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Selenium is recognized as an essential element for human health and

enters human body mainly via diet. Selenium is a key constituent

in selenoproteins, which exert essential biological functions, including

antioxidant and anti-inflammatory effects. Several selenoproteins including

glutathione peroxidases, selenoprotein P and selenoprotein S are known

to play roles in the regulation of type 2 diabetes. Although there is a

close association between certain selenoproteins with glucose metabolism

or insulin resistance, the relationship between selenium and type 2 diabetes

is complex and remains uncertain. Here we review recent advances in

the field with an emphasis on roles of selenium on metabolism and type

2 diabetes. Understanding the association between selenium and type 2

diabetes is important for developing clinical practice guidelines, establishing

and implementing effective public health policies, and ultimately combating

relative health issues.

KEYWORDS

selenium, dietary intake, glucose and lipid metabolism, type 2 diabetes,
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Introduction

Selenium is a natural chemical element existing in soil, water, and air. Selenium
reaches the human body by food chain through incorporation into plants, animals,
and aquatic organisms (1). From the public health perspective, selenium is treated as
an essential micronutrient and is commonly used in dietary supplementation products
widely consumed in western countries (2, 3). In human beings, the nutritional functions
of selenium are achieved by 25 selenoproteins (4), with essential enzymatic functions,
including hydroperoxide/phospholipid peroxide reduction (glutathione peroxidases,
GPxs) (5, 6), thiol redox status regulation (thioredoxin reductases) (7), thyroid
hormone activity regulation (iodothyronine deiodinases, Dios) (8), selenium transport
(selenoprotein P, SelP) (9) and some are yet to be determined. Selenium is reported
to play a role in maintaining redox balance, anti-cancer, and improving immunity,
and is closely related to Keshan disease, diabetes, mental disorder, inflammation, and
infections (10, 11).
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Diabetes is a highly costly chronic disease (12), with
an estimated worldwide prevalence of 463 million adults
according to the 2019 report of the International Diabetes
Federation Diabetes Atlas (IDF) (13). Type 2 diabetes accounts
for 90% of all diabetes and is characterized by defective
insulin secretion and/or insulin resistance (14). Although the
mechanisms of insulin resistance and type 2 diabetes remain not
fully understood, accumulating evidence suggests that oxidative
stress plays an important role in both onset and progress (15).
As several selenoproteins have the potential to protect the body
from oxidative stress, selenium is expected to be protective
against type 2 diabetes (10, 16). However, recent evidence
raised concerns that a high level of selenium exposure may be
associated with an increased risk of type 2 diabetes (17–20).

Even though how selenium affects the risk of type 2
diabetes is conflicting, evidence has confirmed that people
with low status may benefit from additional selenium intake
(21, 22). Although, selenium is assumed to be helpful in the
prevention and therapy of type 2 diabetes (23, 24), selenium
intake, including selenium supplementation, should be excluded
for primary or secondary diabetes prevention in populations
with adequate selenium status (25). This review focuses on
the association of dietary selenium with type 2 diabetes
epidemiology and discusses the major selenoproteins in the
regulation of glucose and lipid metabolism and their implication
in the development of type 2 diabetes.

Selenium in food

Diet is a major source of selenium for humans and
the content of selenium in foods varies greatly (Figure 1).
The main source of selenium in diet are cereals because
of the large amounts consumed as well as meats and
seafood with high protein contents (26). Also, plant-based
sources of selenium, including wheat, pearl millet, and maize,
are more effective in reversing the deleterious effects of
selenium deficiency (27). Natural fruits generally contain
low amounts of selenium, rarely exceeding 10 µg/kg and
vegetables with a maximum concentration of 6 µg/kg (28).
From the selected investigation, the main food sources in
diet of selenium intake include cereals, meat products, milk
and dairy products, beverages, fish and seafood (29–31).
All these groups provide more than 85% of the selenium
intake. In addition, ready-to-eat meals, vegetables, fruits, sweets,
and beverages contribute to a small part of the dietary
selenium intake. Processing technology could affect selenium
content in food and bioaccessibility of selenium species,
among which soaking, fermentation were reported to increase
the bioaccessible selenium content and heating declined the
bioaccessibility of SeMet and SeCys (32, 33). Another selenium
source of exposure is well-known as selenium supplementation.
Considering the low abundance of selenium in daily foods,
consuming a diet with natural selenium concentrations is not

