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The prevalence of celiac disease increased in recent years. In addition to the genetic
and immunological factors, it appears that environmental determinants are also
involved in the pathophysiology of celiac disease. Gastrointestinal infections impact
the development of celiac disease. Current research does not directly confirm the
protective e�ect of natural childbirth and breastfeeding on celiac disease. However, it
seems that in genetically predisposed children, the amount of gluten introduced into
the diet may have an impact on celiac disease development. Also western lifestyle,
including western dietary patterns high in fat, sugar, and gliadin, potentially may
increase the risk of celiac disease due to changes in intestinal microbiota, intestinal
permeability, or mucosal inflammation. Further research is needed to expand the
knowledge of the relationship between environmental factors and the development
of celiac disease to define evidence-based preventive interventions against the
development of celiac disease. The manuscript summarizes current knowledge on
factors predisposing to the development of celiac disease including factors associated
with the western lifestyle.
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1. Introduction

1.1. Celiac disease

Celiac disease (CD) is a systemic, T-cell mediated, autoimmune disorder that is triggered
by exposure to dietary gluten in genetically predisposed individuals. This chronic disease
is characterized by specific serum autoantibody response in IgG and IgA class: anti-
transglutaminase IgA and anti-endomysial antibodies IgA and deamidated gliadin-related
peptide IgA and IgG (1). Today, the only accepted treatment for CD is a strict gluten-free diet (2).

CD presents in about 1% of the population. Singh et al. in meta-analysis and systemic review
reported that worldwide seroprevalence and prevalence of CD are 1.4 and 0.7% respectively.
According to the authors, the prevalence of CD varies with sex, age, and country and it increased
from 0.6% in 1991–2000 to 0.8% between 2001 and 2016 (3). It is supposed that the increase in
diagnosed cases of CD is partly the result of better diagnostic tools and more frequent screening
tests in individuals at risk. However, it seems that also environmental factors can contribute
to that phenomenon (4). There are scientific reports, that besides genetic and immunological
features, there are environmental factors that could trigger the development of CD (5). These
factors (Figure 1) will be discussed in this paper.
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FIGURE 1

The figure shows the factors influencing and potentially influencing the development of celiac disease marked in color as appropriate: general
factors-black, factors showing a potentially protective e�ect-green, factors negatively influencing the development of celiac disease-red, and factors that
may have a dual e�ect-orange. Each group of factors is discussed in further detail in the text.

The data presented in this study are openly available in
Medline and PubMed databases and on the publisher’s website.
The keywords that were used for the search: celiac disease;
celiac disease genetics; celiac disease risk factors; celiac disease
prevention; western lifestyle; western diet; autoimmunity;
inflammation; Mediterranean diet; proinflammatory diet;
viruses; bacteria; infection; gut microbiota; dysbiosis; antibiotics
use; breastfeeding; physical activity; c-section; gluten proteins;
gluten; gliadin.

Abbreviations: CD, celiac disease; dsRNA, double-stranded RNA viruses; eQTL,

expression quantitative trait loci; FAO, Food and AgricultureOrganization; GALT,

gut-associated lymphoid tissue; GWAS, genome-wide association studies;

HFD, high-fat diet; HLA, human leukocyte antigen; HMW-GS, high molecular

weight glutenin subunits; IBD, inflammatory bowel disease; IL-2, interleukin

2; IL-6, interleukin 6; IL-10, interleukin 20; IFN, interferon; IRF1, interferon

regulating factor 1; LMW-GS, low molecular weight glutenin subunits; LPS,

lipopolysaccharide; lncRNA, long non-coding RNA; miRNAs, microRNAs;

MHC, major histocompatibility complex; MD, Mediterranean diet; NCDs, non-

communicable diseases; SDS-PAGE, sodium dodecyl sulfate-polyacrylamide

gel electrophoresis; SCFA, short-chain fatty acids; sIgA, secretory IgA; SNPs,

single nucleotide polymorphisms; TCR, and T cell receptor; TFs, transcription

factors; Th1, T helper 1 cells; Th17, T helper 17 cells; TLR4, toll-like receptors;

TNF, tumor necrosis factor; WD, Western-style diet; WHO, World Health

Organization.

