotion Model. Finally, the value-based model provides a

framework for understanding how all three learning systems are integrated to

influence food choice. Together, these frameworks can provide mechanistic

insight to existing models of food choice and overconsumption and may

contribute to the development of future prevention and treatment efforts.
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Introduction

Each day we make hundreds of choices about what to
eat, many of which occur automatically with little conscious
thought (1). While in lay terms, the phrase “food choice”
is often limited to the decisions about the composition of
a meal (e.g., What’s for dinner?), the current review uses
a broader definition that encompasses the behavioral and
environmental factors that influence meal initiation, amount
consumed, and quality of the food choices (2–4). Food choices
are extremely complex because they evolve over varying
time scales, have multiple determinants, and occur within
various contexts (e.g., celebratory, meals, and snacks) (2, 3,
5). Adding to the complexity is the overwhelming influence
of the obesogenic food environment, which makes highly
palatable, energy-dense (i.e., “ultra-processed”) foods more
affordable and accessible (6). Food choice in the context of an
obesogenic environment requires the integration of multiple,
often conflicting pieces of information (3). For example,
presence of food cues such as McDonald’s “Golden Arches”
may trigger wanting for energy-dense foods (e.g., Big Mac and
French fries) that are not compatible with goals to maintain
a healthy diet (7). With 1 in 5 deaths linked to a poor
diet (8, 9) and obesity rates among children continuing to
rise (10), it is critically important to understand how food
choices are made in response to environmental food cues
(e.g., food images, advertising/branding). Understanding the
neurocognitive processes those underly food choices in this
context is crucial for the development of effective, tailored
health interventions.

Environmental food cues influence food choice
through three behavioral controllers or systems: Pavlovian,
instrumental/habit, and goal-directed (1, 11, 12). The Pavlovian
system regulates automatic behavioral responses to cues that are
associated with evolutionarily relevant outcomes. The classical
example is of Pavlov’s dogs salivating at the sight of food
(13). While these responses can be present without learning
(i.e., “hard-wired”), the association between a stimulus or cue
(e.g., bell sounding) and an evolutionarily significant outcome
(e.g., food delivery) can be learned and presumably confers
selective advantages to human and non-human animals in
their search for edible and nutritious foods (11, 13, 14). For
example, approaching a cue that predicts food delivery (1, 11) or
consuming all the food available on a plate regardless of hunger
would be considered Pavlovian behaviors (11). In contrast to
the Pavlovian system where the outcome or reward is delivered
regardless of behavior, in instrumental learning, reward delivery
is contingent upon the behavior performed in response to the
cue (11, 14, 15). Thus, while the Pavlovian system supports
stimulus-outcome (S-O) learning the instrumental system
supports stimulus-response (S-R) learning. The instrumental
system has also been termed the “habit” system because learned
actions can occur even when the outcome is not desired,

which can lead to habitual behaviors (15). For example, the
instrumental system would drive habitual coffee intake at
a specific time of day regardless of whether the stimulating
effect of caffeine is needed or desired (1, 11, 15). While a
habitual behavior may occur regardless of state as in the prior
example, the value of food-related actions is also influenced
by internal states like hunger (16–18). In contrast to the
instrumental system which is driven by previously learned S-R
associations, the goal-directed system prospectively evaluates
response-outcome (R-O) associations based on the anticipated
or predicted outcome for each action (1, 11, 15). For example,
the goal-directed behavior of choosing where to eat in a novel
city would be driven by the anticipated value for the food at each
restaurant. Together, these three systems drive eating behavior
and food choice in response to environmental food cues.

While the instrumental and goal-directed systems
contribute to value-based decision-making in general, food
choice is a unique because it can also be influenced by the
Pavlovian system (1). Therefore, applying neurocognitive
frameworks to understanding the factors that motivate food
choice may elucidate novel behaviors to target in dietary
interventions. The current review is intended to provide an
overview of three frameworks that encompass these learning
systems: (1) sign-and goal-tracking phenotypes; (2) model-
based and model-free reinforcement learning; and (3) the utility
or value-based model. For each framework we will provide
a brief translational review of the theory and its supporting
neurobiological substrates, followed by a summary of possible
applications to understanding food choice and eating behaviors.
Finally, we will consider how these frameworks can be utilized
to improve understanding of food-choice and applied to the
development of more effective prevention/treatment programs
for disordered or dysregulated eating.

