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Polysaccharides are the most diverse molecules and can be extracted from

abundant edible materials. Increasing research has been conducted to clarify

the structure and composition of polysaccharides obtained from different

materials and their effects on human health. Humans can only directly

assimilate very limited polysaccharides, most of which are conveyed to

the distal gut and fermented by intestinal microbiota. Therefore, the main

mechanism underlying the bioactive effects of polysaccharides on human

health involves the interaction between polysaccharides and microbiota.

Recently, interest in the role of polysaccharides in gut health, obesity, and

related disorders has increased due to the wide range of valuable biological

activities of polysaccharides. The known roles include mechanisms that

are microbiota-dependent and involve microbiota-derived metabolites and

mechanisms that are microbiota-independent. In this review, we discuss

the role of polysaccharides in gut health and metabolic diseases and the

underlying mechanisms. The findings in this review provide information

on functional polysaccharides in edible materials and facilitate dietary

recommendations for people with health issues. To uncover the effects of

polysaccharides on human health, more clinical trials should be conducted

to confirm the therapeutic effects on gut and metabolic disease. Greater

attention should be directed toward polysaccharide extraction from by-

products or metabolites derived from food processing that are unsuitable for

direct consumption, rather than extracting them from edible materials. In this

review, we advanced the understanding of the structure and composition

of polysaccharides, the mutualistic role of gut microbes, the metabolites

from microbiota-fermenting polysaccharides, and the subsequent outcomes

in human health and disease. The findings provide insight into the proper

application of polysaccharides in improving human health.
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Introduction

Polysaccharides, which are composed of more than 10
monosaccharide units connected by glycosidic linkages, are
the most abundant types of carbohydrates and are present in
various living organisms, including plants, fungi, and marine
algae. Depending on their composition of monosaccharides,
polysaccharides are classified as either homopolysaccharides,
which comprise only one type of monosaccharide (e.g., starch),
or heteropolysaccharides, which are composed of two or more
different monomeric units (e.g., pectin). Polysaccharides can
serve as reserve carbohydrates and/or structural components
that contribute to complex physiological processes in plants
and other organisms (1). The reserve polysaccharides primally
exist in the cytoplasm, whereas the structural polysaccharides
are mainly stored in the primary and secondary cell walls. Both
serve as carbohydrate sources, provide fibers in human and
animal diets, and affect physical function and health (Figure 1)
(2).

Polysaccharides are primarily consumed by oral
administration and pass through the intestines for further
utilization; therefore, polysaccharides have great biological
benefits for bowel health (3). Humans and animals can directly
process only simple sugars and a certain type of starch; thus, a
large portion of polysaccharides (e.g., fiber) reaches the hindgut
intact and is fermented by the intestinal microbiota. The
microbiota and their derived metabolites have a great impact
on human health and physiology (4). Therefore, considerable
research has focused on the interaction between polysaccharides
and intestinal microbiota as well as on shaping the structure of
gut microbiota to determine polysaccharides’ effects on human
health (5). Dietary fiber deficiency changes the gut microbiota
and leads to gut dysbiosis, which occurs in various diseases,
especially metabolic diseases (6). The increased incidence of
insulin resistance, obesity, and other metabolic disease is partly
due to increased systemic and tissue inflammation caused by
increased systemic levels of bacterial endotoxins and DNA
(7). Therefore, improving gut health through polysaccharide
intervention, which can manipulate gut microbiota, can
influence metabolic disease (8).

Furthermore, the influence of polysaccharides on gut
health and metabolic diseases is not limited to mechanisms
linked to the intestinal microbiota. Some in vitro studies have
shown that polysaccharides can directly modulate the health of
humans. Astragalus polysaccharides protected bladder epithelial
cells against Escherichia coli infection by upregulating TLR4
expression and subsequently increased the secretion of IL-6 and
IL-8 (9). Polysaccharides can activate the B-cell TLR4/TLR2-
p38 MAPK signaling pathway to enhance immune response
(10). In addition, some polysaccharides, such as the pectin-
type polysaccharides from Smilax china L., can be absorbed
in the small intestine and are distributed in the liver and
kidney (11). Oral absorption constitutes the basis of the direct

effect of polysaccharides on human health. The widespread
distribution and fundamental function of polysaccharides in
plants as well as the extraction of different polysaccharides
from various organisms and their positive effects on the health
of humans and animals have been reported (12). However, it
is unclear whether polysaccharides from different organisms
have similar effects on animals and humans or if it is
necessary to extract polysaccharides from various plants or
other organisms even when their polysaccharide concentration
is low. Therefore, this review focuses on how polysaccharides
from terrestrial plants, fungi, and marine algae influence human
health, especially gut health and metabolic disease. Additionally,
it aims to identify the underlying mechanisms of bioactive
polysaccharides in gut health and metabolic disease to provide
insight for further research and application of polysaccharides
in human and animal health.