1.2. Gliadin and other wheat proteins

Gluten is a complex of storage proteins found in grains such as
wheat, rye, and barley. In wheat, gluten constitutes mainly alcohol-
soluble gliadins and insoluble glutenins. It constitutes about 85% of
total grain protein mass (6). In barley, the major storage proteins
are alcohol-soluble hordeins, and in the rye—secalins (7). These
proteins belong to a fraction called prolamins, and they are the
main endosperm storage proteins in grains (7). Wheat is the most
concentrated source of gluten. The wheat kernel is one of the major
cereal crops worldwide, occupying 17% of the cultivated land and
constituting a staple food for 35% of the population worldwide
(8). Wheat constitutes a relevant part of the contemporary diet.
According to WHO, it provides 19% of the total caloric input in
the population. Global wheat production amounts to an average of
around 750 million tons a year and the major producers of wheat are
Europe, North America, and Asia (9).

Among prolamins, the two types of proteins in comparable
amounts can be distinguished: gliadins and glutenins. Gliadin, due
to the high content of proline residues, is resistant to gastric-
pancreatic and intestinal proteases. As result, long gliadin fragments
can reach high concentrations in the gut epithelium (10). Some of
the undigested peptides derived from gliadin have been reported
to activate T cell response while others have pleiotropic biological
activity (11). α-gliadin 33-mer peptide, P57–89 is one of the most
immunogenic gluten peptides (12). It has been suggested that α-
gliadin 33-mer peptide could reach lamina propria, and presented by
HLA-DQ2 or 8 to T cells, can be an activator of the adaptive immune
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response, playing a major role in the pathogenic cascade of CD (10).
Another, relatively less immunogenic peptides are 25-mer peptide,
P31–43, which is not presented by HLA-DQ to T cells, or P57–73,
and P111–130 (13). Undigested peptides are active in vivo in the celiac
intestine after gluten ingestion and induce an immune response with
the production of INF-alpha and IL-15 in CD biopsies and fibroblasts
(14, 15).

2. Genetic and immunological
determinants of celiac disease

Even though the inheritance of celiac disease is still unknown, it
has long been known that genetics is involved in the triggering and
later development of the disease (16, 17). Celiac disease, like most
autoimmune diseases, is strongly associated with human leukocyte
antigens (HLA) regions. The role of the HLA region as a susceptibility
factor was understood in 2008 with the first genome-wide association
study of celiac disease (18). However, the first reports that a major
histocompatibility complex (MHC) was related to CD came 50 years
earlier with the identification of the disease’s association withHLA-B8
(19, 20) accounting for about 40% of CD genetic variation.

In the following years, disease associations were proven with
HLA-A1, HLA-DR3, and HLA-DR7, as well as with HLA-DQ2 (21–
25) which are due to the strong coupling imbalance and the fact that
these alleles are part of the conservative A1-B8-DR-DQ2 haplotype.

A crucial point in the diagnosis of celiac disease was the
identification of MHC class II alleles: HLA-DQ2.5, HLA-DQ8, and
HLA-DQ2.2 (26). It is estimated that about 90–95% of patients
with celiac disease are carriers of HLA-DQ2.5 (DQA1∗05:01,
DQB1∗02:01). Patients who do not express HLA-DQ2.5 usually
express HLA-DQ2.2 (DQA1∗02:01, DQB1∗02:01) or HLA-DQ8
(DQA1∗03, DQB1∗03:02) (27, 28). For HLA-DQ2.5, the risk of celiac
disease is particularly high by the fact that carriers of the DR3DQ2
haplotype encoded by DQA1 andDQB1 have both alleles on the same
chromosome-cis configuration, while heterozygote carriers of the
DR5DQ7/DR7DQ2 haplotype have alleles on opposite chromosomes,
which is trans configuration (28, 29).