Sign-and goal-tracking

The sign-and goal-tracking phenotype is an animal
model for motivational control of behavior in response
to environmental cues (19–23). These phenotypes are
characterized in animals using the Pavlovian Conditioned
Approach (PCA) test (24, 25). Pavlovian conditioning occurs
when a neutral cue (e.g., lever) becomes a conditioned stimulus
(CS) after being repeatedly paired with an unconditioned
stimulus (US) like food. In the PCA test (Figure 1A), a lever
(neutral) is repeatedly presented prior to food delivery (US)
allowing the animal to learn the lever-food (S-O) association
(Figure 1A). Once the lever becomes a CS, it is able to elicit
conditioned responses (CR) (22, 24, 25). Animals display three
patterns of CRs: (1) goal-tracking: approaching the location
of food delivery (US); (2) sign-tracking: approaching the lever
(CS) itself; and (3) intermediate: switching between the two CRs
(20–22, 25). Importantly, all animals are equally able to learn the
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S-O association regardless of CR displayed (26). The differing
patterns of CRs occur due to differences in the attribution of
incentive salience or motivational value to the CS (20–22, 25).
For sign-trackers, the CS becomes an incentivized stimulus,
which has three defining properties: (1) it biases attention; (2) it
is desired and the animal will work for it (i.e., is “wanted”); and
(3) it can increase motivation to seek reward (20–22, 25, 27).
Once the CS becomes desired, sign-trackers will approach and
interact with the CS even if it means losing access to the primary
reward (e.g., food) (25). Therefore, a key behavioral distinction
between these phenotypes is the propensity for environmental
cues to take on rewarding properties and motivate wanting.

Neural pathways that support sign-and
goal-tracking phenotypes

The sign-and goal-tracking phenotypes have well-
characterized differences in neural engagement during
stimulus-reward learning and attribution of incentive salience.
Sign-trackers show greater phasic dopaminergic (DA) signaling
in ventral striatum, a region integral in stimulus-reward
learning, which has been linked to the attribution of incentive
salience to the CS (21, 22, 26, 28, 29). Sign-trackers also show
a higher firing rate for excitatory signals in response to the CS
in ventral pallidum (30), a subcortical region that is important
for motivated behaviors and incentive salience (31). While
both ventral striatum and pallidum have “hedonic hotspots”
that enhance hedonic influence of the CS (31–33), incentive
motivation or wanting of the CS (i.e., sign-tracking) seems
to be driven by projections from ventral striatum to ventral
pallidum (34). Although sign-tracking seems to be driven by
these subcortical DA-related signaling differences, there are
also important differences in cortical signaling. In particular,
sign-trackers show cortical differences in acetylcholine (ACh),
a neuromodulator that is important for attentional control and
learning. In response to attentional demands, sign-trackers
are less able to upregulate ACh which leads to stimulus-
driven or bottom-up attention control [for review see (24)].
Therefore, sign-trackers show a pattern of greater signaling in
subcortical “hedonic hotspots” in conjunction with a reduced
cortical ACh signaling, which limits engagement top-down
attentional control.

The pattern of greater bottom-up reward signaling and
reduced top-down control signaling in sign-compared to goal-
trackers is paralleled by circuit-level differences. Cue-motivated
behaviors driven by incentive salience involve widespread
circuits including cortical, thalamic pallidum, and striatal loops
that converge in the ventral striatum (21, 33, 35). Sign-trackers
have greater engagement of ventral and dorsal striatum (i.e.,
caudate-putamen) during stimulus-reward learning while goal-
trackers show greater engagement of prefrontal cortical regions
[for review see (21)]. Therefore, it has been hypothesized

that cue-motivated behaviors are subserved by subcortical
circuits while top-down cortical circuits inhibit the attribution
of incentive salience to cues (21). Reduced engagement of
cortical regions associated with top-down control may also
contribute to greater impulsivity (36, 37) and reduced behavioral
flexibility (38) observed in sign-trackers compared to goal-
trackers. Together, this suggests neural differences between
phenotypes contribute to differences in attribution of incentive
salience and may also be related to differences in attentional
control and impulsivity (21, 24).

