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Pectic-polysaccharides are considered as one of the most abundant

bioactive components in okra, which possess various promising health-

promoting effects. However, the knowledge regarding the structure-

bioactivity relationship of okra pectic-polysaccharides (OPP) is still limited.

In this study, effects of various degrees of esterification (DEs) on in vitro

antioxidant and immunostimulatory activities of OPP were analyzed. Results

displayed that OPP with high (42.13%), middle (25.88%), and low (4.77%) DE

values were successfully prepared by mild alkaline de-esterification, and their

primary chemical structures (compositional monosaccharide and glycosidic

linkage) and molecular characteristics (molecular weight distribution, particle

size, and rheological property) were overall stable. Additionally, results showed

that the notable decrease of DE value did not significantly affect antioxidant

activities [2,2’-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) and

nitric oxide (NO) radical scavenging abilities as well as ferric reducing

antioxidant power (FRAP)] of OPP, suggesting that the DE was not closely

related to its antioxidant activity. In fact, the slight decrease of antioxidant

activity of OPP after the alkaline de-esterification might be attributed to the

slight decrease of uronic acid content. Nevertheless, the immunostimulatory

effect of OPP was closely related to its DE, and a suitable degree of

acetylation was beneficial to its in vitro immunostimulatory effect. Besides,

the complete de-acetylation resulted in a remarkable reduction of immune

response. The findings are beneficial to better understanding the effect of DE

value on antioxidant and immunomodulatory activities of OPP, which also

provide theoretical foundations for developing OPP as functional foods or

health products.
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Introduction

Pectic-polysaccharides are complex heteropolysaccharides
existed in the primary cell walls of vegetables and fruits,
which are predominantly composed of homogalacturonan
(HG), rhamnogalacturonan I (RG-I), and rhamnogalacturonan
II (RG-II) domains (1). Recently, pectic-polysaccharides
extracted from vegetables and fruits have attracted increasing
attention to be developed into functional food ingredients
owing to their various health-promoting properties, such as
antioxidant, anti-inflammatory, immunomodulatory, anti-
tumor, anti-hyperlipidemic, anti-hyperglycemic, anti-obesity,
and prebiotic properties (1–3). A great number of studies
have demonstrated that the ratio of HG/RG-I, molecular
mass, branched chain length, degree of esterification (DE),
glycosidic linkage, and compositional monosaccharide of
pectic-polysaccharides are critical chemical structures for their
health beneficial effects (1–3). Nevertheless, the knowledge
regarding the precise structure-biological activity relationships
of pectic-polysaccharides is still limited because of a lack
of pure samples and fine structure analysis. Therefore, it is
important to uncover the relationship between the precise
structures of pectic-polysaccharides and their biological
activities, which is beneficial to better promoting the application
of pectic-polysaccharides in the functional food industry.

Abelmoschus esculentus L. Moench, known as okra or lady’s
finger, is a vital edible and medicinal plant in China. It is native
to the Africa but can now be found throughout tropical and
subtropical areas of the world (4). Okra is not only consumed
as a delicious vegetable, but also utilized as a folk medicine for
the treatment of various diseases (5). Due to its promising health
benefits, such as antioxidant, immunomodulatory, anti-diabetic,
anti-cancer, anti-hypertensive, and anti-microbial effects, okra
has attracted increasing attention to be developed and utilized
as functional foods in recent years (4). Lots of studies have
demonstrated that pectic-polysaccharides, proteins, flavonoids,
and phenolic acids exist as the major bioactive components
in okra, which contribute to its various beneficial properties
(4, 6). Especially, pectic-polysaccharides are considered as one
of the most abundant bioactive components in okra, which
play a critical role in its biological activities (6). Indeed, the
backbone of okra pectic-polysaccharides (OPP) is identified
as →4)-α-D-GalAp-(1→2,4)-α-L-Rhap-(1→, confirming that
the RG I segment is rich in okra (7–9). Besides, the
HG segment is also found in okra (6). Indeed, OPP also
have a low degree of methyl esterification and a high
degree of acetylation (10, 11). Generally, pectic-polysaccharides
are complex biomacromolecules, their physicochemical or
structural features can directly impact the biological functions.
Several studies have indicated that the molecular mass of
OPP significantly affect their antioxidant, prebiotic, and anti-
inflammatory activities (12, 13), as well as immune stimulating
activity (14). Besides, a recent study has shown that biological