Genome-wide association studies have so far identified 43 genetic
risk factors, in addition toMHC, that explain about 50% of the genetic
variation in celiac disease (17). Currently we know relatively well
what role HLA-DQ2 and -DQ8 play in celiac disease (28–30) but
the involvement of other loci as the celiac disease determinants, not
related to HLA, is still largely undiscovered. Only three of these loci
have single nucleotide polymorphisms (SNPs) located in protein-
coding regions (31). Most of them—more than 90% are SNPs located
in non-coding—intergenic regions, where in T and B cells they are
most probably responsible for deregulating the expression of essential
genes involved in the pathogenesis of celiac disease (17).

Activation of gluten-specific CD4T lymphocytes, which
recognize gluten peptides, is the first factor initiating an immune
response in celiac disease. Molbergu et al. showed that gliadin-
specific CD4+ T cells are present only in the mucosa of patients
with celiac disease (32). This supports the concept that most T cells
recognize gliadin peptide(s) when present by binding to DQ2 (33).
Villi atrophy in patients after gluten ingestion can occur even after
years on a gluten-free diet, proving that activation of gluten-specific
T cells is crucial to the onset and pathology of celiac disease. It has
also been shown that gluten-specific T cells secrete many signaling

molecules upon stimulation, including interleukin IL-2, IL-4, IL-6,
IL-8, IL-10, IL-21, CD40LG, IFNγ, and TNF (34–40) with IL-4,
IL-21, CD40LG, and CXCL13 (C-X-C motif chemokine 13), being
important in the differentiation and activation of T cells and B cells
(33, 41–43). From GWAS studies, we also know that genes SH2B3,
TAGAP, PTPN2, CD28, CTLA4, CIITA, and IL2/IL21 are involved
in T-cell activation. Interleukins IRAK1, IL12A, IL18RAP/IL18R1,

IL1RL1/IL1RL2 (44) are in turn responsible for the differentiation of
inflammatory T cells CD4, while genes IL21/IL2, RGS1, MAP3K7,

CCR1,2,3, CCR4, UBASH3 are responsible for the migration of
cytolytic effector T cells (44). It has also been documented that
cytokines secreted by gluten-specific T cells are important for the
activation and proliferation of CD8+ intraepithelial lymphocytes
(IELs) in celiac disease. Thus, it follows that gluten-specific T cells
play a key role in the response to gluten peptides, thereby leading
to inflammation, anti-TG2 antibodies production, and atrophy of
intestinal villi (45–47).

Alteration analyses of regulatory regions suggest that adaptor
cells (gluten-specific T CD4 + cells and B cells) are strongly
associated with celiac disease and that specific genes may contribute
to the development of celiac disease through innate immune
cells, epithelial cells, and D8+ TCRαβ intraepithelial cytotoxic
lymphocytes (48, 49). In addition, mapping of expression quantitative
trait loci (eQTL), signaling pathway analyses, and functional SNP
analyses have established associations between celiac disease and T
cell receptor (TCR), NFκB, and interferon (IFN) signaling pathways
and several candidate genes like UBASH3A, CD28, CSK, CD274,

SH2B3, and STAT4 (49–51). These reports confirm the role of CD4+
T cells in celiac disease but do not, however, define how single
nucleotide changes associated with CD affect gluten-specific CD4T
cells upon activation, most likely due to an incompletely understood
mechanism of regulation of the stimulation response in gluten-
specific T cells. In a 2018 study, Harley et al. showed that transcription
factors (TFs) occupy multiple loci associated with individual complex
genetic disorders, including celiac disease encompassing STAT4,
STAT5A, STAT5B, T-BET, and transcription factors from the NFκB
pathway.While many of these are involved in the regulation of CD4+
T-cell activation (52–55), the role of TFs as well as the transcriptional
and epigenetic response in gluten-specific T cells activation has not
been described, nor has the role of CD-associated genetic variants in
these dynamic processes.

