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Advanced glycation end products (AGEs) are generated by the nonenzymatic

glycation of proteins or lipids. Diabetic retinopathy (DR) is one common

complication in patients with diabetes. The accumulation of AGEs in retinal

cells is strongly associated with the development of DR. AGEs can induce

the breakdown of redox balance and then cause oxidative stress in retinal

cells, exerting cytopathic e�ects in the progression of DR. The interaction

between AGEs and the receptor for AGE (RAGE) is involved in multiple

cellular pathological alterations in the retina. This review is to elucidate the

pathogenetic roles of AGEs in the progression of DR, including metabolic

abnormalities, lipid peroxidation, structural and functional alterations, and

neurodegeneration. In addition, disorders associated with AGEs can be used as

potential therapeutic targets to explore e�ective and safe treatments for DR. In

this review, we have also introduced antioxidant phytochemicals as potential

therapeutic strategies for the treatment of DR.

KEYWORDS

AGEs, diabetic retinopathy, RAGE, pathogenetic roles, antioxidant phytochemicals

Introduction

Advanced glycation end products (AGEs), a group of heterogeneous complexes,

are produced from non-enzymatic glycation that happens between reducing sugars,

a free amino group, nucleic acids, proteins, or lipids through the Maillard reaction

(1). The formation of AGEs occurs either from foods or metabolized biological

process in the physiological system. Foods containing high protein, sugar, fat, moisture,

etc., easily result in the formation and accumulation of AGEs during processing

or storage. Long-term AGE intake can lead to their cumulation in body fluids,

contributing to the outbreak of chronic disorders and toxic pathogenesis in our body

(2), especially diabetic complications. In addition, the generation of AGEs produces

free radicals—reactive oxygen species (ROS) to facilitate redox imbalance, finally

resulting in oxidative stress, and ROS can in turn prompt the formation of AGEs.

ROS attacks functional biomacromolecules such as deoxyribonucleic acid (DNA),

proteins, and lipids, subsequently affecting normal biological activity and inducing

physiological dysfunction.
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Diabetic retinopathy (DR) can impose a sight-threatening

effect on the eyes, and it is generally classified as a

microvasculature complication in diabetes (3). It is commonly

recognized that DR is the main reason for vision loss or visual

damage among elderly people or working-age adults worldwide

(4). The amount of patients influenced by DR will ascend to 191

million in 2030 (5). Despite numerous studies, the mechanism

underlying hyperglycemia-induced pathology in the retina

still remains elusive. It has been shown that hyperglycemia-

mediated progression of retinopathy is tightly associated with

the abnormality of multiple metabolic pathways, in which the

accumulation of AGEs plays a critical role (5). AGEs, such

as carboxyethyllysine (CEL), carboxymethyllysine (CML), and

pentosidine, have been well chemically characterized in the

body. The occurrence of these AGEs is closely correlated with

the severity of DR. For example, CML has been usually found in

the retinal blood vessels of patients with diabetes (6). In addition,

in the formation process of AGEs, proteins are structurally

impaired by this non-enzymatic cross-link between amino

groups and reducing sugars. One instance is the nonenzymatic

glycation of elastin and collagen that are deeply involved in the

formation of the stiffer blood vessels in DR (7).

Formation mechanism of AGEs

The reaction between proteins and reducing sugars or

carbonyl groups is known as the Maillard reaction, which

non-enzymatically alters the function and morphology of

these biological molecules (8). It mainly includes three levels

(Figure 1). The primary level is the formation of the Schiff base

in the reaction of free amino groups and glucose. In the existence

of acid–base catalysis, the Schiff base is unstable and undergoes

rearrangements to generate stable glycation—Amadori products

that are early glycosylation products and mainly carbonyl

compounds (Figure 1) (9). The second level produces reactive

dicarbonyl compounds through chemical reactions of oxidation

and dehydration, generating the precursors of AGEs (Figure 1).