Statistical review of the effects of
polysaccharides on health

Research on the influence of polysaccharides on human
and animal health published during 2013–2022 was ascertained
using VOSViewer, and the terms “polysaccharides” and “health
or gut health or microbiota or obesity or type 2 diabetes or non-
alcoholic fatty liver disease” were searched in the Web of Science.
A total of 7,497 records, including 1,590 review articles, 5,799
articles, and 459 other types of documents, were downloaded
from the SSCI database of Web of Science. The yearly
publication of related topics has been continually increasing
(Figure 2), depicting the increased interest in research on the
effects of polysaccharides on health. Of note, the number of
publications in 2022 (Figure 2) represents those published in
the first three quarters of the year, as the search in Web of
Science was conducted on 10 September 2022. Therefore, the
number of publications on “polysaccharides” and “health” will
likely to exceed 1,500 in 2022. Among the countries that have
published more than 130 related articles, both China and the
USA have the most publications (3,239 and 1,210, respectively;
Figure 2A). Furthermore, the number of publications from
China has increased dramatically since 2017 (Figure 2B). The
increased number of publications on polysaccharides and its
effects on human and animal health may be attributable to the
Chinese medicinal processing activities as water extraction is
the main method that is used to prepare Chinese medicines,
and this method is similar to the procedure for the extraction
of polysaccharides. The major keywords that were associated
with the search terms which appeared more than 100 times were
summarized (Figure 2C), and the top 15 keywords are listed in
Table 1. Unsurprisingly, except for “polysaccharides,” “intestinal
microbiota” was the most frequently identified keyword in the
publications. Intestinal microbiotas play a vital role in the
digestion of polysaccharides and exert functions on the health
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FIGURE 1

The structure of polysaccharides in plant and marine algae. The gray arrows indicate the possibility of extended polymer length.

of humans and animals. Furthermore, “antioxidant ability”
appeared frequently in the downloaded publications, thereby
indicating the biofunctions of polysaccharides as antioxidants.
The “sulfated polysaccharides” and “fucoidan” that were found
in various species of brown algae have increasingly received
attention for their marked antioxidant ability. Moreover, from
the occurrences of “extraction,” “structural characterization,”
and “purification,” we can infer that, with the development of
sequencing and other technologies, scientists have become more
interested in obtaining pure polysaccharides to clarify their
structural characteristics and functions.

Interaction between
polysaccharides and microbiota

The gastrointestinal tract houses several trillion microbial
cells which are strongly associated with human health.
Carbohydrates are the main source of energy and nutrients for
intestinal microbiota and thus influence microbial composition
through the modulation of specific species and their derived
metabolites (13). Moreover, the microbiota possesses a larger
repertoire of degradative enzymes and is adept at foraging
glycans and polysaccharides that are derived from plants,
animals, and other sources (14). The mutual dependence
between polysaccharides and gut microbiota constitutes an
important basis for the participation of polysaccharides in a
diverse array of physiological processes in humans.

Polysaccharides degradation by
microbiota

The huge diversity of polysaccharides has partly resulted
from the various component sugar substituents and their
linkage patterns, which can be branched at different positions
on a single substituent by α- or β-glycosides (15). In
addition, polysaccharides can be covalently coupled to other
molecules, such as protein, lipids, and even RNA (16), and
thereby adopt a secondary structure. At the same time,
some studies have revealed the three-dimensional molecular
conformation of polysaccharides, such as polysaccharides from
Laminaria japonica (17), which inevitably adds complexity to
the polysaccharides.

In general, the more complex the polysaccharides are,
the greater the number of enzymes that are required in the
breakdown process. However, for humans, only 17 enzymes
are encoded for the digestion of food glycans, specifically
for a certain type of starch (18), whereas gut bacteria can
produce hundreds of enzymes with catalytic specificities that
range well beyond that of starch (15, 19). The carbohydrate-
active enzymes (CAZymes), which are encoded by intestinal
microbiota, are required to break down the glycoconjugates
and polysaccharides to release fermentable monosaccharides
that can be used as an energy source by intestinal cells and/or
bacteria. Glycoside hydrolases (GHs) and polysaccharide lyases
(PLs) are two main types of CAZymes that cleave glycosidic
bonds between carbohydrates and between a carbohydrate
and a non-carbohydrate moiety (18). The animal gut harbors
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FIGURE 2

Publication analysis of polysaccharides in the last 10 years. (A) Total publications related to polysaccharides and human health from 2013 to
2022. (B) The yearly output from different countries. (C) Network visualization of terms associated with polysaccharides and human health.

TABLE 1 The top 15 highest occurrences of keywords.

Items Occurrences Total link strength Occurrences Total link strength

Keywords

Polysaccharides 3748 11964 Inflammation 415 1602

Gut microbiota 2526 9027 Fermentation 378 1650

Antioxidant activity 1278 4151 Metabolism 336 1246

In vitro 673 2102 Disease 314 845

Health 580 1948 Structural characterization 313 1082

Extraction 527 1759 Expression 306 917

Chain fatty-acids 418 1800 Purification 247 899

Obesity 416 1529

trillions of microbes, of which Firmicutes and Bacteroidetes
are the most commonly represented phyla. The Bacteroidetes
encode more CAZymes than other phyla (18). Bacteroides
thetaiotaomicron, a dominant member of human distal gut
microbiota, contains more than 261 GHs and PLs (20).
Furthermore, the comparative genomic analysis revealed that
fully sequenced intestinal Bacteroidetes contain genes that
encode sulfatases and the related active enzymes, which are
crucial for fermenting sulfated polysaccharides, such as mucin
and glycosaminoglycans in mucus, as well as fucoidans in brown
seaweeds and carrageenan in red seaweeds (21, 22). With the
capacity to utilize an extensive array of dietary and host-derived
polysaccharides, the Bacteroidetes are considered glycan-
degrading generalists. However, Firmicutes and Actinobacteria
appear more specialized with a preference for the reserve
polysaccharides of plants (23).