3. Infections as risk factors for celiac
disease

Infections are among the environmental factors that may
underline the etiopathogenesis of autoimmune diseases. The
interdependencies between the influence of an infectious agent and
the disease occurrence are usually complex and multidirectional.
According to Lerner et al. infectious agents that could induce CD
autoimmunity include Cytomegalovirus, Rotavirus, Enterovirus,
Pneumococcus, Bacteroides species, Campylobacter Jejuni,

Helicobacter Pylori, Mycobacterium tuberculosis, hepatitis B
virus. Contrary to this, some studies show potential protective effects
of Cytomegalovirus, Toxoplasma gondii, H. Pylori, Rubella, and
Epstein-Barr virus. It should be noted that the results of the research
on Cytomegalovirus and H. Pylori infections are contradictory (56).
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Jiang et al. in a meta-analysis showed that infections are
associated with a 37% increase in the odds of CD, particularly
among hospitalized patients. The risk was not modulated by the
time of infection, type of infectious agent, and site of infection (57).
Moreover, patients with CD have an increased risk of infections.
Possible mechanisms for this phenomenon include hyposplenism,
malnutrition, vitamin D deficiency, increased mucosal permeability,
and altered immune response determined by genetic risk factors
(58, 59).

Given the role of IFN secreted by host cells upon viral infection
(60) in the pathophysiology of celiac disease—this cytokine has been
suggested to promote T helper type 1 (Th1) responses in CD and
its high levels can be observed in the duodenal mucosa from celiac
patients (61)—it is speculated that viral infections are greater than
bacterial risk factors for CD.

3.1. Viral infections

The first observations on the relationship between viral infection
and CD come from the 1980s. Kagnoff et al. postulated that viruses
may play a role in the pathogenesis of CD via an immunological
cross-reaction between antigenic determinants common to the
viral protein and gluten. However, this mechanism has not been
confirmed (62). That observation was the beginning of further
research. Beyerlein et al. analyzed data on nearly 300,000 infants
from Germany. They revealed that infections of the digestive tract
in the first year of life correlate with a higher risk of CD later in
life (63). Also, a prospective cohort study based on The Norwegian
Mother and Child Cohort Study including 72,921 children suggests
that early-life infections may have a role in CD development (64).

Kemppainen et al. made similar observations after analyzing the
infection data from 6,327 children from USA and Europe that carry
HLA risk genotypes for CD. The researchers showed an increased
risk of CD in children with recurrent infections of the digestive and
respiratory tracts. The risk was modified by HLA genotype, gluten
consumption, breastfeeding, and rotavirus vaccination status, and
what is important, the risk was lower in children vaccinated against
rotavirus (65).

Moreover, interesting are observations of Lindfors et al. who
investigated the correlation between viral exposures alone or together
with gluten and the risk of CD autoimmunity in 83 genetically
predisposed children whose stool samples were collected monthly
up to 2 years of age. The authors observed an interaction between
enteroviral exposure and gluten intake suggesting that infections
early in life and high gluten intake may trigger CD development
in genetically predisposed children. Furthermore, they observed
that children consuming bigger amounts of gluten had a higher
risk of CD autoimmunity. This indicates the cumulative effect of
gluten consumption and enterovirus infections in children at-risk of
CD (66).

The mechanism of action of viruses in the context of gluten
intolerance is not fully understood. One of the hypotheses is that
gastrointestinal infections can lead to changes in the permeability of
the intestinal barrier, thus leading to increased gluten penetration.
The structure of the virus may be similar to gluten, which in turn
may lead to an initiated anti-gluten response. Kagnoff et al. and
Lähdeaho et al. in their researches demonstrated the presence of
antibodies to viral peptides (62, 67). Viruses from the Reoviridae

family are segmented, double-stranded RNA viruses (dsRNA) that
cause infections in humans of all ages (68). These infections are often
asymptomatic. Specific reovirus infections stimulate characteristic
inflammatory pathways, thus leading to T-cell responses to food
antigens, which in turn impairs the development of tolerance to the
food antigen (69). Reovirus infection stimulates interferon type 1
signaling and increases the expression of the interferon regulating
factor 1 (IRF1) transcription factor. Then it blocks the transition of
T cells to regulatory T cells and stimulates the Th1 response to food
antigens which may lead to the development of celiac disease (70, 71).