These reactive dicarbonyl compounds, such as glyoxal and

deoxyglucosones compounds, react with free amino groups,

proteins, DNA, or lipids (9) and undergo further cyclization

Abbreviations: DR, diabetic retinopathy; ROS, reactive oxygen species;

Nox, NADPH oxidase; AGEs, advanced glycation end products; DAG,

diacylglycerol; VEGF, vascular endothelial growth factor; PKC, protein

kinase C; GAPDH, glyceraldehydes-3-phosphate dehydrogenase; RAGEs,

receptor for AGEs; GFAT, fructose-6-phosphate amidotransferase; UDP-

GlcNAc, diphosphate uracil-N-acetylglucosamine; HHE, hydroxyhexenal;

HNE, hydroxynonenal; PUFAs, polyunsaturated fatty acids; DHA,

docosahexaenoic acid; AA, arachidonic acid; OA, oleic acid; RGCs,

retinal ganglion cells; RPE, retinal pigment epithelium; CBM, capillary

basement membrane; ECM, extracellular matrix; NADPH, nicotinamide

adenine dinucleotide phosphate; BRB, blood–retinal barrier.

reactions (the third level) to produce irreversible AGEs

(Figure 1).

AGEs and the receptor for AGE
(RAGE) axis in DR

Advanced glycation end products and the receptor for

AGE (RAGE) axis comprises AGE and RAGE. AGE-mediated

damage occurs mainly through its interaction with RAGE on

the cell membrane. The binding of AGEs and RAGE activates

downstream signaling pathways, such as nuclear factor-κB (NF-

κB) signaling pathway, transforming growth factor-β (TGF-β)

pathway, Jak-STAT pathway, PI3K-Akt pathway, and so on,

which are involved in the cellular processes of inflammation,

apoptosis, autophagy, carcinogenesis, angiogenesis, and

nephropathy and vasculopathy (10) (Figure 2). The binding of

RAGEwith AGEs can prompt the activation of the inflammatory

factor NF-κB, which subsequently leads to pericyte apoptosis,

and can also augment the expression of vascular endothelial

growth factor (VEGF) to incur vascular endothelial permeability

in the retina (6, 11). AGEs and the RAGE axis can also boost

the expression of RAGE through enhanced downstream cellular

signaling pathways (5).

The interaction of AGEs and RAGE generates ROS

via activating nicotinamide adenine dinucleotide phosphate

(NADPH) oxidase, which induces the activation of NF-κB and

the elevation of proinflammatory cytokines. Proinflammatory

cytokines upregulate the expression of NADPH oxidase (Nox)

and augment the production of ROS (12). The production of

AGE-induced ROS also participates and plays an important role

in the pathophysiological progression of DR (13, 14). Periodic

injection of AGEs into rats can cause retinal hyperpermeability

and leukostasis while augmenting the level of RAGE and

ROS; however, concurrent injection of pigment epithelium-

derived factor (PEDF) can block this process via suppressing

AGE-mediated ROS generation, NF-κB activity, and VEGF

levels (15–17). Additionally, it has been suggested that the

production of ROS can also be stimulated by AGEs via

mitochondrial electron transport chain (18). As a consequence,

the enrichment of ROS contributes to the accumulation of

AGE (19) and the upregulation of RAGE (20), to aggravate all

AGE-induced damages.

Pathogenetic roles

AGEs and metabolic abnormalities in DR

Metabolic disorders play a critical role in the progression

of DR, including enhanced glucose influx via hexosamine and

polyol pathways and hyperactivated protein kinase C (PKC)

pathway. These disorders promote the accumulation of AGEs in
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FIGURE 1

The formation of advanced glycation end products (AGEs). A schematic representation of the formation of AGE and the interaction with the

receptor for AGE (RAGE). Glycation includes three main levels and promotes various diseases, such as diabetic complications, cancer, and so on.

retinal cells and interact with AGEs to amplify these metabolic

disorders, leading to the dysfunction of retinal tissues (Figure 3).

AGEs and polyol pathway

Glucose metabolism in polyol pathway is active in the

hyperglycemic situation, which facilitates the formation of

AGEs (21). In this pathway, glucose is catalyzed by aldose

reductase, the first and rate-limiting enzyme, for its conversion

into sorbitol with NADPH as the electron donor. Then,

the sorbitol dehydrogenase oxidizes sorbitol into fructose,

combined with the transfer of NAD into NADH (22, 23).

In this process, the intermediate sorbitol, as hydrophilic

alcohol, is difficult to diffuse through the cellular membrane,

which brings about cell hypertonicity and the augmented

osmotic pressure to finally induce osmotic damage of a

retinal capillary (5). Notably, fructose produced as a byproduct

can be phosphorylated into fructose-3-phosphate and then

degenerated into 3-deoxyglucosone, both of which can be

used as precursors to generate AGEs through non-enzymatic

glycosylation (24).