activities of OPP can be improved through the degradation
by ultrasound assisted H2O2/Vc reaction, and the in vitro
antioxidant and immunostimulatory effects of OPP are related
to its molecular mass, branched chain length, and DE (9).
Furthermore, the DE value has gained much attention in
the investigation of pectic-polysaccharides, because the DE
value can obviously affect biological activities and functional
properties of pectic-polysaccharides, such as inhibitory effect
on α-amylase, modulation of gut microbial composition,
immunoregulatory effect, gel property, and emulsifying ability
(15–18). Indeed, the mild alkaline de-esterification has been
considered as one of the most important methods to
reduce the esterification of pectic-polysaccharides (15, 19).
However, the potential relationships between DE value and
biological activity of OPPare still unclear, which require to be
systematically investigated.

Therefore, in order to further clarify the potential structure-
bioactivity relationship of OPP, effects of various degrees
of esterification on in vitro antioxidant capacities and
immunostimulatory activities of OPP were investigated in
the present study.

Materials and methods

Materials and chemicals

Okra fruits of Abelmoschus esculentus cv. Wufu used
in this study were harvested from Chengdu, Sichuan
Province, China. Monosaccharide standards, 2,2′-azino-bis
(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), sodium
nitroprusside (SNP), vitamin C (Vc), griess reagent,
lipopolysaccharide (LPS), and 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyl tetrazolium bromide (MTT) were purchased
from Sigma-Aldrich (St. Louis, MO, USA).

Preparation of okra
pectic-polysaccharides with various
degrees of esterification

The preparation of purified OPP was performed as
previously reported (20). Briefly, the crude water-soluble
polysaccharides from okra fruit powders were extracted by
ultrasound assisted-extraction (650 W, 24 kHz, Scientz, Ningbo,
China) as previously reported (20). Afterward, the supernatants
were sequentially precipitated (three volumes of 95% ethanol),
redissolved, dialyzed (molecular mass cutoff, 3.5 kDa), and
separated by a DEAE anion exchange column (5 × 50 cm)
to prepare purified OPP. Moreover, the modification of OPP
was carried out to improve its in vitro biological activities
as previously reported (9). Briefly, 50.0 mL of OPP solutions
(10.0 mg/mL) were mixed with ascorbic acid and H2O2 at the
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final concentrations of 20.0 and 40.0 mM, respectively, and
then degraded by ultrasound (650 W, 24 kHz, Scientz, Ningbo,
China) at the power of 520 W for 0.5 h (9). Finally, the degraded
product of okra pectic-polysaccharides (DOPP) with promoted
biological functions was obtained.

Furthermore, the preparation of DOPP with various DE
values was carried out according to a previous study with a few
modifications (19). In brief, the mild alkaline de-esterification
was carried out by stirring 0.5% (w/v) of DOPP in NaOH
solution at basic pH values of 11.0 and 13.0 for 0.5 h under
4◦C, respectively. At the end of reaction, the sample solution was
acidified to pH = 6.0 by adding HCl (1 M). Then, after dialysis
(molecular mass cutoff, 3.5 kDa) and freeze-drying in turn,
okra pectic-polysaccharides with a middle DE value (DOPP-
MDE) and a low DE value (DOPP-LDE) were obtained. Indeed,
the yields of DOPP-MDE and DOPP-LDE were measured
to be 95.73 and 90.82%, respectively. Correspondingly, the
original DOPP was named DOPP-HDE, which possessed a
relatively high DE value.