Different phyla have different fermentation mechanisms for
processing polysaccharides. The gram-negative Bacteroidetes
pack their diverse array of CAZymes into discrete
polysaccharides utilization loci (PUL) gene clusters, which
have been identified in all intestinal Bacteroidetes and encode
substantial numbers of surface proteins that are required for the
utilization of polysaccharides. Therefore, the polysaccharides
targeted by Bacteroidetes require extracellular hydrolysis
before being transported into the cell. The well-studied starch
utilization system (Sus) is the first PUL that was described
for starch processing in B. thetaiotaomicron (24). However, in
contrast to the Bacteroidetes, the gram-positive Firmicutes and
Actinobacteria depend more on a diverse array of transporters,
such as ABC-transport systems, to import smaller sugars
for intracellular processing, which provides an important
competitive advantage against the predominant Bacteroidetes
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(25). The mechanisms of polysaccharide degradation that use
either the PUL or Sus system by Bacteroidetes and the ABC
system by Firmicutes and Actinobacteria have been described
previously (26) and are not covered in depth here. Overall,
the microbiota plays a critical role in the host’s digestion of
polysaccharides.

Influence of polysaccharides on
microbiota

The exceptional diversity of dietary polysaccharides has
a profound influence on the composition and structure of
intestinal microbiota (27). Different microbial species have
different preferences for glycans, which determine the structure
and monosaccharide composition of polysaccharides and
have a great impact on intestinal microbiota. Wu et al.
(28) reported that okra pectic-polysaccharides with different
structures selectively changed the composition of intestinal
microbiota (27). Enteromorpha polysaccharide enriched the
abundance of Bacteroides, which helps to break down the
polysaccharides (29). At the same time, several studies that
focused on the capacity of gut bacteria to catabolize marine algal
polysaccharides, such as porphyran and agarose, have revealed
the geographic distribution of intestinal microbiota (30–32).
B. plebeius, which contains genes that encode porphyranases
and agaroses, has been isolated from Japanese individuals
whose diet typically includes seaweed. However, the gut
metagenome analyses from North American individuals showed
the absence of porphyranases and agaroses (31). Furthermore,
a study of Desulfobulbus and Methanosarcina indicated that
the spatial distribution of microbial communities significantly
correlated with geographic distance (32). The abovementioned
studies indicated that the sources of polysaccharides directly
influence the composition of intestinal microbiota. Moreover,
the inclusion of pea fiber in the diet of gnotobiotic mice
that were cloned with a defined consortium of human-
gut-derived bacteria significantly increased the abundance of
B. thetaiotaomicron. In addition, the richness of B. cacccae in
the model revealed the pronounced effects of high-molecular
weight inulin on the composition of the microbiota (33).
Polysaccharides can directly encourage the expansion of certain
bacterial species by serving as nutrient sources for their
growth. Another study that involved the incubation of different
human gut-derived bacteria with different glycans in vitro
showed that some species and strains from Bacteroides and
Parabacteroides exhibited the ability to bind one or more
specific glycans, thereby indicating that different glycans are
responsible for the expansion of different bacterial species
or strains (34). Furthermore, microbiota that has limited
metabolic capacities for processing complex polysaccharides
must rely on other organisms that are capable of fermenting
polysaccharides through microbe–microbe interactions, such

as commensalism, mutualism, and competition (26, 33, 35,
36). Therefore, many types of complex polysaccharides help to
confer additional diversity to the gut microbiota partly through
the interactions among microbes.

Different types of polysaccharides enable rational
manipulation of the microbiota based on the species’
metabolic capacity. The CAZymes (e.g., extracellular β-2,6
endo-fructanase) that are encoded by intestinal bacteria
enable the metabolic processing of β-2,6-linked fructan
levan. Therefore, dietary involvement of β-2,6-linked fructan
levan enriches the abundance of B. thetaiotaomicron (37).
Genome analysis coupled with efforts to culture human gut
microorganisms is constantly aiding the elucidation of the
mechanisms underlying mutualistic behavior, which has long
been attributed to human gut microbes in the processing of
dietary fiber polysaccharides (15, 23, 34, 38). The interaction
between microbiota, polysaccharides, and their subsequent
metabolites are highly correlated with human health and
physiological process.

Polysaccharides play vital roles in
the physiological status of humans

Dietary polysaccharides have diverse, crucial influences on
human health. Interactions with microbiota partly explain the
underlying mechanisms as polysaccharides are predominantly
administered via the oral route, and therefore, exert functions
for improving human health through their absorption. Due to
the lack of methods and technologies to detect polysaccharides,
some researchers consider that polysaccharides have poor
intestinal absorption after oral administration. However, with
improved detection technology, studies have found that after
oral administration, polysaccharides can be absorbed into the
circulatory system even if they have high molecular weight
and complicated structures (11, 39, 40). Moreover, the oral
absorption mechanisms of polysaccharides and the factors
influencing them are well-reviewed by Zheng et al. (41) and
are accordingly not covered in depth here. Overall, direct gut
absorption and the interaction with intestinal microbiota are key
aspects for understanding the mechanisms of polysaccharide
function in human intestinal and metabolic health.