AGEs and PKC pathway

Protein kinase C pathway is also deeply involved in the

modulation of multiple physiological alterations in retinal

tissues, including endothelial permeability, the upregulation of

VEGF, retinal hemodynamics, and the adhesion and hyper-

activation of leukocytes (leukostasis) in retinal cells (23, 25, 26).

In addition, Nox can be positively modulated by PKC, which

facilitates the generation of ROS in numerous vascular cells,

such as pericytes, endothelial cells, and others (27, 28). The

enrichment of ROS production in turn prompts the formation

of AGE. Extracellular AGEs can combine its transmembrane

receptor RAGE to activate PKC pathway to intensify this

process (29).
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FIGURE 2

The AGE and RAGE axis and its downstream signaling pathways. The interaction of AGE–RAGE activates downstream signaling, including

nuclear factor-κB (NF-κB) signaling pathway, transforming growth factor-β (TGF-β) pathway, Jak-STAT pathway, PI3K-Akt pathway, to promote

inflammation, apoptosis, autophagy, angiogenesis, and nephropathy and vasculopathy, and induces the generation of reactive oxygen species

(ROS) through nicotinamide adenine dinucleotide phosphate (NADPH) oxidase.

AGEs and hexosamine pathway

Patients with diabetes have higher levels of hexosamine

in their retinal cells. Glucose in hexosamine pathway is

transferred into fructose-6-phosphate through phosphorylation.

Subsequently, fructose-6-phosphate can be catalyzed

into glucosamine-6-phosphate (5). Glucosamine-6-

phosphate can be acetylated and isomerized to generate

N-acetylglucosamine-6-phosphate and then transferred into

the end products—diphosphate uracil-N-acetylglucosamine

(UDP-GlcNAc). The end products can be utilized as substrates

to produce glycosyl side chains for modifying lipids or

proteins, which is called O-GlcNAc Modification—one

particular type of glycosylation occurred in multiple chronic

diseases (30, 31).

All metabolic disorders in DR interact with each other

through the corresponding mid-components, AGEs or

ROS (32). An elevated ROS level suppresses the activity

of glyceraldehydes-3-phosphate dehydrogenase (GAPDH),

which triggers the increased glucose influx into polyol

pathway and increases intracellular AGEs (33). Meanwhile,

the repression of GAPDH also leads to the activation of

PKC and NF-κB, and the initiation of hexosamine pathway

(34). Fructose-6-phosphate amidotransferase (GFAT) in

hexosamine pathway is correlated with diacylglycerol-

(DAG-) stimulated PKC activity (35). Excess glucose

is metabolized in polyol pathway to form sorbitol and

subsequently converted into fructose, which prompt the

formation of strong glycosylating precursors for the generation

of AGEs (36). Correspondingly, excessive AGEs interrupt

redox balance, leading to oxidative stress and activating PKC

pathway (37).

AGEs and lipid peroxidation in DR

It has been discovered that tissues from DR contain a variety

of metabolic components of lipid peroxidation (38), which are

positively correlated to the duration and severity of diabetic

complications (39). AGE-induced ROS generation brings about

the breakdown of redox balance and prompts the rise of
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FIGURE 3

Metabolic abnormalities in a diabetic complication. Major disorders are polyol pathway, hexosamine biosynthesis pathway, and the activation of

protein kinase C (PKC). Polyol pathway promotes the generation of AGE precursors. The activation of PKC induces the expression of vascular

endothelial growth factor (VEGF) and RAGE and increase of ROS. Hexosamine pathway causes glycosylation of transcription factors and the

generation of diphosphate uracil-N-acetylglucosamine (UDP-GlcNAc). These disorders interact with AGEs to promote the pathogenesis of

diabetic retinopathy (DR).

lipid peroxidation in DR. The abundance of polyunsaturated

fatty acids (PUFAs) in retinal outer photoreceptor segment

membranes makes the retina susceptible to ROS attack (40),

and these PUFAs play an important structural and functional

role in the retina. In the retina, arachidonic acid (AA),

docosahexaenoic acid (DHA), and oleic acid (OA) are the

main PUFAs, respectively, accounting for about 8, 50, and

10% in total fatty acids (41). Retinal lipid peroxidation

not only jeopardizes photoreceptor membrane cells but also

influences the normal physiological activity. The components

in the process of lipid peroxidation, hydroxynonenal (HNE)

and hydroxyhexenal (HHE), can chemically interact with

cellular macromolecules (proteins or DNA), subsequently

resulting in photoreceptor membrane damage and retinal

pigment epithelial disorders (42). Additionally, ROS-induced

mitochondrial dysfunction facilitates lipid accumulation in glia

cells, which can be oxidized to render retinal neurodegeneration

(43). As a result, one component in the production of

AGEs is peroxidized lipids, and another method in the

production of AGEs is by incubating lipid peroxidation products

with proteins is (44).