Translation of sign-and goal-tracking
phenotypes to humans

In humans, sign-and goal-tracking have been characterized
using Pavlovian conditioning tasks (often as part of the
Pavlovian instrumental transfer paradigm) and the Value-Drive
Attentional Capture (VDAC) task. Using eye-tracking, incentive
salience can be measured in Pavlovian conditioning tasks by
examining the amount of time looking at the location of the CS
compared to the location where reward is delivered (Figure 1B).
Much like sign-tracking animals that fixate on the lever rather
than location of food delivery, adult humans who spend more
time looking at the location of the CS compared to the reward
have also been classified as sign-trackers (39, 40). In line with
the animal phenotype of sign-tracking, adults classified as sign-
trackers during Pavlovian conditioning show greater impulsivity
than those classified as goal-trackers (39). Similarly, VDAC tasks
(Figure 1C) measure attentional bias toward high-value stimuli,
however, these tasks assess this bias when the stimuli are no
longer relevant to the task goal and are no longer rewarded
(41–43). Continued attentional bias toward previous high-value
stimuli–termed attentional capture–reflects the attribution of
incentive salience to these stimuli (27, 43–45) and sign-tracking
(27, 45). Greater attentional capture on the VDAC has been
associated with greater compulsivity (45, 46) and impulsivity
(41) as well as risk for substance use disorder (45). Together, this
shows that behavioral profiles associated with sign-tracking have
similarities in human and non-human animals (e.g., impulsivity,
poor attentional control).

Relevance to food choice and eating
behaviors

The sign-and goal-tracking phenotype model has high
translational potential to inform our understanding of food
choice and overconsumption. This is supported by animal
studies which have shown that obesity-prone rats display greater
attribution of incentive salience compared to obesity-resistant
models (47). There is initial evidence that obesity is associated
with cue-outcome behavioral responses that are indicative of
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FIGURE 1

Methods of assessing sign-and goal-tracking phenotypes. (A) Pavlovian conditioned approach task–this task is used in non-human animal
models. Animals learn the stimulus-outcome (S–O) association between the lever and food delivery. The conditioned responses are: (1)
sign-trackers–approach the lever; (2) goal-trackers–approach the location of food delivery. (B) Pavlovian conditioning task–this is a simplified
schematic of a Pavlovian conditioning task where a conditioned stimulus either predicts reward receipt or no reward. The conditioned stimulus
and reward are presented in different locations so the conditioned response of eye-gaze can be measured. The conditioned responses are: (1)
sign-trackers–look at the conditioned stimulus more than reward location; (2) goal-trackers–look more at the reward location than
conditioned response. (C) Value-Driven Attentional Capture Task–this task includes a training and a test phase. Both phases include a visual
search task where participants must locate the location of the horizontal line. During training, one color is associated with high reward (e.g.,
green) and one color is associated with low reward (e.g., purple). During the test phase, the target is the unique shape and the previously
rewarded colors are used as high or low value distractors. No reward is given for correct responses in the test phase. The conditioned responses
are: (1) sign-trackers–looking at the previously rewarded cue, resulting in slower reaction times; (2) goal-trackers–not distracted by previously
rewarded cues. CS, conditioned stimuli; CR, conditioned response; US, unconditioned stimuli. Gray boxes highlight the definition of sign-and
goal-tracking for each task.

sign-tracking. In a Pavlovian conditioning task that paired visual
cues with receipt of chocolate milkshake, water, or nothing,
adults with overweight showed the CR of increased swallowing
in response to cues that predicted chocolate milkshake delivery
while adults with healthy weight did not (48). This suggests that
adults with overweight were more likely to attribute incentive
salience to the cues that predicted chocolate milkshake receipt
(i.e., sign-track) than those with healthy weight. Additionally,
in adolescents, greater caudate and ventral pallidum activity
is seen during Pavlovian cue-outcome learning for milkshake

compared to water (49, 50) with greater ventral pallidum activity
predicting greater increases in BMI 2 years later (49). This
finding parallels greater ventral pallidum activity in animal
models of sign-tracking (30), suggesting that this may be
a common neural pathway for sign-tracking and may be
associated with tendency to develop obesity.