abundant. Hence, scientific works have dealt with selenium-
biofortification strategies to obtain selenium-enriched food or
feed, via plant cultivation (soil fertilization with inorganic
selenium), animal feeding (with selenium-enriched plants),
microorganism transformation (fermentation) (34, 35). Asides
from the classical methods, pharmacological products and
nano-selenium applications can also increase the selenium
concentration in the human body (36, 37).

Not only the total intake of dietary selenium but also the
selenium species ingested is important to human health (38).
Selenium exists in inorganic and organic forms and intakes of
different foods are correlated with different types of selenium
species. Organic selenium forms in foods mainly contain
selenomethionine (SeMet), selenocysteine (SeCys), selenium-
methylselenocysteine (SeMeCys), and gamma-glutamyl-Se-
methylselenocysteine (GGMSC), and drinking water mainly
contains inorganic selenium species such as selenate and selenite
(36, 39). Efficient uptake and metabolism of dietary selenium
primarily depend on its chemical forms (40). Organic selenium
is more easily absorbed by the human body compared with
inorganic selenium (41), and more than 90% of SeMet is
absorbed in human body but only about 50% of selenium
is from selenite. In addition, nano-selenium attracts growing
attention due to its high chemical stability, biocompatibility,
and low toxicity (42, 43). Nano-selenium has been applied as
antioxidants, dietary supplements, antidiabetic agents (37, 44).

Selenium has long been termed “an essential poison” as
selenium doses exceeding 400 µg/day may exert toxic actions
according to the World Health Organization (WHO) (45). The
recommended daily allowance (RDA) of selenium varies hugely
depending on the geographical area, ranging from 25 µg/day
for adult women in Japan up to 100 µg/day in the Netherlands
and Macedonia, but most RDA levels are in the range of 50–
60 µg/day. Both selenium deficiency and excess have been
associated with adverse health effects, and the health effects
of selenium are recognized as the inextricable U-shaped link
with status (10). The selenium content in diabetes serum is
commonly lower than normal ones, while additional concerns
were raised about the diabetes risk associated with selenium
intake above the RDA (55 µg/day) (46). Overall, selenium
exposure adds to type 2 diabetes risk across a wide range,
especially above dietary intake of 80 µg/day and blood selenium
of 120 µg/L (17). Whereas people with low selenium status may
benefit from additional selenium intake, those with adequate-to-
high selenium status might be affected adversely and should not
take selenium supplements.

Selenium in metabolism

Selenoproteins

The biological actions of selenium are mainly
mediated by selenoproteins. Selenium is integrated into
selenoproteins in the form of selenocysteine. To date, 25
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FIGURE 1

Selenium contribution to total dietary selenium intake. Data for selenium contribution to total dietary selenium intake are adapted from
published studies. Diet is the main source of selenium for human beings. The species of food, selenium content in food, as well as the amount
taken in diet affect the daily selenium intake and selenium status.

selenoproteins have been identified in humans, among

which glutathione peroxidase 1 (GPx1), selenoprotein P

(SelP), selenoprotein S (SelS), selenoprotein V (SelV), and

iodothyronine deiodinases (Dios) have been reported to

associate with glucose and lipid homeostasis (Table 1)

(47, 48).

TABLE 1 Role of main selenoproteins associated with metabolism and type 2 diabetes.