Moreover, Assa et al. observed that individuals born in May
and June present a higher risk of CD (72). It may be associated
with rotavirus infection, which peak occurs in early winter-the same
time as exposure to gluten in children born in May and June (72).
Additionally, the risk of CD is higher in children, which had a
gastrointestinal infection in the first year of life (63).

However, more research is needed to fully understand
the importance of viral host interactions and infection in
CD development.

3.2. Bacterial infections and antibiotics use

Compared to the extensive, but constantly updated, knowledge of
viral risk factors for CD, less is known about bacterial infections. The
results of various studies on H. pylori infections both in children and
adults are contradictory. In the meta-analysis Amlashi et al. observed
a negative association between H. pylori and CD autoimmunity,
implying a mild protective role of H. pylori against celiac disease
(73). On the other hand, there are indications that Campylobacter

can increase the risk of CD (74–76). The mechanism that could
explain the relation between bacterial infections and CD is molecular
mimicry (77).

However, antibiotics seem to increase the risk of CD through
their negative effect on gut microbiota (78). Microbiome evolves
during the first years of children’s lives to stabilize at 3 years of age
and present microbial composition similar to adult microbiota with
the dominance of Firmicutes and Bacteroidetes phyla (79). Healthy
gut microbiota allows for the maturation of the immune system and
plays a role in the degradation of gluten in the gastrointestinal tract,
affecting this way the immunogenicity of gluten peptides (78).

In meta-analysis higher doses of antibiotics correlated with a
higher risk of CD. Yet, after subgroup analysis, only penicillin V was
found to increase the risk of CD (57). An observational study of two
nationwide cohorts including more than 1.7 million children from
Denmark and Norway, among which 3,346 were diagnosed with CD,
showed a positive association between antibiotic use in the first year
of life with a diagnosis of CD. This relation was dose-dependent (78).
Contrary to these outcomes, a systematic review analyzing data from
six studies, showed no evidence of an association between prenatal or
postnatal antibiotic exposure and CD (80).

4. Type of delivery, breastfeeding, and
gluten introduction to the diet

4.1. Type of delivery

In the past 10 years, the global rate of cesarean section has
increased to 21%, and every year it increases by 4%. In some regions
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of Africa, the rate of cesarean section is 4%, in Canada, the c-section
rate is 27.1%, and in some countries of Latin America almost 60%
(81, 82).

Children delivered by cesarean are exposed to different
microbial ligands and bacterial colonization when compared to
neonates born vaginally (83). Here, it is worth recalling the
Danish, population-based cohort study on two million infants.
The analysis showed that there is no association between cesarean
delivery and CD but at the same time, cesarean delivery was
positively correlated with such diseases as asthma, inflammatory
bowel disease, or immune deficiencies (84). Moreover, Koletzko
et al. reported a lack of association between cesarean delivery
and the risk of CD or CD autoimmunity in 6,087 genetically
predisposed children (85). On the other hand, a multicentre,
case-control study showed, that the type of delivery may affect
gut microbiota and enhance the risk of CD (86). Finally, in
2022 Yang et al. performed a meta-analysis of 11 observational
studies and found that C-section is not associated with CD in
offspring (87).

However, it is worth noting the study by Mårild et al. who
observed that elective, but not an emergency, cesarean delivery
was associated with a higher risk of CD (88). In this type of
cesarean section, the birth must occur before the onset of labor
thus children do not have initial contact with maternal vaginal
microbiota in the birth canal. Moreover, mothers undergoing
elective cesarean birth and those with an indication for scheduled
deliveries are also more likely to receive antibiotic prophylaxis
compared with mothers undergoing emergency C-sections. So
perhaps it would be more valuable to study the impact of the
antibiotic therapy used at C-section and the type of C-section
rather than the impact of C-section overall on the development
of CD.