The sign-tracking phenotype, in particular, may also play
an important role in eating behaviors. While we are not aware
of studies examining Pavlovian conditioning, there is one study
showing that adults with greater eating restraint were less likely
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to attribute incentive salience to food cues in a VDAC task
(51). This indicates that adults who report a greater tendency to
restrict calories are less likely to attribute salience to food cues.
There is also a larger literature examining attentional bias to
food cues [see reviews (52–54)], which is an indirect measure of
incentive salience (27). A recent meta-analysis examining direct
[e.g., electroencephalographic (EEG) recordings, eye-tracking]
and indirect (e.g., reaction times) measures of food-related
attentional bias showed that greater bias was associated with
greater hunger, food cravings, and food intake but not body mass
index (52). In particular, EEG recordings may be a promising
approach for characterizing sign-tracking as late positive event-
related potentials (ERPs, e.g., P300 or late positive potentials–
LPP) index motivational salience associated with cues (55, 56).
In support of this, a recent study used a data-driven approach to
cluster adults based on emotional and food-related LLPs with
those classified as “sign-trackers” showing larger food-related
LLP and higher rates of obesity compared to those classified
as “goal-trackers” (57). While late positive ERPs to food-cues
is a promising approach for measuring incentive salience and
sign-tracking, there is mixed evidence for an association with
obesity and binge eating disorder (53). Together, these studies
highlight initial evidence that the tendency to attribute incentive
salience to food cues (i.e., sign-track) may increase susceptibility
to eating behaviors associated with overconsumption [for review
of food-cue reactivity beyond incentive salience see (58)].

Based on initial evidence of its role in eating behaviors
related to overconsumption and obesity, the sign-tracking
phenotype may provide mechanistic insight on the role
of food-cue incentive salience in two prevailing models
of overconsumption–the Extended Behavioral Susceptibility
Theory (59) and the Reactivity to Embedded Food Cues in
Advertising Model (REFCAM; Figure 2; 60). The importance
of food-cue incentive salience across models highlights its broad
potential as a behavioral target for prevention and intervention
efforts. For example, cue-exposure therapy aims to reduce
food-cue incentive salience by repeatedly exposing participants
to a food-cue without the CR of food intake [for review
see (12, 61, 62)]. Thus far, cue-exposure therapy has focused
on exposures to specific foods, which has been successful in
reducing the number of binge eating episodes, number of
binge eating days, intake of exposed food, and body weight
(63–65) in adults with binge eating disorder and obesity (61–
65). While cue-exposure therapy has shown effectiveness for
individuals who have already developed food-specific cravings
and overconsumption, it is not clear if this approach would
be effective for targeting brand or advertising related cues as
proposed in the REFCAM model. Additionally, it is not clear
if targeting incentive salience would be more efficacious for
reducing overconsumption in individuals with sign-tracking
compared to goal-tracking phenotypes. Therefore, future work
is needed to determine whether targeting individuals based

FIGURE 2

Adapted models with the sign-and goal-tracking and
model-free and model-based learning frameworks
incorporated. (A) Boutelle et al.’s (59) Extended Behavioral
Susceptibility; (B) Folkvord et al.’s (60) Reactivity to Embedded
Food Cues in Advertising Model; (C) Folkvord et al.’s (7) Healthy
Food Promotion Model.

on sign-and goal-tracking phenotypes will contribute to more
effective and sustainable weight maintenance.

Model-free and model-based
reinforcement learning

Reinforcement learning is the process through which
environmental cues become valued and influence behavior
(66). This process is driven by two competing systems–a
habitual and a goal-driven system (15, 67–71). The habitual
system drives model-free reinforcement learning which relies
on stimulus-response (S-R) associations and is a fast, almost
automatic, process that requires little cognitive effort (72). For
example, stopping for coffee at the same coffee shop on the
way to work every day is likely a habitual process. Model-
free learning increases the probability of choosing actions that
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were most recently rewarded, which leads to less accurate
and flexible responses. In contrast, the goal-directed system
drives model-based learning because it relies on a mental
model or cognitive map of the expected value of different
responses (i.e., R-O associations) for different “states” or
environmental situations. For example, if the coffee shop is
closed for maintenance, a goal-directed process is needed to
change the morning routine and make coffee at home. Model-
based learning leads to more flexible responses; however, it is
also more cognitively demanding. These reinforcement learning
strategies operate in parallel, with optimal value-based decision-
making balancing the need for accuracy with cognitive demand
(67, 70, 73, 74).