AGEs and structural and functional
changes in DR

Advanced glycation end products-associated metabolic

disorders give rise to various pathophysiological changes in

the structures and functions of retinal microvasculature. Major

alterations in DR include the thickened retinal capillary

basement membrane (CBM), the breakdown of the blood–

retinal barrier (BRB), and the formation of acellular and

occluded capillaries.

One typical characteristic of DR is the thickening of the

CBM, which is due to the disruption of the balance between

the expression and degeneration of extracellular matrix (ECM)

proteins (45). Hyperglycemic state, as a key feature in diabetes,

is regarded as a principal contributor to thicken CBM in DR,

and AGEs and excessive ROS play dominant roles in this

thickening process (46). The generation of AGEs on the collagen

incurs the cross-linking among collagen proteins, leading to

structural stiffness and limiting the transmembrane conveyance

of multiple growth factors, and all these pathological alterations

finally cause retinal endothelial cell and pericyte death (47).
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The treatment of aminoguanidine, one AGE inhibitor, plays

a protective role to antagonize the thickening of retinal CBM

in diabetic rats, which further proves the role of AGEs in

this progression (48). The generation of AGEs promotes the

accumulation of ROS to indirectly activate the corresponding

transcription factors and cytokines that ultimately enhance the

levels of ECM proteins in the retinal endothelial cells such

as collagen and fibronectin (FN) (45). Fibrosis and thickened

CBMs can be attributed to ROS-mediated upregulation of ECM

genes (49).

The blood–retinal barrier controls the substance exchange

between circulating blood vessels and neural retinal cells. It

is regarded as one barrier of high selectivity that can provide

essential nutrients and eliminate metabolic waste to maintain

the normal function of neural retina. It has been documented

that the dysfunction of BRB is closely associated with AGEs

(50). AGEs can augment the adhesion of leukocytes that are

deeply involved in the dysfunction of the BRB (51). Additionally,

AGEs contribute to the breakdown of redox balance and prompt

oxidative stress in retinal cells. Dysfunction of the BRB is partly

attributed to excessive accumulation of ROS in retinal cells,

which induces retinal pericyte loss—a histopathologic hallmark

of DR (5).

The formation of acellular and occluded capillaries in DR

can be ascribed to the elevated ability of angiogenesis. AGEs can

enhance the transcription activities of activator protein-1 and

NF-κB to upregulate the expression of angiogenesis-associated

genes such as VEGF and angiopoietin-2 (50). In multiple

pathological statuses, angiogenesis and inflammation are tightly

cohesive processes. AGEs, as the booster for inflammation

(52), indirectly prompt the formation of acellular and occluded

capillaries. The interaction between AGEs and the RAGE

promotes the production of ROS and the activation of NF-

κB. The cross talk of ROS and NF-κB signaling is common in

retinal cells, and they mutually modulate each other to augment

inflammation (5).

AGEs and neurodegeneration in DR

Retinal neurons, glial cells, and vascular endothelium form

a retinal neurovascular unit, a complicated entity of functional

and physical coupling, and each component in this entity

is closely synchronized to unite retinal blood flow and the

metabolic system (53–55). Long-term hyperglycemia facilitates

the formation of AGEs and ROS, disrupts the balance of

the metabolic system, and then causes the production of

inflammatory mediators and cellular damages, which constitute

a vicious cycle. A vicious cycle in retinal neurons or vascellum

contributes to the dysfunction of this neurovascular unit

(56), which can be exemplified by the fact that excessive

accumulation of AGEs has been discovered in retinal glial

cells, the axons of retinal ganglion cells (RGCs), and the

neurons near the retina inner surface (57, 58). The expression

of RAGE is also abnormally upregulated in glial cells

and RGCs, making these cells susceptible to AGE-involved

processes, such as ROS formation and the activation of NF-

κB and PKC pathways (57). AGE-induced activation of PKC

functions as an upstream positive regulator of NOX, which

brings about superabundant NOX-mediated ROS formation

and subsequently causes ischemic loss of RGCs, to facilitate

neurodegeneration (59). Additionally, early activation of the

innate immune and complement systems and microglia also

jeopardize a retinal neurovascular unit (60). AGEs can prompt

the generation of proinflammatory cytokines and act as

persistent antigenic stimulus to be immunostimulatory and

impair the retinal neuron (60).