Selenoproteins Tissue distribution Cellular location Physiological function Health effects on diabetes

Cytosolic glutathione
peroxidase 1(GPx1)

Ubiquitous, highly
expressed in
erythrocytes, liver,
kidney, lung

Cytosol and
mitochondria

GPx1 reduces intracellular hydrogen
peroxide and lipid peroxides

Overquenching intracellular reactive
oxygen species, regulating the
concentration of hydrogen peroxide (49)

Selenoprotein P (SelP) Expressed in the liver,
heart, brain, and kidney

Secreted into the
plasma

SelP functions as a
selenium-transporter and maintains
selenium homeostasis and possesses
antioxidant activity

Promoting insulin resistance (50)

Selenoprotein S (SelS) Plasma, various tissues Endoplasmic reticulum
(ER) membrane and
plasma membrane

SelS promotes ER-associated
degradation of errant proteins to
increase the translocation of
misfolded proteins to the cytosol

Antioxidant protection and anti-ER stress
effects in the pancreas (51), up-regulating
glucose utilization and down-regulating
glucose output in the liver (52)
Positively correlates with serum amyloid
A in skeletal muscle (53)
Positively correlates with HOMA-IR in
adipose tissue (54)
Negatively correlates with fasting plasma
glucose in serum (55)

Selenoprotein V (SelV) Testis (mainly in
seminiferous tubules)

Cytoplasm and nuclei Regulation of body selenium
metabolism and lipid metabolism

Inhibitor of body fat accumulation and
activator of energy expenditure (56)
Protection against endoplasmic reticulum
stress and oxidative injury induced by
pro-oxidants (57)

Iodothyronine
deiodinases (Dios)

Dio1: liver, kidney, and
thyroid
Dio3: placenta, brain,
gastrointestinal tract,
skin, and liver
Dio2: pituitary, brain,
brown adipose tissue,
skeletal muscle, thyroid,
heart, and ear

Dio2: endoplasmic
reticulum membrane
Dio1 and Dio3: the
plasma membrane

Thyroid hormone-regulating
iodothyronine deodinase

Regulation of energy homeostasis (58)
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GPx1 is localized in the cytosol and mitochondria. This
enzyme can catalyze the reduction of hydrogen peroxide
(H2O2) and lipid hydroperoxides using GSH as a reducing
cofactor (59). GPx1 is highly sensitive to changes in both
selenium status and oxidative stress conditions (60). GPx1
is involved in regulating insulin synthesis and secretion,
insulin sensitivity, glucose and lipid homeostasis and the
onset and progression of diabetes (61). SelP functions as
a selenium-transport protein to deliver selenium from the
liver to other tissues to maintain appropriate selenium
levels in tissues. Selenium is necessary for the synthesis of
antioxidative selenoproteins. Thus, SelP plays an important
role in the cellular antioxidative system by maintaining these
selenoproteins. Furthermore, SelP possesses multifunctional
properties such as GPx-like antioxidant enzyme activity (62),
peroxynitrite scavenging (63), and metal-binding activity
(64). SelS is resident in the endoplasmic reticulum (ER).
It is involved in regulating oxidative stress, ER stress, and
inflammatory response (51, 52, 65). SelS plays roles in
antioxidant protection and anti-ER stress in the pancreas and
blood vessels, while it promotes insulin resistance in the liver,
adipose tissue, and skeletal muscle (51, 66). SelV is highly
expressed in the testis (mainly in seminiferous tubules). It is
involved in regulating body selenium metabolism and lipid
metabolism (56, 57). Dios, including Dio1, Dio2, and Dio3,
are thyroid hormone-regulating iodothyronine deiodinase.
Dios are expressed in multiple tissues. Dio1 and Dio3 are
located in the plasma membrane and Dio2 is located in the
endoplasmic reticulum membrane. Dios play an important role
in thyroid hormone signaling involving many key reactions in
energy homeostasis and individual growth and development
(58, 67).

Glucose metabolism

Selenoproteins are involved in regulating glucose
metabolism. Early studies found that inorganic selenium
showed an insulin-like effect. Sodium selenate promoted
glucose transport and glucose metabolism through the mitogen-
activated protein/myelin basic protein kinases (MAPK) and
ribosomal S6 protein kinases in rat adipocytes at very high doses
(68–70).