Neural pathways that support
model-free and model-based learning

Reinforcement learning processes rely on neural encoding
of prediction errors, which are used to update outcome
expectations and improve accuracy. Model-free learning
depends on reward prediction errors (RPEs). A RPE is the
difference between the expected outcome and the actual
outcome. For example, if someone orders their morning coffee
and receives a free donut, that would be a positive RPE. In
contrast, if someone orders their morning coffee and receives
decaffeinated coffee, that would be a negative RPE. RPEs
are encoded by phasic DA signaling in the basal ganglia,
which includes ventral striatum, caudate-putamen, and dorsal
pallidum (29, 75). In contrast, model-based learning relies
on a cognitive model of a task or environmental reward
structure so learning is driven by state prediction errors (SPEs).
A SPE is the difference between the expected “state” and the
actual “state” (70). For example, arriving at coffee shop in the
morning and finding it closed for maintenance would be a SPE.
SPEs are thought to be encoded by lateral prefrontal cortex,
intraparietal sulcus, and anterior cingulate (70, 76, 77). While
the neural systems supporting RPEs and SPEs are partially
distinct, both model-free and model-based learning include
value-based signaling associated with ventral striatal activation
(68, 70, 73, 78, 79). A recent meta-analysis showed that in
addition to ventral striatum, model-free learning specifically
engaged dorsal striatum and dorsal pallidum while model-
based learning specifically engaged ventral medial prefrontal
cortex and anterior cingulate cortex (79). In addition to
regions supporting SPEs, model-based learning also involves
dorsolateral prefrontal cortex, orbital frontal cortex, posterior
parietal cortex, and hippocampus to support the mental
model of different states (15, 71, 80). Given these learning
strategies likely operate in parallel (67, 70, 73, 74), common
neural correlates for these strategies may help to mediate
switching between model-free and model-based learning (15,
69, 81).

Characterizing model-free and
model-based learning

The advent of computational models for reinforcement
learning has propelled our ability to distinguish model-free
and model-based learning processes. In particular, the dual-
system model incorporates both model-free and model-based
algorithms (68, 73) which allows for individual differences in
the balance of these systems to be examined. A task structure
that leverages the dual-system model is the two-step or serial
decision-making task (73, 82). This task involves a series of
decisions between two stages. Actions in the first stage lead
probabilistically to one of two second-stage states (i.e., high
versus low transition probability; Figure 3A). Decisions made
in the second-stage then lead to different probabilities of reward,
which change or drift slowly throughout the task to encourage
learning. The transition structure between stages allows for
model-based and model-free strategies to be distinguished. In
particular, model-free learners are more likely to repeat an
action after a rare or low probability reward due to positive
RPE. In contrast, model-based learners will experience a SPE
and will be less likely to repeat the action due to the overall
low probability of reward. This task has also been adapted to
enhance the accuracy-demand tradeoff such that model-based
strategies will lead to greater reward (82). In the adapted version,
the transitions between the stages are deterministic rather than
probabilistic (Figure 3B). Overall, greater use of model-free
learning has also been associated with poorer working memory
(83, 84), cognitive control (85), and processing speed (86).
Therefore, greater reliance on model-free learning during this
task is thought to reflect less adaptive reinforcement learning.