Polysaccharides influence intestinal
health

A functional intestine and an intact intestinal barrier,
which permit nutrient transport from the lumen into the
blood and simultaneously restrict the passage of potentially
harmful microorganisms and toxins, constitute an integral
regulator of human health (7, 42). Observational findings
that have been accumulated during the last 10 years suggest

Frontiers in Nutrition 05 frontiersin.org

https://doi.org/10.3389/fnut.2022.1030063
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-1030063 November 3, 2022 Time: 15:58 # 6

Gan et al. 10.3389/fnut.2022.1030063

that polysaccharides have profound biological benefits for
bowel health, including anti-inflammation, gut epithelial
barrier protection, and immune modulation through both
microbiota-dependent and -independent mechanisms (3, 12).
Most polysaccharides pass through the small intestine intact
and can successfully reach the large bowel, where they can be
either fermented by the microbiota or excreted in the stool.
Due to their capacity for water retention, polysaccharides in
the large bowel could attract water and add bulk to the digesta
which increases intestinal peristalsis and softens the stool,
thus diluting toxin concentrations, increasing the frequency
of defecation, and preventing constipation and its associated
problems, such as hemorrhoids (3, 43, 44). Moreover, dietary
ingestion of high concentrations of non-starch polysaccharides
(NSP) is associated with increased stool weight and a decreased
risk of bowel cancer (45). In addition, polysaccharides
enhance bowel health by promoting the immune system
and reducing inflammation. Polysaccharides from astragalus
that mainly contained rhamnose, glucose, galactose, and
arabinose ameliorated dextran sulfate sodium (DSS)-induced
colitis and increased the colon length by inhibiting NF-κB
activation, and thus downregulating TNF-α, IL-1β, and IL-
6 expression and subsequently reducing proinflammatory
responses (46). Similarly, Scutellaria baicalensis Georgi
polysaccharides, which are mainly composed of mannose,
ribose, glucuronic acid, glucose, xylose, and arabinose,
suppressed DSS-induced colitis through inhibition of NF-κB
and NLRP3 inflammasome activation, and thereby decreasing
pro-inflammatory cytokines secretion in mice and macrophages
(47). There is increasing evidence that Peyer’s patches hold
the key to how polysaccharides enhance intestinal immune
status. Polysaccharides from molokhia (Corchorus olitorius
L.) leaves could increase bone marrow cell proliferation as
well as immunoglobulin A and cytokine production via
Peyer’s patches (48), which is consistent with the hypothesis of
Han (49) who states that polysaccharides could enter Peyer’s
patches to trigger immune responses even without entering
the blood circulation. Moreover, polysaccharides from Coptis
chinensis Franch. (50), Atractylodes lancea (51), and Lavandula
angustifolia Mill. (52) could be taken up by Peyer’s patches
and stimulate the immune cells inside it to regulate cytokine
secretion. Therefore, polysaccharides can exert immune-
enhancing functions without absorption into the bloodstream,
which benefits gut health by improving the immune status of
the gut. Furthermore, polysaccharides, such as α-D-glucan,
could enhance the intestinal barrier function by increasing the
expression of tight junction proteins (53, 54).

Additionally, the interaction of polysaccharides and
intestinal microbiota plays a crucial role in gut health.
A deficiency of dietary polysaccharides leads to gut dysbiosis.
As the microbiota mostly relies on polysaccharides as a
nutrient source, the absence of these nutrients in the diet forces
the microbiota to transition toward the use of indigenous

host glycans, which causes the expansion of pathogenic
organisms and decreased abundance of probiotics and the
linked metabolites. Evidence has revealed that the microbiota
can erode the colonic mucus layer in the absence of dietary
polysaccharides, thus accelerating enteric pathogen invasion
and intestinal disease progression when challenged with the
pathogen Citrobacter rodentium (15, 55). Low concentrations
of dietary polysaccharides induced inflammation and increased
intestinal permeability that led to increased pathogen invasion
into other tissues, which is highly associated with the onset
of obesity and other metabolic diseases (56) (Figure 3).
Comparatively, the dietary inclusion of polysaccharides is
important for supporting the function and stability of gut
microbiota and, eventually, for maintaining gut health.
Polysaccharides derived from Lentinula edodes encouraged the
expansion of B. acidifaciens (57). In addition, polysaccharides
from Flammulina velutipes improved colitis by shaping the
structure of the colonic microbiota and inflammatory responses.
Bacteria-derived polysaccharides, including glucorhamnan,
which are synthesized and secreted by Ruminococcus gnavus,
influence intestinal health via the regulation of intestinal
inflammatory states (58). Furthermore, the microbiota-derived
metabolites, such as short-chain fatty acids (SCFAs) (59),
enhanced the intestinal fermentation of diverse polysaccharides
and have profound effects on bowel health. SCFAs can be used
directly as energy sources by colonic epithelial cells, support
their proliferation, and enhance the epithelial barrier function
(60). Polysaccharides from Cistanche (61), Vigna radiata L. skin
(62), enriched probiotic bacteria and SCFA in the intestine of
mice. In addition, both in vivo and in vitro studies indicated
that polysaccharides from soybean or marine algae could
enhance the abundance of probiotic bacteria whereas inhibiting
pathogens in the intestine (19, 63, 64). Thus, polysaccharides
are crucial for intestinal health, which further benefits the health
of the body.