Structural characterization of okra
pectic-polysaccharides with various
degrees of esterification

Total polysaccharides, uronic acids, and proteins of OPP
with various DE values were detected by colorimetric methods
as previously reported (21). Molecular weight (Mw), molecular
weight distribution (Mw/Mn), and radius of gyration (Rg) as
well as rheological property of DOPP-HDE, DOPP-MDE, and
DOPP-LDE were also measured as previously reported (9,

22). In brief, a TSKgel GMPWXL column (300 × 7.8 mm,
i.d.) was utilized for the separation of DOPP-HDE, DOPP-
MDE, and DOPP-LDE, respectively. Both multi-angle laser
light scattering detection and refractive index detection (Wyatt
Technology Co., Santa Barbara, CA, USA) were applied for
the analysis of DOPP-HDE, DOPP-MDE, and DOPP-LDE,
respectively. The apparent viscosities of DOPP-HDE, DOPP-
MDE, and DOPP-LDE were measured by a Discovery Hybrid
Rheometer-1 (DHR-1, TA Instruments, New Castle, DE, USA).
For the investigation of primary chemical structures, the
monosaccharide compositions, FT-IR spectra, and 1H NMR
spectra of OPP with various DE values were analyzed. In
brief, monosaccharide compositions of DOPP-HDE, DOPP-
MDE, and DOPP-LDE were analyzed by HPLC (Thermo Fisher
Scientific, Waltham, MA, USA) as previously reported (23).
A C18 column (150 × 4.6 mm, 5 µm, Thermo Fisher Scientific,
Waltham, MA, USA) was carried out for the separation of
monosaccharides, and the signals were recorded at 245 nm.
Additionally, 1H NMR spectra of DOPP-HDE, DOPP-MDE,
and DOPP-LDE were also recorded on a Bruker Ascend
600 MHz spectrometer (Bruker, Rheinstetten, Germany) as
previously reported (24, 25). Furthermore, the FT-IR spectra of
DOPP-HDE, DOPP-MDE, and DOPP-LDE were also analyzed
according to a previous reported method (26, 27). Indeed, the
DE value was estimated based on the FT-IR spectra at 1,700–
1,750 cm−1 (about 1,730 cm−1) and 1,600–1,640 cm−1 (about
1,635 cm−1), which was estimated based on the following
equation:

DE(%) = (
A1730

A1730+ A1635
) × 100

TABLE 1 Chemical composition, molecular weight (Mw), polydispersity (Mw/Mn), radius of gyration (Rg), and constituent monosaccharide of okra
pectic-polysaccharides (OPP) with various degrees of esterification.

DOPP-HDE DOPP-MDE DOPP-LDE

Total polysaccharides (%) 92.59± 2.31a 92.26± 3.16a 93.21± 2.00a

Total uronic acids (%) 33.51± 1.64a 32.91± 1.93a 27.51± 1.77b

Total proteins (%) 1.25± 0.27a 1.00± 0.04a 0.81± 0.32a

Esterification degree (%) 42.13± 0.14a 25.88± 0.47b 4.77± 0.34c

Mw × 105 (Da) 1.897 (±0.928%)a 1.865 (±0.693%)a 1.753 (±1.036%)a

Mw/Mn 1.786 (±1.381%) 1.736 (±1.049%) 1.773 (±1.658%)

Rg 30.3 (±2.9%)a 30.0 (±3.6%)a 29.6 (±2.4%)a

Monosaccharide compositions and molar ratios

Rhamnose 1 1 1

Galactose 2.14 2.11 2.08

Galacturonic acid 1.10 1.09 1.07

Mannose 0.48 0.37 0.34

Arabinose 0.19 0.17 0.16

Glucuronic acid Trace Trace Trace

DOPP-HDE, DOPP-MDE, and DOPP-LDE indicate okra pectic-polysaccharides with high, middle, and low degrees of esterification, respectively; total polysaccharides (%, w/w), uronic
acids (%, w/w), and proteins (%, w/w) indicate the total content of neutral and acidic polysaccharides, the total content of uronic acids, and the total content of proteins in okra pectic-
polysaccharides; esterification degree (%) indicates the esterification degree of total uronic acids; different superscript lowercase letters indicated significance (p < 0.05) in each row.
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FIGURE 1

FT-IR spectra (A) and high-performance liquid chromatograms of compositional monosaccharides (B) of okra pectic-polysaccharides (OPP)
with various degrees of esterification. DOPP-HDE, DOPP-MDE, and DOPP-LDE indicate OPP with high, middle, and low degrees of
esterification, respectively; Mix indicates the monosaccharide standards, which was analyzed by HPLC under the same conditions of samples.
PMP, 1-phenyl-3-methyl-5-pyrazolone; Man, mannose; Rha, rhamnose; GlcA, glucuronic acid; GalA, galacturonic acid; Glc, glucose; Gal,
galactose; Xyl, xylose; Ara, arabinose.