Most selenoproteins are antioxidant enzymes and play roles
in maintaining insulin secretion with their antioxidant activity.
SelP is relatively highly expressed in pancreatic islets, which
acts as an antioxidant to protect β cells (42). GPx1 can degrade
intracellular H2O2 (59). In pancreatic islets, GPx1 reduces
the damage of H2O2 on β cells and promotes the normal
secretion of insulin.

SelP synthesis is regulated like a gluconeogenic enzyme
in the liver. SelP gene expression is regulated by the
interaction of the transcription factors FoxO1 and HNF-4α

with the co-activator PGC-1α (71, 72). These transcription
factors similarly control the expression of gluconeogenic
enzymes: G6PC (glucose-6-phosphatase, G6Pase, catalytic
subunit) and PCK1 (phosphoenolpyruvate carboxykinase,
PEPCK), which are involved in hepatic glucose release to
adapt to feeding and fasting (73, 74). It was found that
liver SelP mRNA levels have been shown to increase during
fasting and decrease after feeding in mice, which indicated
that the liver could fine-tune SelP secretion according to
the nutritional state (72). Furthermore, SelP transcription can
be inhibited by insulin via the PI3K/Akt/FoxO1 pathway
(72, 75). Insulin-induced phosphorylation of FoxO1 results
in its nuclear exclusion and inhibition of FoxO1-dependent
transcription of SelP in liver cells (71). Thus, insulin-
mediated regulation of hepatic SelP production and secretion
represents a physiological link between selenium homeostasis
and carbohydrate metabolism (71).

Selenium deficient diet results in impaired islet function,
low insulin secretion, and high blood glucose (76, 77). The
deficiency of selenium decreases the expression of several
selenoprotein genes and proteins in different tissues, which
may dysregulate glucose homeostasis. It was reported that
GPx1 deficiency induced type 1 diabetes-like phenotype (61).
GPx1-knockout-mice developed islets β cell damage and
insulin reduction (78, 79). Hepatic-specific deletion of SelS in
mice caused obesity, hepatic steatosis, insulin resistance, and
disturbed glucose homeostasis (66, 80). It was reported that
reduced synthesis of selenoproteins, including GPx1 and MsrB1,
caused by overexpression of an i(6)A(-) mutant selenocysteine
tRNA promoted glucose intolerance and led to a diabetes-
like phenotype (81). Selenocysteine lyase (Scly) is the enzyme
that supplies selenium for selenoprotein biosynthesis via
decomposition of the amino acid selenocysteine (82). Moreover,
it was found that Scly knockout mice fed with low selenium
dietary reduced GPx1 and SelS protein levels and affected
hepatic glucose homeostasis (83). Taken together, selenium
and selenoproteins play important roles in glucose metabolism,
especially in maintaining a redox balance to promote the normal
synthesis and secretion of insulin.

Lipid metabolism

Selenoproteins are also involved in regulating hepatic lipid
accumulation. It was reported that SelS expression was down-
regulated in the liver in high-fat diet (HFD)-fed mice and db/db
mice, and SelS expression levels were reduced in the PA-induced
primary hepatocytes (66).

Hepatic triglyceride synthesis consists of fatty acid uptake
and de novo lipogenesis (84, 85). It was reported that serum
free fatty acids level was elevated in hepatocyte-specific SelS
knockout (SelSH-KO) mice, and the expression levels of cluster
of differentiation 36 (CD36), fatty acid transport protein 2
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(FATP2) and fatty acid transport protein 5 (FATP5), which
are involved in fatty acid uptake, were markedly increased
in the liver of SelSH-KO mice (66). On the other hand, the
expression levels of peroxisome proliferator-activated receptor
α (PPARα), carnitine palmitoyltransferase 2 (CPT2), and acyl-
coenzyme A oxidase 1 (ACOX1), which are responsible for fatty
acid oxidation, were down-regulated in SelSH-KO mice. These
results suggested that hepatic SelS deletion increased hepatic
triglyceride and diacylglycerol accumulation via promoting fatty
acid uptake and reducing fatty acid oxidation (66).