The relationship between
polysaccharides and obesity

The prevalence of obesity has been increasing dramatically
worldwide, and the progression and maintenance of obesity
include genetic and environmental factors, diet (e.g., high
availability of high-energy foods with less dietary fiber), and
lifestyle (e.g., sedentary ways of life) that leads to excess
peripheral and visceral lipid accumulation (65). Moreover,
dysbiosis of intestinal microbiota acts both as a cause and a
consequence of obesity (66–68). Notably, obesity is associated
with systemic low-grade inflammation and various health issues,
such as type 2 diabetes (due to insulin resistance), fatty liver
disease, short life expectancy, and so on (69). Therefore,
identifying efficient strategies to prevent or ameliorate obesity
is important for the health of people who are overweight
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FIGURE 3

The inclusion of polysaccharides has a profound impact on gut health. Polysaccharide-based interventions increased microbiota-derived
metabolites, such as short-chain fatty acids (SCFA) and vitamins (Left). SCFAs can bind to receptors on L cells and subsequently induce the
secretion of glucagon-like peptide 1 (GLP-1), which can affect energy expenditure (132). Polysaccharides are highly associated with increased
stool volume, frequency, and fat and bile acid concentrations (45, 46, 133), which reinforce gut health. Moreover, the intestinal immune system
is enhanced by polysaccharides, as indicated by the increased secretion of immunoglobulin A (sIgA) levels. However, when the diet contains
very low concentrations of polysaccharides, the balance between the gut microbiota and immunity will be disrupted (Right), resulting in
decreased diversity of microbiota with an increased abundance of pathogens, which elicit gut inflammation and subsequent bowel disease.

or obese. Recently, interest in the role of polysaccharides in
preventing obesity has increased, and the anti-obesity properties
and mechanisms of polysaccharides have been reported by
several studies (70–72) (Figure 4).

Most polysaccharides cannot be digested to directly
provide energy to animals. Therefore, the dietary inclusion
of polysaccharides could reduce calorie intake. Moreover,
due to their complex special structure, polysaccharides are
characterized by great fat-binding capacities, which leads to the
increased excretion of dietary or endogenous fatty acids (73).
Polysaccharides can bind bile acids in the intestine to enhance
its excretion, thus enabling new bile acid synthesis in the liver
and consuming more cholesterol (74). Consistent results were
obtained in research on xyloglucan and inulin supplementation,
which increased the fecal total bile acid concentration (75).
Decreasing the energy intake as well as increasing fatty acids and
cholesterol excretion is of great importance for decreasing lipid
accumulation, and thus could benefit overweight individuals.
Besides this, enhancing energy expenditure is another
mode of action that actualizes the anti-obesity property of
polysaccharides. Lyophyllum decastes polysaccharides enhance
energy expenditure in diet-induced obese mice, which might
be due to the upregulation of the secondary bile acids-activated
TGR5 pathway (74). Furthermore, the enhanced brown tissue
activity by polysaccharides (74, 76) could explain the energy
expenditure property of polysaccharides to some extent.

Inhibition of lipogenesis and promotion of lipolysis/fatty
acid oxidation are very important to restrict fat accumulation.
Peroxisome proliferator-activated receptor gamma (PPARγ)
is a transcriptional factor that directs the differentiation of
adipocytes, whereas PPARα is a key transcriptional factor
for fatty acid oxidation (77). In addition to dietary sources,
endogenous fatty acid production from de novo lipogenesis in
mammalian tissues, including liver, white adipose tissue, and
brown adipose tissue, has been identified in both healthy and
obese individuals. Polysaccharides inhibit hepatic lipogenesis
and lipogenesis in white adipose tissues, (78, 79), mainly
through the inhibition of core enzymes, such as acetyl-CoA
carboxylase (ACC) and fatty acid synthase (FAS), in the
lipogenic process (80). Moreover, PPARγ expression could
be inhibited by dietary polysaccharides in the liver and
adipose tissues of diet-induced obese mice (81). In vitro
experiments using 3T3-L1 cells demonstrated the direct
inhibition of adipocyte differentiation by quinoa polysaccharide
through PPARγ inhibition (79, 82, 83), and activation of the
AMPK/PPARα pathway by polysaccharides was observed in
obese mice, which implies increased fatty acids oxidation and
energy expenditure. Therefore, polysaccharides could prevent
obesity and/or ameliorate obesity by inhibiting lipogenesis while
enhancing lipolysis. Although polysaccharides with anti-obesity
properties have different sources, structure, and composition,
they have similar modes of actions in ameliorating diet-
induced obesity.