4.2. Breastfeeding

Low- and middle-income countries generally have high rates
of breastfeeding initiation of over 90%, while in high-income
countries, there is a wide variation of breastfeeding initiation—
countries such as Italy, Australia, or Nordic countries report rates
of over 90%, while France, UK, USA, Republic of Ireland report
lower rates (89). Breast milk is a complete source of nutrients
for newborns, but also contains immunogenic molecules, which
are immune active and affect the immune response of mucosal.
Therefore, for a long time, there were suggestions, that breastfeeding
may protect against CD—a meta-analyse performed in the 2006
year showed, that breastfeeding during gluten exposure reduced
the risk of CD when compared with the exposition to gluten after
stopping breastfeeding (90). Yet actual data do not show evidence
for the preventing impact of breastfeeding. In a study performed
by Lionetti et al. breastfeeding did not affect the risk of CD
among children at-risk (91). Similar observations had Vriezinga
et al. in the multicenter study (92). According to a systematic
review by Silano et al., there is no evidence that breastfeeding
duration can impact CD development in predisposed children (93).
Finally, Szajewska et al. in a meta-analysis including 21 publications,
showed that breastfeeding does not affect the development of
CD (94).

4.3. Amount and time of gluten introduction
to the diet

Besides, it is worth considering the quantity and timing of gluten
introduction. Andrén Aronsson et al. also showed that the age of
first gluten exposition is not an independent risk factor of CD (95).
Similarly, in an earlier mentioned study by Lionetti et al. delayed
introduction of gluten did not affect the risk of CD (91). Vriezinga
et al. observed that the introduction of gluten between 16 and 24
weeks of age did not decrease the risk of CD by 3 years of age
(92). In a meta-analysis performed by Szajewska et al. time of gluten
introduction also did not impact CD development (94).

However, greater amounts of gluten seem to increase the risk
of CD in genetically predisposed individuals. This evidence brought
three separate cohort studies published in 2019 by Andrén-Aronsson
et al. (96), Lund-Blix et al. (97), Mårild et al. (98). Andrén-Aronsson
et al. followed for about 9 years 6,605 children. They observed that
in genetically predisposed children, 20.7% of those who consumed
the reference amount of gluten developed CD at 3 years. Among
the group of children that consumed daily 1 g more of gluten, CD
developed in 27.9% of children (96). Mårild et al. revealed that 1-
year-olds with the highest gluten intake had a 2-fold greater hazard of
CD, and the incidence of CD increased with higher cumulative gluten
intake throughout childhood (98). Finally, Lund-Blix et al. conducted
population-based research on 67,608 children independent of HLA.
Increased gluten intake at 18 months was associated with a modestly
increased risk of CD later in childhood. The association with gluten
amount was independent of the age at the introduction of gluten.
Gluten introduction ≥6 months was also an independent risk factor
for CD (97). Also, the latest study by Aurrichio et al. showed that
among 83 children predisposed to CD, 27 children who developed
CD had eaten significantly more gluten in the second year of life than
the remaining children who did not develop CD by 6 years of age (15).

Some of the studies cited in the article indicate the cumulative
effects of individual factors. For example, in the study by Lindfors
et al. there is an interaction between enteroviral exposures and higher
gluten intake early in life indicating cumulative effects of these factors
in CD development (66). Herein, we can find potential relation
between increased gut permeability as an outcome of viral infection
and subsequent gluten penetration. A similar relationship was
observed in another incident case-referent study—it was observed
that frequent infectious episodes in early life increase the risk
of later celiac disease. Furthermore, there was a synergistic effect
between gastrointestinal infections and the amount of daily gluten
consumption, especially among infants for whom breastfeeding had
been discontinued prior to gluten introduction (99).