Evaluation of in vitro antioxidant
activities of okra
pectic-polysaccharides with various
degrees of esterification

The ferric reducing antioxidant power (FRAP), ABTS
radical scavenging ability, and nitric oxide (NO) radical
scavenging ability of OPP with various DE values were evaluated
according to previously reported methods (26). In brief, for the

determination of ABTS radical scavenging ability, the ABTS
radical cation working solution (200 µL) was mixed with 20 µL
of each sample (2.0–10.0 mg/mL) in a 96-well microplate to
react at 30◦C for 20 min; for the determination of NO radical
scavenging ability, each sample (450 µL, 2.0–10.0 mg/mL) was
mixed with 50 µL of SNP (10 mM) to react at 25◦C for
3 h, and then 250 µL of Griess reagent was added. Besides,
the IC50 values (mg/mL) of DOPP-HDE, DOPP-MDE, and
DOPP-LDE for scavenging free radicals could be determined
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FIGURE 2
1H NMR spectra of okra pectic-polysaccharides (OPP) with various degrees of esterification. The sample codes were the same in Figure 1.

on the basis of a logarithmic regression curve. Additionally,
for the determination of FRAP, 100 µL of each sample (2.0–
10.0 mg/mL) was mixed with 100 µL of potassium ferricyanide
(1%, w/w) at 50◦C for 20 min, and then 100 µL of trichloroacetic
acid (10%, w/v) was added and centrifugated. Finally, both
distilled water (100 µL) and ferric chloride (20 µL) were added
into the supernatant (100 µL). The absorbance of the mixture
was recorded at 593 nm. Vc was used as a positive control in
each experiment.

Evaluation of immunostimulatory
activities of okra
pectic-polysaccharides with various
degrees of esterification

Immunostimulatory activities of OPP with various DE
values were evaluated by using an in vitro model of RAW
264.7 macrophages according to a previously reported method
(9). In brief, effects of OPP with various DEs at the
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concentrations ranged from 5 to 320 µg/mL on the proliferation
of RAW 264.7 macrophages were determined by the MTT
colorimetric method. Additionally, the production of NO and
release of cytokines [interleukin-6 (IL-6) and tumor necrosis
factor-α (TNF-α)] from RAW 264.7 macrophages were also
detected as previously reported (9). After the RAW 264.7
macrophage was stimulated with DOPP-HDE, DOPP-MDE,
and DOPP-LDE at the concentrations ranged from 5 to
320 µg/mL, the NO production was measured by Griess
reagent. Besides, the release of IL-6 and TNF-α from RAW
264.7 macrophages were measured by ELISA kits according
to the manufacturer’s procedures (eBioscience, San Diego, CA,
USA).

Statistical analysis

Each experiment was carried out in triplicate. Data are
presented as mean± standard deviation. Statistical analysis was
performed by using a two-tailed Student’s t-test and one-way
analysis of variance followed by a Duncan’s test, respectively.

Results and discussion

Structural features of okra
pectic-polysaccharides with various
degrees of esterification

Chemical structures of okra
pectic-polysaccharides with various degrees of
esterification

The chemical compositions of OPP with different DE
values are summarized in Table 1. Total polysaccharides in
DOPP-HDE, DOPP-MDE, and DOPP-LDE were detected
to be 92.59, 92.26, and 93.21%, respectively, indicating
that the contents of total polysaccharides were not affected
by mild alkaline de-esterification. However, total uronic
acids in DOPP-HDE, DOPP-MDE, and DOPP-LDE
slightly decreased from 33.51 to 27.51% by mild alkaline
de-esterification, which might be due to the fact that
the elimination reaction could induce the hydrolysis of
pectic-polysaccharides by splitting their backbone (15, 28).
Additionally, minor proteins were found in DOPP-HDE,
DOPP-MDE, and DOPP-LDE, which were similar with a
previous study (9).