While two-step tasks were first developed for human studies,
translational applications of the task to rodent models [e.g., (76,
80, 87; Figures 3C,D)] has shown similar patterns of behavior
as seen in humans [for reviews on other animal models of
habit see (88, 89)]. Animals show evidence of both model-free
and model-based learning and evidence for switching between
strategies (76, 87, 90, 91). An advantage to animal models
is that ability to measure reinforcement learning before and
after drug exposure. Drug-naïve animals with less model-free
learning exhibited greater subsequent drug administration in
animals, while use of model-based learning did not predict
subsequent drug administration (92). However, after drug self-
administration, rodents showed a reduction in both model-
free and model-based learning (92). While this study used a
computational model that quantified use of model-free and
model-based strategies independently, studies in humans tend
to look at the relative use of learning strategies (68, 73) and have
shown relatively more model-free than model-based learning
in drug users (93). Together, this highlights the importance
of having translational assays of decision-making frameworks
to better understand behavioral and neural mechanisms of
reinforcement learning.
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FIGURE 3

Methods of assessing model-based and model-free reinforcement learning using two-step serial decision-making tasks. Two-step tasks have
two stages of decisions with the second stage state dependent upon the first stage choice. (A) Daw et al.’s (68) task that uses a probabilistic
transition from stage 1 to 2. Gray box highlights the theoretically expected probability of repeating a stage 1 choice for model-free and
model-based learning based on previous trial reward and transition probability. (B) Kool et al.’s (82) task that uses a deterministic transition from
stage 1 to 2. Gray box highlights the theoretically expected probability of repeating a stage 1 choice for model-free and model-based learning
based on previous trial reward and whether the current trial stage 1 state differs from the previous trial’s stage 1 state. (C) Miller et al.’s (80)
translation of a two-stage task for non-human animals with probabilistic state transitions. (D) Groman et al.’s (87) translation of a two-stage task
for non-human animals with deterministic state transitions.

Relevance to food choice and eating
behaviors

While the advent of the dual-system model and two-stage
task has led to a swell of research on individual differences
in reinforcement learning, little work has directly tested the
role of reinforcement learning in food choice and obesity.
Of the two studies we are aware of that have directly tested
this association one showed greater reliance on model-free
learning in adults with obesity compared to those without
(94) and one showed no relationship between weight status
and reinforcement learning (93). Additionally, model-free
learning has been associated with psychological disorders
marked by compulsivity including addiction, gambling disorder,

obsessive compulsive disorder, and binge eating disorder (93,
95, 96). Model-free learning has been indirectly implicated in
overconsumption (97) due to the contribution of compulsivity
in habitual overeating (98, 99). Model-free learning may also
contribute insight into the Extended Behavioral Susceptibility
model, which proposes that “habitual” or instrumental systems
contribute to overconsumption (Figures 2A,B; 59). While the
majority of the literature and prevailing theories have focused on
overconsumption, the Healthy Food Promotion Model proposes
that habit learning can be leveraged to bolster intake of fruit
and vegetables (Figure 2C; 100). Together, this suggests that
interventions that leverage habit learning strategies may be
able to increase healthy eating behaviors, but future studies are
needed to test this empirically.
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Utility model

Value-based decision-making often involves choosing
between multiple actions that could lead to different
advantageous outcomes. In utility or value-based decision-
making models, every action has an expected value or utility
(i.e., action-outcome association) and the action with the
highest expected value will be selected. Values associated with
different actions are integrated across Pavlovian, instrumental,
and goal-directed systems (11) for different consequences
of that action, termed attributes. For example, choosing to
eat at a restaurant rather than at home could occur because
the cumulative value of convenience and taste of food at
the restaurant is greater than the value of cost saving and
alignment with health goals for eating at home. Thus, the
cumulative value of an action integrates both positive and
negative value signals across learning systems and attributes.
Additionally, the weight of the value signals from different
learning systems can be influenced by individual characteristics,
such as delay discounting (101, 102). Individuals who value
smaller, immediate rewards more than larger, delayed rewards
may be more influenced by value signals from the Pavlovian
or instrumental systems than the goal-directed system.
Further, environmental cues can modulate the weight given
to different attributes (e.g., taste, health) (103). For example,
an advertisement that draws attention to the palatable aspects
of food may increase the value of taste when choosing what
to eat. Therefore, value-based decisions are influenced by
the subjective value of relevant attributes in addition to
self-regulation and environmental contexts.