FGF21 is an endocrine hepatokine produced predominantly
in the liver (86, 87). Hepatic-specific deletion of SelS (SelS
LKO) decreased the production of hepatokine FGF21 and
adipokine adiponectin and increased adipose tissue size.
These results indicated that the FGF21-adiponectin axis was
inhibited in SelS LKO mice, which exacerbated hepatic
metabolic disorders (66). Taken together, these studies show
that selenoproteins participate in regulating lipid metabolism,
especially in lipid intake and fatty acid oxidation, which
indicates that selenoproteins may be a potential intervention
target for lipid metabolic disorders.

Epidemiology of selenium and
type 2 diabetes

Selenium is expected to protect against type 2 diabetes
because of the potential of several selenoproteins to protect

against oxidative stress (19, 88, 89). Selenium intake varies
greatly among countries due to the selenium differences in
local soil and foods consumed (Figure 2). The relationship
between selenium level and the prevalence of type 2
diabetes is possibly U-shaped, with possible adverse effects
occurring both below and above the physiological range
for optimal activity of some or all selenoproteins (90).
Whereas dietary selenium supplement has been applied to
improve glucose metabolism, accumulating evidence showed
that exposure to a high level of selenium increased the
risk of type 2 diabetes. In a multivariate logistic regression
model, an increase of 10 µg/L in selenium induced to
the prevalence of diabetes mellitus by 12% (91), showing
a dose-dependent relationship between selenium level
and diabetes. Higher serum selenium was discovered
to be linked with increased plasma glucose levels and
glycosylated hemoglobin levels (92). Intake of high-level
selenium might affect the expression and(or) function of key
regulators for glycolysis, gluconeogenesis, and lipogenesis
(20). Furthermore, the association between selenium and
type 2 diabetes was independent of insulin resistance at
high serum selenium levels (19, 91). The prevalence of
diabetes, as well as glucose and glycosylated hemoglobin
levels, increased with increasing selenium concentrations
up to 140 µg/L of selenium exposure (93), while several
studies insisted on a risk serum selenium level of 160 µg/L
(17, 94). In addition, the non-experimental studies reached
agreement with the findings from randomized controlled

FIGURE 2

Global estimated daily intake of selenium and prevalence of diabetes. Data for the global estimated daily selenium intake are adapted from the
published studies (95-102). The selenium data of mainland China was selected. The selenium data of Africa was adapted from the Africa
selenium daily supplied amount. Data for the prevalence of diabetes (data included until 2021) are derived from the Diabetes Atlas of the
International Diabetes Federation (https://diabetesatlas.org/data/en/indicators/2/). Dashed lines are not supposed to accurately represent
regions.
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trials, illustrated that selenium exposure from moderate
to high levels is associated with increased risk for type 2
diabetes. Further research is required to clarify the optimal
range of selenium intake and status for minimizing the
potential adverse effects on glucose metabolism and preventing
type 2 diabetes.

Mechanisms of selenium in type 2
diabetes

Type 2 diabetes is characterized by defective insulin
secretion and/or insulin resistance, and the potential
molecular mechanisms include interference of oxidative
stress, insulin signaling, gluconeogenesis, and endoplasmic
reticulum (ER) stress (Figure 3). Abnormal selenium status
affects the occurrence and development of diabetes through
these mechanisms.