Furthermore, in order to confirm the primary chemical
structures of OPP with different DE values, the monosaccharide
compositions, FT-IR spectra, and 1H NMR spectra were
systematically analyzed. As shown in Figure 1A, similar FT-IR
spectra were found in DOPP-HDE, DOPP-MDE, and DOPP-
LDE, indicating that the major chemical groups of OPP were
stable after the treatment of mild alkaline de-esterification. The

typical absorption bands of pectic-polysaccharides, including
3466.43, 2938.97, 1730.13, 1635.43, 1411.29, and 1150.36 cm−1,
were found in all tested samples (28, 29). However, as shown
in Figure 1A, the peak areas of absorption band at around
1730.13 cm−1 related to esterified functional groups remarkably
changed after the treatment of mild alkaline de-esterification
(28). Indeed, the DE values of DOPP-HDE, DOPP-MDE, and
DOPP-LDE were estimated to be 42.13, 25.88, and 4.77% based
on the peak areas of absorption bands at around 1730.13 and
1635.43 cm−1 (Table 1), respectively, indicating that OPP with
various DE values were successfully prepared. Additionally,
as shown in Figure 1B, the same types of monosaccharides
were found in DOPP-HDE, DOPP-MDE, and DOPP-LDE, and
galacturonic acid, rhamnose, and galactose were determined
as the major monosaccharides as previously reported (9).
Indeed, similar molar ratios of constituent monosaccharides
were also found in all samples (Table 1), suggesting that
the primary chemical structures of OPP, except the DE,
were relatively stable after the treatment of mild alkaline de-
esterification. Furthermore, 1H NMR spectra of OPP with
various DE values were also analyzed for the confirmation
of their chemical structures (Figure 2). More specifically, the
signal at around 2.09 ppm in DOPP-HDE was assigned to
acetyl groups (10, 11), which might locate on O-2 or O-3 of
galacturonosyl residues and O-3 of rhamnosyl residues (11).
The intensity of this signal obviously decreased in DOPP-
MDE or even disappeared in DOPP-LDE, indicating that the
degree of acetylation of galacturonosyl or rhamnosyl residues
in OPP could be decreased by mild alkaline de-esterification.
Additionally, the signal at around 3.81 ppm in DOPP-HDE
was assigned to methoxyl groups (10, 11). This signal could
be also found in DOPP-MDE and DOPP-LDE, suggesting that
methoxyl groups bonded to carboxyl groups of galacturonic
acid could still exist in OPP under the mild alkaline de-
esterification conditions. Similar phenomena were also found
in previous studies that the methoxyl group from the esterified
units of galacturonic acids could not be completely removed
under the mild alkaline conditions (15, 28). Collectively, these
results indicated that the decrease of DE value in DOPP-MDE
and DOPP-LDE compared to DOPP-HDE might be mainly
attributed to the complete de-acetylation and the partial de-
methylation.

Moreover, the typical signals, including 1,4-α-D-GalAp
(H-1, 5.02 ppm), 1,4-α-D-GalAMep (H-1, 4.95 ppm), 1,2-
α-L-Rhap (H-6, 1.25 ppm), 1,2,4-α-L-Rhap (H-1/H-6,
5.24/1.33 ppm), 1,4-β-D-Galp (H-1, 4.58 ppm), could be
found in DOPP-HDE, DOPP-MDE, and DOPP-LDE. These
results suggested that the RG-I backbone with galactan
side chains existed as the main pectic-polysaccharides in
DOPP-HDE, DOPP-MDE, and DOPP-LDE (7, 9, 10, 28),
and the primary chemical structures of OPP, except the
DE, were overall stable after the treatment of mild alkaline
de-esterification.
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FIGURE 3

Size exclusion chromatograms (A) and dependences of apparent viscosity on the shear rate (B) of okra pectic-polysaccharides (OPP) with
various degrees of esterification. The sample codes were the same in Figure 1.