Neural pathways that support
value-based decision-making

Value-based decision-making relies on the integration of
multiple value signals across different learning systems. To
compare value signals across dissimilar actions (e.g., take a
lunch break or continue reading this paper), a “common
currency” or value is encoded in the brain (104, 105).
Neuroimaging research suggests that this common value signal
is encoded in ventromedial prefrontal cortex and medial
orbitofrontal cortex, while value signals for distinct attributes
are encoded throughout the brain (106, 107). A meta-
analysis showed that when executing reward-based decisions,
valuations of different types of reward (e.g., food, money)
were associated with activation in ventromedial prefrontal
cortex, ventral striatum, posterior cingulate cortex, and superior
frontal gyrus; however, only ventromedial prefrontal cortex
activity was related to valuations for each reward modality
separately (108). This suggests ventromedial prefrontal cortex
is a key region for encoding subjective value of both primary
rewards like food and secondary rewards like money during

decisions. Dorsolateral prefrontal cortex has also been shown
to modulate ventromedial prefrontal cortex value signaling
during self-control (109, 110) and during context-dependent
valuation (111) indicating the importance of both regions
in goal-directed decisions. In sum, attribute-specific value
signals across the brain are integrated in ventromedial
prefrontal cortex, which can be modulated by dorsolateral
prefrontal cortex when self-control is engaged or environmental
context is important.

Characterizing value-based
decision-making

Characterizing value-based decision-making can involve
assessing overall value of an action or stimuli, assessing
how different attributes impact overall value, or assessing
how psychological and environmental characteristics impact
value-based decisions. To estimate the overall expected
value of an action, participants can rate how much they
want (e.g., strong yes, yes, no, strong no) or how much
they are willing to pay for an item (112). Direct ratings
of the value of different attributes (e.g., health or taste)
have been shown to relate to real world behaviors such
as fruit and vegetable intake (113) and smoking initiation
(114). These ratings can also be used to examine how
attributes influence value-based decision-making by asking
participants to make choices between the items. For example,
after rating the health and taste of foods, the influence of
these attributes on food choice can be examined by having
participants choose between food items that differ in taste
and health attributes (109, 115–118). Assessing mouse-
tracking during these decisions can provide insight into
how attributes impact value-based decisions. For example,
mouse-tracking trajectories have been used to measure the
cognitive effort required to make healthy choices in children
(117) and determine when different attributes impact the
decision-making process (115, 118). Computational models
of decision-making can also be used to examine individual
differences in decision-making processes when choosing
among options that vary in value. For example, in the Iowa
Gambling Task (119) or its adapted child version the Hungry
Donkey Task (120), participants try to accumulate as many
rewards as possible by repeatedly choosing between four
options associated with different reward and punishment
probabilities. Computational models can characterize
decision-making processes such as how value is updated,
consistency between valuation and choice, loss aversion,
and sensitivity to the magnitude of gains and losses (121–
126). Together, these approaches can be used to understand
how individual differences in valuation or cognitive and
psychological process relate to disordered or dysregulated
eating behaviors.
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Relevance to food choice and eating
behaviors

Food choice and eating behaviors require the evaluation of
multiple food-related attributes (e.g., taste, health) in addition
to personal goals and environmental cues. Taste and health
ratings are predictive of food choices in adults (127, 128),
however, the impact of these attributes on decisions varies
among individuals (109, 128) and can be altered following
exposure to taste and health cues (103). These behavioral
differences are underpinned by differences in ventromedial
and dorsolateral prefrontal cortex activation during decisions
(103, 109). In children, taste is more predictive of food
choices than health ratings (129, 130), although the temporal
dynamics of taste and health attributes on children’s food
choices vary by children’s hunger and weight status (115).
Additionally, children’s food choices have been shown to be
influenced by what they believe their mothers would choose
for them (130). For both children and adults, food choices
are impacted by many attributes including expectations about
the likelihood of feeling satisfied and happy, feeling in control
of one’s behavior, eliminating hunger, cost, and convenience
(113, 128, 131). This suggests that in addition to food-
related attributes, social context, and individual characteristics
(132) influence value-based food choices. Understanding the
individual characteristics and environmental contexts that
influence the value of certain eating behaviors could contribute
to interventions that increase the value and selection of foods
that optimize health.