Therapeutic potential of
phytochemicals in DR

Abnormalities associated with AGEs, such as inflammation

and oxidative stress, can be used as potential therapeutic

targets for DR. Antioxidant phytochemicals are well known

for their anti-inflammatory, antioxidant, or anticarcinogenic

properties, and their functions in DR treatment have also

been investigated by many studies (5, 61, 62). Here, we

described some antioxidant phytochemicals and their

therapeutic potentials against AGE-mediated abnormality

in DR.

Epigallocatechin-3-gallate (EGCG) is the primary

polyphenol in green tea, with strong antioxidant capacity.

EGCG blocks the formation of AGEs and exerts a curative

effect on AGEs-induced collagen cross-linking (63). EGCG

can also repress the activity of NF-κB, which plays an

antagonistic role in vascular inflammation and apoptosis of

retinal cells (64). In addition to the alleviation of oxidative

stress, it can also protect the retinal nervous system, and

ameliorate the injuries occurring in the BRB and the damage

of electroretinograms and basement membrane thickening

(64, 65).

Quercetin, a natural flavonoid, can prompt

the upregulation of an ROS eraser, e.g., catalase

and superoxide-dismutase (SOD), suppress AGE-

induced NF-κB activity, and effectively guard against

neurodegeneration and ROS-mediated impairments in the

retina (66).

Resveratrol, a polyphenol of nonflavonoid phytochemical,

is an excellent scavenger to eliminate ROS and exert

protective effects against DR (67). It can block ROS-

mediated cellular apoptosis in capillary endothelial

cells of the retina (68), and also dose-dependently

suppress AGE-associated factors, VEGF, TGF-β1, and

PKC-β (69).
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Curcumin, a polyphenol in Curcuma longa, possesses

antioxidant, hypoglycemic, and anti-inflammatory

capacity and also exhibits therapeutic effects in the

treatment of DR (70). It can prevent structural alterations

in the retina and block the thickness of CBM in

DR (71).

Besides polyphenols, other antioxidants also exert effective

effects in DR. Astaxanthin, as a xanthophyll carotenoid,

possesses robust antioxidant capacity against oxidative stress.

Notably, astaxanthin blocks the formation of endogenous

N(ε)-CML, a representative member of AGEs, via suppressing

ROS. Microalgae extracts containing astaxanthin ameliorate

AGEs-induced impairments in retinal pigment epithelial

(RPE) cells such as the abnormal expression of VEGF and

matrix metalloproteinases (72). A relevant clinical study has

revealed that lutein, one phytochemical of the carotenoid

family, exerts safe and protective effects on visual function in

patients of age-related macular degeneration (73). Lutein

ameliorates ischemia-reperfusion injury and represses

the apoptosis of retinal pigment epithelial and ganglion

cells (74, 75).

Although multiple studies support the therapeutic functions

of antioxidant phytochemicals against the progression of DR,

the function of one single phytochemical compound is still

limited. In patients with diabetes, the multiplex nutritional

formula (including resveratrol, the extract of turmeric root and

green tea, and other components) can ameliorate visual function

and inhibit serum inflammatory factors, which confirms the

therapeutic potential of these antioxidants (76). However, some

studies show no alleviation of the severity in patients with

retinopathy supplied with antioxidants (77). Thus, there is

still no explicit conclusion for these antioxidants that has

been drawn from the clinical trials. Clinical outcomes are

impacted by multiple factors, e.g., the antioxidant dose, the

duration of administration, and BRB-influenced transport.

Despite these difficulties, it is still encouraging to push the

research forward.

Conclusion

Diabetic retinopathy is a common diabetic complication

in patients with diabetes, and the accumulation of AGEs is

tightly associated with multiple disorders in the progression

of DR, such as metabolic abnormalities, lipid peroxidation,

structural and functional alterations, neurodegeneration, and

so on. AGEs induce the disruption of the balance between the

formation and elimination of ROS and cause oxidative stress in

retinal cells, exerting cytopathic effects in this pathophysiology.

Antioxidant phytochemicals, as AGE formation inhibitors,

are a class of chemicals with reductive and biological

activities and possess therapeutic potential in DR treatment,

which provide a promising way to control this vision-

damaging complication.
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