It seems that viruses and gluten consumption may share
a common pathway—a vesicular pathway regulating the
innate/inflammatory response to viral ligands and bioactive
dietary peptides—and trigger CD autoimmunity. The mechanism
of this relation could be explained by gliadin peptide P31–43
activation of the INF alpha-mediated immune response to viruses
in intestinal cells and an enterocyte cell line, CaCo-2 (14). The
P31–43 peptide shows similar sequence homology with hepatocyte
growth factor-regulated tyrosine kinase (HRS), which is a major
regulator of endocytic vesicle maturation. Silencing or mutation of
this protein contributes to delayed vesicle transport and activation
of several different pathways. P31–43, therefore, delays endocytic
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movement in the same way as “altered” HRS leading to the
same biological effects, including activation of inflammatory
pathways (100).

To conclude it is worth recalling the ESPGHAN
recommendations published in the 2016 year (101). Experts
state that there is no evidence that neither breastfeeding nor
breastfeeding during gluten introduction reduces the risk of CD. It is
recommended to introduce gluten into infants’ diet between 4 and
12 completed months of age—the time of gluten introduction to diet
does not have an impact on overall CD development, yet the earlier
introduction of gluten is associated with earlier development of CD
autoimmunity. There is no recommendation regarding the type and
the amount of gluten to be used at introduction but ESPGHAN
suggests avoiding large quantities of gluten during the first month
after gluten introduction and during infancy (101).

5. Western lifestyle and celiac disease

5.1. Western diet

Western-style diet’s (WD) characteristic (Figure 2) is strongly
associated with calorie-dense foods, rich in saturated fatty acids,
simple carbohydrates, and animal proteins (102, 103). The term is
commonly used but there is no scientifically accepted definition
of WD (104). Its relationship with non-communicable diseases
(NCDs), e.g., obesity or diabetes is highly discussed (105). However,
there is generally little known about the impact of a western-style
diet on CD. Although several causal links could be suggested, it
has not been widely investigated. The possible influence of WD
on CD could be associated with changes in intestinal microbiota,
mucosal inflammation, and an increase in intestinal permeability
further leading to bacterial translocation, endotoxemia, and systemic
low-grade inflammation (106–108). WD’s influence on CD seems
important, as—according to the current data—its role in the
pathogenesis and clinical course of other intestinal diseases, such as
inflammatory bowel disease (IBD), is also suggested and investigated
(109). Moreover, diet and general lifestyle are major factors of
chronic NCDs and can harm immune responses and stimulate
the development of a variety of inflammatory diseases (100, 110).
According to the Christ et al. study, NLRP3 mediates trained
immunity following a western-style diet and thus could mediate the
potentially deleterious effects of trained immunity in inflammatory
diseases (111).

The intestinal barrier comprises the mucus layer, intestinal
epithelial cells, immune cells, gut microbiota, tight junctions
located in the epithelial layer of the intestinal wall—which
regulates the intestinal integrity—and gut-associated lymphoid
tissue (GALT) (112). Any disruption in the components of the
intestinal barrier—the physical barrier to luminal inflammatory
molecules—increases its permeability, which can further implicate,
e.g., inflammation in various tissues, including intestinal tissues
(102, 106, 113, 114). Dietary fats expose the intestinal barrier
and enhance the permeation of luminal contents into the mucosal
and submucosal layers in proximity to resident immune cells,
which promotes mucosal inflammation (115, 116). Moreover, high-
fat diets (HFD) can enhance lipopolysaccharide (LPS) uptake and
increase concentrations of bacteria-derived LPS in the circulatory
system (117). Furthermore, increased permeability can also be

driven by HFD-dysbiosis (118). Impaired mucosal integrity, which
results in microbial translocation and increased concentrations of
LPS in the bloodstream (LPS can also enter the circulation after
incorporation into bile acid micelles) can lead to endotoxemia, and
further low-grade systemic inflammation (119). Further, receptors
such as NOD-like, C-type lectin, or toll-like receptors (TLR4)
activate the NF-κB pathway increasing pro-inflammatory response
and increasing concentrations of pro-inflammatory cytokines and
chemokines (120). Within a short time after ingestion of saturated
fats, TLR4 is downregulated and LPS translocation is increased (121).