Frontiers in Nutrition 07 frontiersin.org

https://doi.org/10.3389/fnut.2022.1030063
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-1030063 November 3, 2022 Time: 15:58 # 8

Gan et al. 10.3389/fnut.2022.1030063

FIGURE 4

Mechanisms by which polysaccharides alleviate obesity. A polysaccharide-rich diet contributes to the maintenance of a healthy gut and reduces
inflammation of the liver and adipose tissue (Right). Intestinal microbiota composition is associated with obesity, of which low diversity, reduced
abundance of Akkermansia and Alistipes, and enhanced Firmicutes-to-Bacteroidetes ratio were observed in obese individuals. However,
polysaccharide supplementation can reverse the microbiota changes in obese situations, along with increased glucagon-like peptide 1 (GLP-1)
levels, which is positively related to energy expenditure.

The fundamental influence of polysaccharides on intestinal
microbiota explains its primary mechanism in reducing
obesity, which has been studied in many research articles
(70, 71, 84, 85) and reviews (86, 87). High-weight molecular
polysaccharides isolated from Ganoderma lucidum reduced
body weight and fat accumulation in obese mice by altering the
intestinal microbiota composition, as indicated by the decreased
Firmicutes-to-Bacteroidetes ratios and improved gut barrier
function. Research on HG-type pectin, derived from Ficus
pumila L. fruits, increased the abundance of Akkermansia and
Alistipes in obese mice. The subsequent metabolites, myristoleic
acid, and pentadecanoic acid, are negatively associated with
serum lipid concentration and contribute to decreased fat
concentration (88). A fucoidan from Sargassum fusiform has
similar effects, which restored Alistipes abundance (89). The
microbiota species enriched by polysaccharides in obese animals
correlated with a reduction of obesity, thus providing insights to
guide the development of probiotics and functional prebiotics to
prevent obesity in clinical practice.

Interestingly, xyloglucan compounded with arabinoxylan
or inulin supplementation activated intestinal or hepatic G
protein-coupled 5 (TGR5) of mice that were fed a high-fat diet

(75). TGR5 signals in enteroendocrine L-cells induce glucagon-
like peptide 1 (GLP-1) and peptide YY (PYY) excretion,
thereby attenuating food consumption rate, improving liver and
pancreatic function, and promoting glucose metabolism, as well
as activating TGR5 in adipose and muscle tissues to increase
energy expenditure (90). TGR5 activation by polysaccharides
prevents diet-induced obesity through attenuation of energy
intake and increased energy expenditure. Therefore, dietary
inclusion of more of the abovementioned polysaccharides is
considered a good strategy to alleviate obesity.

Polysaccharides and control of type 2
diabetes

Diabetes mellitus comprises a group of metabolic diseases
characterized by chronic hyperglycemia, along with many
complications, such as diabetic nephropathy and cardiovascular
disease. Usually, diabetes can be divided into two main broad
categories: type 1 diabetes and type 2 diabetes mellitus (T2DM),
which account for the majority (∼90%) of total diabetes
prevalence (91, 92). Known as non-insulin-dependent diabetes
mellitus, T2DM is largely induced by insulin resistance and
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dysfunction of insulin-producing β cells, which decreases the
tissue sensitivity to insulin and has insufficient biological
effects, thereby leading to hyperglycemia (91). However, unlike
type 1 diabetes, which is not preventable with the current
knowledge, effective approaches are available to prevent T2DM
and its complications (93). Increasing evidence has shown
that polysaccharides exhibit antidiabetic effects. Considering
the growing reports on polysaccharides as therapy for T2DM
and their popularity as dietary supplements, this subsection
is designed to clarify the various mechanisms of such
therapeutic applications.

The application of polysaccharides in the diet- and/or drug-
induced T2DM animal models ameliorated glucose tolerance
(94), inhibited insulin resistance (95), protected damaged
pancreatic islets (96), improved β cell function (95), enhanced
lipid metabolism thus increasing insulin sensitivity in the liver
(97), and reduced oxidative stress and inflammatory response
(98) to relieve T2DM. Polysaccharides from Anoectochilus
roxburghii could inhibit the key gluconeogenesis enzymes,
thereby increasing glucose absorption (99), which explains the
function of polysaccharides in decreasing fasting blood glucose
levels. Echinops spp. polysaccharide B could increase muscle
and liver glycogen content (100), which lowers the blood
glucose level in T2DM. Polysaccharides from Sphacelotheca
sorghi (Link) Clint (101) and Auricularia auricula-judae (102)
enhanced the hepatic health of T2DM by activating the
PI3K/Akt signaling pathway. Echinops spp. polysaccharide B
increased the number of insulin receptors in the liver and
muscles, thus decreasing insulin resistance in T2MD (100).
Besides their use as a dietary source, polysaccharides can be
used to protect insulin that is administered orally. The ability to
improve the permeability via transcellular and/or paracellular
pathways and even selectivity for targeted delivery of insulin
through nano- and microencapsulation of polysaccharides is
considered an important technological strategy to protect
insulin against the harsh conditions of the gastrointestinal
tract (103).