β cells and pancreas

Pancreas β cells have a fragile antioxidant system. The
expression levels of antioxidant enzymes in pancreatic islets
are substantially lower compared with various other tissues,
which renders β cells sensitive toward oxidative and nitrosative
stress (103). Severe antioxidant selenoproteins deficiency
may result in oxidative damage of β cells and lower
insulin secretion. GPx1-knockout-mice fed a high-fat diet
for 12 weeks decreased plasma insulin and glucose-induced
insulin secretion (78, 79). It was reported that GPx1-knockout-
mice elevated islet superoxide and hydroperoxide production
and up-regulated p53 phosphorylation. By contrast, after
overexpressing GPx1 in pancreatic β cells, C57BLKS/J mice
were protected from the β cell damage when stimulated
with streptozotocin, and db/db mice exhibited reversed
hypoinsulinemia and hyperglycemia (104). However, global
overexpression of GPx1 induced obesity, hyperglycemia,
insulin resistance in mice, and developed type 2 diabetes-
like phenotypes (105–107), which infered adverse effects of
excessive selenoprotein biosynthesis and the complexity of
redox status. The results of SelP further prove this point.
It has been shown that excess SelP impairs the function
of pancreatic β cells and decreases insulin secretion (50,
108). The injection of purified human SelP protein in mice
resulted in a decrease in insulin levels, a decline of β

cells and α-cells in the pancreas, and also a rearrangement
of the position of these cells in the pancreatic islets (50).
Furthermore, the administration of SelP-neutralizing antibodies
could improve insulin secretion and glucose intolerance in a
mouse model of diabetes (50). Thus, selenium homeostasis
and redox balance are extremely important for β cells and
insulin secretion.

Insulin signaling

The antioxidant activity of selenoproteins can protect
the islets from oxidative stress, but excessive antioxidant
activity is not beneficial for insulin signaling. The binding of
insulin to its receptor activates NADPH oxidase enzymes and
results in the production of space H2O2 (109). These small
amounts space of H2O2 can act as second messengers and
are required to deactivate two insulin-signaling inhibitors:
tyrosine phosphatase 1B (PTP-1B) and phosphatase and tensin
homolog protein (PTEN). This H2O2-mediated deactivation
is considered to enhance the insulin-induced PI3K/Akt
signaling, which facilitates glucose uptake, inhibits glycogen
synthesis, and suppresses gluconeogenesis (110). GPx1 can
degrade intracellular H2O2 and regulate its concentration
(59). However, when intracellular physiological H2O2 is
eliminated by excessive activity of GPx1, insulin signaling
may be impaired. In this regard, GPx1-knockout-mice were
protected from insulin resistance induced by a high-fat
diet due to increased H2O2 production and inactivation
of PTEN (111). Conversely, mice over-expressing GPx1
exhibited insulin resistance and hyperinsulinemia (105–
107). Therefore, the appropriate amount of selenium and
selenoproteins will benefit insulin function. Based on the
control of SelP transcription through PGC-1α/FoxO1/HNF-4α,
it was found insulin could inhibit SelP transcription by the
PI3K/Akt/FoxO1 pathway (75). High levels of SelP impaired
insulin signaling and dysregulated glucose metabolism both
in the liver and muscle via the inactivation of adenosine
monophosphate-activated protein kinase (AMPK) (72, 112).
So, SelP has been identified as a “hepatokine” that induces
insulin resistance and excess SelP promotes type 2 diabetes
(50, 108). Thus, a high level of selenoproteins may impair
insulin sensitivity through the interference of the insulin
signaling cascade.

Gluconeogenesis

Plasma SelP levels were reported elevated in patients
with type 2 diabetes, and there was an association between
high plasma selenium and fasting plasma glucose in type
2 diabetes patients (47, 113, 114). SelP and gluconeogenic
enzyme gene expression are similarly regulated by methylation
of the same transcription factors (71, 72). SelP, together with
G6PC and PCK1 is transcribed through PGC-1α/FoxO1/HNF-
4α. Under the normal metabolic condition, insulin inactivates
the transcription of SelP and gluconeogenic enzymes. Under
the condition of high glucose and insulin resistance, the
dysregulated transcriptional activity of FoxO1 enhances the
biosynthesis of SelP and gluconeogenic enzymes, which results
in elevated plasma SelP and selenium levels and further
elevated plasma glucose levels (72, 115, 116). Thus, from this
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FIGURE 3