Molecular mass and particle size of okra
pectic-polysaccharides with various degrees of
esterification

Macromolecular characteristics of pectic-polysaccharides,
such as molecular mass, molecular mass distribution, and
particle size, have significant impacts on their biological
properties and applications in the functional food industry
(9, 30, 31). Consequently, macromolecular characteristics of
OPP with various DE values were measured and compared.
As shown in Figure 3A, similar size exclusion chromatography
(SEC) profiles were found in OPP with various DE values,
which exhibited a single symmetrical peak. Results showed that
the retention time of DOPP-HDE, DOPP-MDE, and DOPP-
LDE were almost the same, suggesting that the molecular mass
and molecular mass distribution of OPP were overall stable

after the treatment of mild alkaline de-esterification. Indeed,
as shown in Table 1, the molecular masses of DOPP-HDE,
DOPP-MDE, and DOPP-LDE were detected to be 1.897 × 105,
1.865 × 105, and 1.753 × 105 Da, respectively, suggesting
that the mild alkaline de-esterification could slightly (no
significant difference) degrade the molecular weight of OPP.
This phenomenon was similar with previous studies that β-
elimination reaction could cause the degradation of molecular
mass (15, 28). Besides, the molecular mass distributions of
OPP with different DE values were similar, which ranged
from 1,736 to 1,786. Additionally, corresponding with the
changes in molecular mass, the particle size of DOPP-
HDE also slightly (no significant difference) decreased from
30.3 to 29.6 nm after the treatment of mild alkaline de-
esterification.
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Rheological properties of okra
pectic-polysaccharides with various degrees of
esterification

Rheological property is considered as one of the most
important factors that affect the biological functions and
food applications of pectic-polysaccharides (28, 32). Figure 3B
displays the dependences of apparent viscosity on shear rate
of OPP (40 mg/mL) with different DE values. As expected,
the apparent viscosities of DOPP-HDE, DOPP-MDE, and
DOPP-LDE affected by the shear rate. More specifically,
the apparent viscosities of each sample declined with the
increase of the shear rate ranged from 0.01 to 50 s−1,
indicating that each sample solution exhibited non-Newtonian
shear thinning fluid behavior (32). In addition, the apparent
viscosities of each sample declined slightly with the increase
of the shear rate ranged from 50 to 100 s−1, exhibiting
Newtonian flow fluid behavior (9, 21). This rheological
character of OPP might be due to the fact that the chains
of pectin were arranged in an orderly manner along the
fluid direction with the increase of the shear rate, and the
interactions between the adjacent chains and the viscosity
decreased (33). Furthermore, compared with DOPP-HDE, the
apparent viscosities of DOPP-MDE and DOPP-LDE slightly
reduced, indicating that the obvious decrease of DE value
did not cause a sharp decrease of apparent viscosity. This
result is different from a previous study that the pectin
with a lower degree of esterification is often accompanied
by a decrease of viscosity (34). In this study, DOPP-LDE
with a lower degree of esterification also exhibited a higher
apparent viscosity which might be attributed to the fact that
the viscosity of the sample was affected by several factors,
such as molecular mass, chain conformation, monosaccharide
composition (9, 21, 32). Collectively, although the DE value
of OPP was significantly decreased, its apparent viscosity
was relatively stable after the treatment of mild alkaline de-
esterification.

Effects of various degrees of
esterification on in vitro antioxidant
activities of okra
pectic-polysaccharides

The antioxidant activity has been demonstrated as one
of the most important biological functions of okra (4), and
OPP have remarkable in vitro antioxidant capacities against
different free radicals (9, 21, 26, 35). Several studies have
shown that the antioxidant activities of crude OPP may
be related to their molecular mass, chain conformation,
uronic acid, and DE as well as conjugated polyphenols
(21, 26, 35, 36). A recent study also showed that the
antioxidant activity of a purified okra pectic-polysaccharide
might be closely related to the combination effect of molecular
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FIGURE 4

Ferric reducing antioxidant power (FRAP) (A), 2,2′-azino-bis
(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical
scavenging activity (B), and nitric oxide (NO) radical scavenging
activity (C) of okra pectic-polysaccharides (OPP) with various
degrees of esterification. The sample codes were the same in
Figure 1; the error bars are standard deviations; significant
(p < 0.05) differences among OPP with various degrees of
esterification are shown by data bearing different letters (a-b);
statistical significances were carried out by ANOVA and Ducan’s
test.
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A B