In addition to the abovementioned functions,
polysaccharides can affect T2DM by influencing the structure
of intestinal microbiota and their derived metabolites,
the composition of which plays pivotal roles in the
pathogenetic process of T2DM (104). Patients with T2DM
have increased relative abundances of the phyla Firmicutes
and Actinobacteria and decreased relative abundances of
Bacteroidetes. Consistently, Lactobacillus and Eubacteria
were significantly enriched (104), whereas abundances of
Bifidobacterium were decreased in T2DM patients (105). Inulin
supplementation increased the abundance of Bifidobacterium
and increased the integrity of the gut barrier, which was
negatively correlated with T2DM (75, 105). Apocynum venetum
polysaccharides reversed the gut microbiota dysbiosis in
diabetic mice by increasing probiotic abundances, such as
Odoribacter, Parasutterella, Lactobacillus, and Akkermansia,

whereas decreasing Enterococcus and Aerococcus levels,
which are correlated with improved liver glycogen contents
and reduced insulin resistance (95, 106, 107). Dietary
polysaccharides enriched the SCFA-producing strains in
the intestine, including Bifidobacterium and Romboutsia, thus
enhancing SCFAs concentrations, inhibiting the growth of
other detrimental bacteria, and benefiting T2DM patients
(104, 108). The bacteria-derived SCFAs have been shown to
decrease proinflammatory cytokines and inhibit lipolysis in
adipose, which is responsible for glucose disposal of T2DM
patients by regulating free fatty acids in blood (109). Butyrate
was reported to improve hepatic fatty acid oxidation and
activate the AMPK-acetyl-CoA carboxylase pathway, thereby
regulating glucose metabolism and inhibiting insulin resistance
in the liver (95, 110). Meanwhile, acetate intervention in obese
mice improved the expression of genes involved in oxidative
and glucose metabolism and glucose transporter in skeletal
muscle, enhancing glucose disposal for which skeletal muscle
accounts for 85% of postabsorptive blood glucose (111).
Collectively, considering the high price as well as the indistinct
safety property of the drug used in T2DM patients currently,
polysaccharides with anti-diabetes features can be used as
promising ingredients for T2DM patients.

The role of polysaccharides in
non-alcoholic fatty liver disease

Non-alcoholic fatty liver disease (NAFLD) is a chronic liver
disease characterized by excess triglyceride accumulation in
hepatocytes due to both increased inflow of free fatty acids and
de novo hepatic lipogenesis, which affects a high proportion
of the world’s population (112). Mechanistic insights into fat
accumulation, subsequent hepatocyte injury, and the roles of
the immune system and gut microbiome are unfolding (113).
The inflow of lipids accumulated in livers mainly originates
from three processes namely, de novo lipogenesis (DNL),
dietary sources, and circulating esterified-fatty acids. Moreover,
approximately 40% of the lipids derive from DNL and dietary
sugars and fats, whereas the remaining 60% arise from lipolysis
of dysfunctional adipose tissues (114, 115). Furthermore, the
diacylglycerol intermediates, accumulated during the above-
described process, impair hepatic insulin signaling by activating
protein kinase Cε (PKCε) (116). Hepatocyte insulin resistance
promotes hyperglycemia and enhances more compensatory
insulin production, which prompts DNL by activation of
carbohydrate-response element binding protein (ChREBP)
and sterol regulatory element binding protein-1c (SREBP-
1c) (113). ChREBP and SREBP-1c synergistically induce FAS
and ACC expression, which catalyzes fatty acid synthesis,
and are complexly regulated by various nuclear receptors,
such as PPARα and farnesoid X receptor (FXR) (117–119)
(Figure 5). Reduced hepatic fatty acid oxidation was reported
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FIGURE 5

Effects of polysaccharides on the non-alcoholic fatty liver disease (NAFLD). NAFLD is characterized by increased lipid accumulation within
hepatocytes, mainly through the uptake of chylomicron processed from dietary fat, circulating free fatty acids (FFA) from lipolysis of adipose
tissues, and elevated de novo lipogenesis (DNL) (119, 123) (Right Panel), leading to high levels of triglycerides (TG), total cholesterol (TC), and
low-density lipoprotein-cholesterol (LDL-C), as well as low levels of high-density lipoprotein-cholesterol (HDL-C) in the serum. High-fat diet
induces high levels of chylomicron storage in the hepatocytes, which contributed to high FFA levels in hepatocytes. An intermediate metabolite
in triglyceride synthesis, diacylglycerol (DAG), induces insulin resistance, which further enhances the lipolysis of adipose tissues and the
subsequent high FFA concentrations. FA synthesis is catalyzed by acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS), and their
expression can be induced by sterol-response-binding-protein-1c (SREBP-1c) and be inhibited by farnesoid X receptor (FXR). Under NAFLD
conditions, SREBP-1c expression was enhanced with enhanced DNL (Right Panel). Polysaccharide application enhanced the expression of FXR
and reduced DNL. Lipid accumulation within hepatocyte was limited, and FA oxidation was enhanced via improved β-oxidation and GLP-1
function to ensure healthy hepatic lipid metabolism (Left Panel).

among the pathophysiological changes of NAFLD (120).
Accumulated fatty acids inside hepatocytes impose a strain on
mitochondria, leading to the dysfunction of mitochondria and
the production of ROS. The ROS and subsequent activation of
Jun N-terminal kinase (JNK) in turn result in mitochondrial
damage, which adds to the stress on the endoplasmic reticulum
and further inhibits β oxidation of fatty acids. Moreover,
hepatic inflammation, which is triggered by fatty acids, bacterial
endotoxins, and ROS, exacerbates hepatocyte damage (113, 119,
121).