Relationship between selenium homeostasis and type 2 diabetes. Adequate selenium intake is very important for maintaining the homeostasis
of glucose and lipid metabolism. Excessive or insufficient selenium intake will cause the increase or decrease of selenoproteins in the body,
which in turn leads to a high risk of type 2 diabetes. The abnormal content of selenoproteins, including Gpx1, SelP, and SelS, may cause
oxidative damage of β cells, insulin signaling impairment, endoplasmic reticulum stress and gluconeogenesis, which induce insulin secretion
defects or insulin resistance. Therefore, it is recommended to supplement selenium according to the state of selenium.

point, elevated plasma SelP levels might be considered as the
result rather than the cause of hyperglycemia and insulin
resistance (117).

Endoplasmic reticulum stress

Chronic endoplasmic reticulum (ER) stress affects
glucolipid metabolism, which is crucial to the occurrence and
development of insulin resistance and nonalcoholic fatty liver
disease (NAFLD) (118, 119). ER stress is induced by unfolded
or misfolded proteins accumulated in the ER, which initiates
unfolded protein response (UPR) to restore homeostasis in the
ER. ER-associated protein degradation (ERAD) is activated to
remove unfolded or misfolded proteins (120). Selenoproteins,
such as SelS and SelK, are induced under ER stress, which play
important roles in ERAD and ER stress. Mechanistically, SelS
forms a multiprotein complex with degradation in endoplasmic
reticulum protein 1 (Derlin1)-ubiquitin ligase E3-p97ATPase
and SelK to participate in ERAD, which mediates misfolded
proteins in the ER to be translocated back into the cytosol
for degradation by the proteasome (121–123). Consistently,
knockdown of SelS increased the expression of ER stress marker
genes (124, 125), whereas its overexpression protected against
ER stress injury in hepatocytes and cell lines (65, 66, 125, 126).
Consistently, ER stress was increased in SelS-hepatic-knockout
mice and SelS-knockdown hepatocytes, but suppressed in
SelS-overexpress hepatocytes (66). It was likely that excessive
misfolded or unfolded proteins were accumulated in SelS
deficiency hepatocytes due to impaired ERAD capability,
resulting in chronic ER stress (66). Collectively, these results

show evidence supporting that SelS has the potential to
reduce ER stress injury and may protect hepatocytes from the
development of insulin resistance and hepatic steatosis.

Conclusion and future
perspectives

In conclusion, we systemically review the role of selenium
and selenoproteins in type 2 diabetes and indicate the
therapeutic potential of selenium supplementation in the
treatment of metabolic disorders. Even though the interaction
of some other selenoproteins with type 2 diabetes has not been
verified, their effective roles in the regulation of glucose and
lipid metabolism are becoming increasingly clear. Although
there have been some inconsistent results, extensive evidence
has suggested that selenium supplementation is beneficial for
preventing and treating several chronic diseases (127). Future
studies are needed to explore the association between selenium
exposure and metabolic effects in more details with selenium
exposure, and the potential mechanisms.

Selenium supply is very important for maintaining glucose
and lipid homeostasis in healthy adults and patients with type
2 diabetes. However, the epidemiology of observational and
experimental studies of selenium in type 2 diabetes reveal that
both selenium deficiency and severe excess lead to insulin
resistance and β cell dysfunction, with potential molecular
mechanisms including interference of oxidative stress, insulin
signaling, gluconeogenesis, and ER stress. Thus, selenium
should be supplemented according to the status of selenium,
while excessive selenium supplement is not recommended.
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Nutrigenetic research has identified several single nucleotide
polymorphisms in selenoproteins, which may clarify the high
variability of selenium nutritional status in different populations
(34, 43) and influence metabolic parameters in response
to selenium supplementation (44). Thus, more personalized
nutritional recommendations are needed to consider not only
the regional particularities but also the genetic characteristics of
the population or individuals.
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