C D

FIGURE 5

Effects of okra pectic-polysaccharides (OPP) with various degrees of esterification on proliferation (A), nitric oxide (NO) production (B),
interleukin-6 (IL-6) production (C), and tumor necrosis factor-α (TNF-α) production (D) of RAW 264.7 macrophages. The sample codes were the
same in Figure 1; the error bars are standard deviations; significant differences of cell proliferation and release of NO, IL-6, and TNF-α in LPS,
DOPP-HDE, DOPP-MDE, and DOPP-LDE vs. control are shown by *p < 0.05, **p < 0.01. Significant differences (p < 0.05) of release of NO, IL-6,
and TNF-α among DOPP-HDE, DOPP-MDE, and DOPP-LDE are shown by data bearing different letters (a–c).

mass and DE (9). However, whether the DE can directly
affect the antioxidant activity of OPP is still not clear.
Therefore, in the present study, in order to evaluate the
precise degree of esterification on in vitro antioxidant
activity of OPP, three OPP with high, middle, and low
degrees of esterification were prepared and their antioxidant
activities were evaluated.

Figure 4 displays the FRAPs and ABTS radical scavenging
capacities as well as NO radical scavenging capacities of OPP
with high, middle, and low DE values. Results showed that
OPP with various DE values exhibited remarkable antioxidant
activities with a dose-dependent manner. For the FRAP, the
absorbance values of DOPP-HDE, DOPP-MDE, and DOPP-
LDE at 593 nm were detected to be 0.52 ± 0.01, 0.50 ± 0.02,
and 0.43 ± 0.01 at the concentration of 10 mg/mL, respectively,

which were lower than that of Vc (0.95 ± 0.02). Additionally,
in terms of ABTS radical scavenging activity, the IC50 values
of DOPP-HDE, DOPP-MDE, and DOPP-LDE were detected
to be 7.76 ± 0.31, 8.40 ± 0.32, and 10.24 ± 0.72 mg/mL,
respectively, which were higher than that of Vc (0.04 mg/mL).
Furthermore, in terms of NO radical scavenging activity,
the IC50 values of DOPP-HDE, DOPP-MDE, and DOPP-
LDE were detected to be 8.43 ± 0.21, 9.02 ± 0.49, and
10.64 ± 0.38 mg/mL, respectively, which were also higher
than that of Vc (0.62 ± 0.02 mg/mL). Surprisingly, results
showed that DOPP-LDE with the lowest DE value (4.77%)
among three samples exhibited the lowest antioxidant activities
in the present study. Besides, although the DE value of
DOPP-MDE (25.88%) was significantly lower than that of
DOPP-HDE (42.13%), the in vitro antioxidant activities of
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DOPP-HDE and DOPP-MDE were similar. Therefore, these
results indicated that the remarkable decrease of DE value
(mainly degree of acetylation) of OPP by mild alkaline
de-esterification did not obviously affect their antioxidant
activity, suggesting that the DE was not closely correlated
to the antioxidant activity of OPP. This phenomenon is
quite different from previous studies that the lower DE
of pectic-polysaccharides is closely related to their higher
antioxidant activity (37, 38). In fact, the antioxidant activity
of pectic-polysaccharides is assigned to their hydrogen-
donating abilities, and several studies have shown that the
presence of free uronic acids in the pectic-polysaccharides
can activate the hydrogen atom of the anomeric carbon
(39, 40). However, in this study, the decrease of DE value
was mainly attributed to the de-acetylation of galacturonosyl
residues in OPP (Figure 2), which might not obviously
affect the rate of unmethylated uronic acids. Besides, the
antioxidant capacity of pectic-polysaccharides is often closely
related to their molecular mass and uronic acids (12, 15,
36, 41). Therefore, in this study, according to the structural
differences measured as abovementioned, the slight decrease of
antioxidant activity of DOPP-LDE compared to DOPP-HDE
might be due to the slight decrease of uronic acid content
(Table 1).