Value-based decision-making models complement the other
models discussed in this review (Figure 2). For example, a value-
based perspective of the Extended Behavioral Susceptibility
Theory would suggest that social and environmental factors,
genes, and metabolic signals increase the valuation of food cues
(i.e., food responsiveness) relative to satiety signals (i.e., satiety
responsiveness), contributing to a positive energy balance.
Similarly, a value-based perspective of REFCAM would be
that food advertisements subconsciously increase the value
of food through incentive sensitization, which increases the
likelihood of consumption. Correspondingly, interventions
that modulate value from social and environmental attributes
could lead to changes in food intake. This may include
techniques such as cognitive reappraisal and food cue-exposure,
which could reduce the value of food cues and increase
the relative influence of goal-directed values on food choice.
Additionally, manipulations that increase the self-relevancy of
goals or influence delay discounting for food may have the
potential to influence eating behaviors through their impact
on valuation (101). Future research should assess ways to
modify food-related value signals across learning systems and
attributes and identify who would benefit most from these
interventions.

Discussion

This paper presented three neurocognitive frameworks that
could help to advance our understanding of the neurocognitive
processes that underly food choices, a critical step toward the
development of effective, tailored health interventions. These
frameworks support and may help provide mechanistic insight
to prominent models for food choice and overconsumption such
as the Extended Behavioral Susceptibility model, REFCAM,
and the Healthy Food Promotion Model. The sign-and goal-
tracking framework can help to provide insight in behavioral
phenotypes that may be more susceptible to the attribution
of incentive salience to food cues, which could increase
craving and overconsumption. The model-free versus model-
based framework provides computational models that could
be used to better understand habitual intake and compulsive
overeating. Finally, the utility or value-based decision-making
model provides a framework for understanding how value
signals from all three learning systems could be integrated to
influence food choice.

The primary advantage of utilizing neurocognitive
frameworks is the ability to directly probe valuation and
reinforcement learning processes that drive food choice and
overconsumption. As the frameworks presented here involve
but distinct reward-learning processes, it is often not possible
to distinguish causal mechanisms without task behavior. For
example, while obesity (133–136), future weight gain (49, 137,
138), and greater food intake (139–141) have all been associated
with greater food-cue reactivity in ventral striatum [see (58)
for review on neural food-cue reactivity], the interpretation
of these findings may differ based on which framework is
referenced. Under the sign-and goal-tracking framework, this
pattern of results could be interpreted as evidence that greater
attribution of incentive salience to food cues drives obesity and
overconsumption. In contrast, under the model-free and model-
based learning framework, this pattern of results would not be
sufficient to make a distinction as both strategies engage ventral
striatum (79). However, when considered along with consistent
evidence that greater prefrontal cortex engagement is associated
with healthy weight (133–136) and lower food intake (142, 143),
the combined pattern of results may be interpreted as evidence
that greater reliance on model-based strategies is associated
with lower weight status and food intake. Alternatively, when
using the utility or value-based decision-making framework, the
combined pattern of findings could be interpreted as evidence
that greater relative value for goal-directed than hedonic values
when viewing food cues is protective from excess consumption
and adiposity. Therefore, future studies need to assess both
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neural food-cue reactivity and reward learning. In order to
determine how these frameworks mechanistically contribute to
different aspects of food choice and overconsumption, ingestive
behavior needs to be characterized alongside reward learning
and neuroimaging.

All three of these frameworks have utility for better
understanding food choice and overconsumption; the choice
of which framework(s) to reference ultimately depends on the
theory of eating behavior and hypotheses being tested. The sign-
and goal-tracking framework enables one to test very specific
hypotheses related to the attribution of incentive salience to food
cues and its role in motivated behavior such as craving. Model-
free and model-based reinforcement learning provides a broader
framework to examine reinforcement learning and its role in
habitual or compulsive overeating. Lastly, the utility or value-
based decision-making theory provides a larger framework to
understand how valuation and reinforcement learning processes
interact across behavioral control systems during food choice. In
sum, applying these frameworks to provide mechanistic insight
of prominent models of food choice and overconsumption
may eventually contribute to more informed prevention and
treatment efforts.
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