To date, there are no effective medical interventions
to completely reverse NAFLD other than diet/lifestyle
modification. However, polysaccharides that target the
hepatocytic DNL, inflammation of the liver, and intestinal
microbiota currently have been under investigation to develop
promising pharmacological therapies for the treatment of
NAFLD. Ginkgo biloba leaf polysaccharides (GBLP) are
mainly composed of galactose (32.21%), mannose (20.82%),
glucose (9.39%), arabinose (6.71%), rhamnose (14.76%), and

galacturonic acid (16.11%), which markedly reduced the serum
levels of TC, triglycerides, LDL-C, and free fatty acids and
significantly increased HDL-C concentrations in NAFLD
rats induced by a high-fat diet. Levels of hepatic triglycerides
and lipids decreased after GBLP administration in NAFLD
rats (122). As increased DNL is a distinct characteristic of
NAFLD (123), it is important to impede the process by
using functional ingredients. Guar gum supplementation
in chicken diet markedly increased SCFA concentrations,
leading to increased GLP-1 levels, activation of mitogen-
activated protein kinase (MAPK) pathways in hepatocytes, and
subsequent suppression of lipid accumulation in hepatocytes
by inhibiting SREBP1 and ACC activities (124). Chicory
polysaccharides inhibited DNL through the inhibition of genes
related to DNL in hepatocytes, whereas the β-oxidation and
anti-inflammatory factors were enhanced in NAFLD rats
(125). Based on the serum metabolomic analysis, chicory
polysaccharides inhibited fatty acid biosynthesis and enhanced
β oxidation of very long-chain fatty acids, which implies the
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probable mechanisms for alleviating NAFLD (126). Ganoderma
amboinense polysaccharides enhance hepatic fat transport and
mitochondrial function in NAFLD mice. MDG-1, an insulin-
like β-fructan polysaccharide extracted from Ophiopogon
japonicus, decreased the activity of PPARγ and upregulated
the expression and phosphorylation of AMPK, SREBP-1c, and
ACC-1, thus improving lipid metabolism in high-fat diet mice
and reducing the pathogenesis of NAFLD (127). Targeting
intestinal microbiota is another strategy to prevent NAFLD.
MDG significantly increased the diversity of microbiota, of
which Akkermansia muciniphila was highly abundant following
MDG intervention in NAFLD mice (128). However, most trials
evaluating the function of polysaccharides were conducted in
animal or cell models and further research is needed to identify
whether polysaccharides have therapeutic effects on NAFLD
patients, and more clinical trials should be conducted.

Limitations and perspectives

Due to the natural source and low toxicity of
polysaccharides, considerable efforts have been focused
on discovering polysaccharides that can be used as novel
therapeutics in various diseases (129). Polysaccharides can be
used as carriers to protect some labile drugs and facilitate their
survival in hostile gastrointestinal tract environment (103).
Interestingly, most polysaccharides exhibit positive effects
on human health although they have different compositions
and structures. Moreover, publications on polysaccharides are
steadily increasing for various reasons. First, as polysaccharides
exist in almost all living systems, it is reasonable to infer
that thousands of different polysaccharides can be extracted.
Furthermore, the extracted polysaccharides usually are not
composed of one pure substrate but comprise a mixture of a
series or different kinds of polysaccharides with diverse chain
lengths and dissimilar branches or linkages. Therefore, the
extraction conditions will highly influence the composition
and the structure of the polysaccharides, which might induce
different consequences when applied under different conditions.
However, as the functional ingredients can be directly obtained
from the diet, the extraction of polysaccharides from edible plant
or organisms that needs considerable energy expenditure is not
recommended. Furthermore, Han et al. (130) reported that the
functional ingredients of N-methylserotonin from orange fibers
by-products were released by intestinal microbiota, which might
be disposed of in the extraction process. Therefore, additional
efforts are needed to identify functional polysaccharides from
non-edible dietary by-products.

Additionally, the polysaccharide-interaction-based
approach to promote health is unlikely to elicit consistent
effects across individuals (131). The large molecular weight and
complex structure of polysaccharides limit their usage in tissues
other than the intestine, as the majority of polysaccharides

cannot be digested in the small intestine or absorbed by the
intestinal epithelium. Most of the functions of polysaccharides
in other tissues are mediated through metabolites obtained
via fermentation by microbiota. However, the gut microbes
varied among different individuals, which explains why the
interindividual variation in the gut microbiome is usually
linked to differential effects of polysaccharides on the host
metabolic phenotypes. Experiments for detecting the function
of polysaccharides in different health conditions are warranted,
and more clinical trials should be conducted to enable the
application of polysaccharides as therapeutic drugs. However,
the development of more efficient and economic approaches
for the preparation and modification of polysaccharides and
elucidation of the structure-activity relationship remain as
significant challenges.
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