Effects of various degrees of
esterification on in vitro
immunostimulatory activities of okra
pectic-polysaccharides

Immunity refers to the protection effects of biological
organisms against foreign bacteria, viruses, and other harmful
substances. A large number of studies have demonstrated
that dietary polysaccharides from edible and medicinal
plants can maintain the human health by regulating the
immune system (42, 43). Generally, the immunostimulatory
effects of dietary polysaccharides are associated with their
molecular mass, branched chain length, uronic acid, chain
conformation, and glycosidic linkage (44, 45). In fact, several
studies have shown that pectic-polysaccharides isolated
from different parts of okra possess remarkable in vitro and
in vivo immunostimulatory effects (14, 46–48). A previous
study also showed that the immunostimulatory effect of
a purified okra pectic-polysaccharide was closely related
to the combination effect of molecular mass, branched
chain length, and DE (9). However, whether the DE
can directly affect the immunostimulatory effect of OPP
remains unclear.

Therefore, the RAW 264.7 macrophage was applied as
a cell model for the determination of immunostimulatory
effects of OPP with various DE values. Figure 5 displays

the immunostimulatory effects of DOPP-HDE, DOPP-
MDE, and DOPP-LDE. As shown in Figure 5A, all tested
samples could slightly promote the proliferation of RAW
264.7 macrophages at the concentrations ranged from 5
to 320 µg/mL, indicating that DOPP-HDE, DOPP-MDE,
and DOPP-LDE had no toxicity effects. Furthermore,
macrophages can exert their functions by secreting NO
and various cytokines, such as IL-6 and TNF-α (49). NO
is a biologically active cell messenger that plays a critical
role in killing pathogenic microorganisms and tumor cells;
TNF-α is active in regulating inflammation and autoimmunity;
IL is involved in the immune response in the host that
plays a key role in maintaining homeostasis. As shown
in Figures 5B–D, OPP with different DE values could
remarkably promote the release of NO, IL-6, and TNF-α
from RAW 264.7 macrophages in a dose-dependent manner,
respectively. Interestingly, OPP with various DE values
exhibited notably different effects on the release of NO,
IL-6, and TNF-α from RAW 264.7 macrophages. More
specifically, the higher productions of NO, IL-6, and TNF-α
from RAW 264.7 macrophages were found in DOPP-MDE
compared to DOPP-HDE, while the lower productions of
NO, IL-6, and TNF-α were found in DOPP-LDE compared
to DOPP-HDE. Collectively, according to the structural
differences among DOPP-HDE, DOPP-MDE, and DOPP-
LDE, these results indicated that the immunostimulatory
effect of OPP was closely related to its DE. A previous
study also showed that the DE played a key role in the
immunostimulatory effect of pectic-polysaccharides from
Asparagus officinalis L., and a relatively high DE value was
associated with the relatively high immunostimulatory effect
(50). Indeed, the acetyl groups of a purified polysaccharide
from Polygonatum cyrtonema might also benefit its
immunostimulatory effect (51). In addition, several studies
have demonstrated that the acetylation modification of natural
polysaccharides can enhance their immunostimulatory effects
(52, 53), while removing the acetyl groups resulted in the
remarkable decrease of immunostimulatory functions (54,
55). Therefore, the findings in the present study indicate
that OPP with a DE value of 25.88% possess remarkable
in vitro immunostimulatory effect, and the complete de-
acetylation in DOPP-LDE results in a remarkable reduction
of immune response. Nevertheless, the precise structure-
immunostimulatory activity relationship of OPP and related
mechanism of action are required to be deeply uncovered in the
future.

Conclusion

Pectic-polysaccharides are regarded as one of the most
abundant bioactive components in okra. However, the
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knowledge about the precise structure-bioactivity relationships
of OPP is still limited. Therefore, in order to further clarify
the potential structure-bioactivity relationship of okra pectic-
polysaccharides, effects of various degrees of esterification on
in vitro antioxidant capacities and immunostimulatory activities
of OPP were investigated. Results showed that the decrease
of DE was mainly attributed to the de-acetylation of OPP
according to the 1H NMR spectra analysis. In addition, results
showed that the DE value was not related to the antioxidant
activity of OPP. However, the immunostimulatory effect of OPP
was closely related to its DE value, and a suitable DE value is
beneficial to its in vitro immunostimulatory effect. Collectively,
the findings are beneficial to revealing the effect of esterification
degree on antioxidant activity and immunomodulatory activity
of OPP. However, due to the limitations of in vitro models,
it is necessary to evaluate the bioactivities of okra pectic-
polysaccharide and its structure dependent relationships in
animal models in the future.
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