Besides a high amount of fat, WD is also rich in simple
carbohydrates, which can potentially and negatively affect intestinal
permeability, possibly due to intestinal dysbiosis (122). In the study
of Fajstova et al., mice fed with a high-sucrose diet had increased
intestinal permeability (without damaged colon mucosa) and a
higher state of immune system activation [increased proportion of
neutrophils and T helper 17 cells (Th17) in the spleen, and increased
proportion of Ly6Clow, Lyc6Chigh, and macrophages in colon tissue]
when compared with mice fed with control diet (120). As the authors
highlighted, the negative effect of a high-sucrose diet on intestinal
inflammation was not only associated with transferred microbiota
but was also dependent on TLR4 signaling. Similar results were
obtained by Laffin et al. where mice fed with a high-sugar diet
(50% of sucrose) had increased permeability and pro-inflammatory
cytokines concentrations, impaired gut microbiota, and reduced
short-chain fatty acids (SCFA), and increased susceptibility to colitis
(123). Frequent and high intake of animal protein is also specific for
WD. However, it remains unknown how and if WD through high-
protein content can affect intestinal permeability. Oddly enough,
an animal study by Zhu et al. suggests that low protein intake can
negatively affect the intestinal barrier (124). Possibly, animal protein
can even have a positive influence on intestinal permeability, due to
the high content of glutamine and tryptophan (125, 126). However,
WD-derived meat is usually highly processed, and therefore, high
content of saturated and trans fatty acids can shift the balance in
favor of the negative influence of WD-derived meat. Further, WD is
also generally low in fresh fruits and vegetables and therefore is low
in anti-inflammatory and antioxidant nutrients (e.g., polyphenols,
minerals, or vitamins), which additionally predisposes to low-grade
chronic inflammation and possibly increased intestinal permeability
(127, 128). For example, in in vitro study by Amasheh et al., quercetin
restored TNF-α-induced intestinal permeability by downregulating
claudin-2 concentrations (129, 130). A low intake of fruits and
vegetables may result in a low intake of dietary fiber, which, further,
predisposes to impaired intestinal barrier through reduced SCFA
production and negative changes in intestinal microbiota (131).

It has been proven that anti-inflammatory diets based on the
Mediterranean diet (MD)models can reduce the risk of inflammatory
diseases, but still there are a lot of questions about this relation
(132–134). Barroso et al. in the prospective analysis of data from the
Generation R Study including 1997 children, examined associations
between dietary patterns of children at 1 year with the occurrence
of CD autoimmunity at 6 years. There was a correlation between
the consumption of a diet that based on vegetables and grains and
low amounts of refined cereals and sweet beverages, with lower odds
of CD autoimmunity. These outcomes suggest that early-life dietary
patterns can have an impact on CD development (135). Furthermore,
Auricchio et al. conducted a study on a cohort of 239CD genetically
predisposed infants and suggested that not only the amount of gluten
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FIGURE 2

The characterization of a western-style diet. This dietary model is a high-caloric diet, rich in saturated fats, refined carbohydrates, animal protein, salt, and
food additives. At the same time, it is low in fiber, vitamins, and minerals (102, 103).

consumed is an important factor influencing CD development, but
also dietary patterns modulate this risk. Twenty-seven children who
developed CD by the age of 6 years had different dietary patterns
than the remaining 56 controls, i.e., predisposed children who did
not develop the disease. CD children consumed greater amounts of
carbohydrates, particularly starch and sugars, and lower amounts of
legumes, vegetables, fruits, and milk products. This study suggests
that children who developed CD consumed a diet that was more
similar to the pro-inflammatory WD than to the anti-inflammatory
Mediterranean diet (15).

5.2. Physical activity

Important for the health of the immune system is physical
activity, which may affect the production of pro-inflammatory
cytokines and inflammation that underline the development of
many diseases (136). The animal study showed that physical activity
increased the Th17 level, which plays important role in autoimmune
diseases, including CD (137, 138). Moreover, physical activity
decreases the risk of autoimmune diseases. The study showed that
physical activity increases Th1 production and interleukin 6 (Il-
6) in muscle, which induces an anti-inflammatory response (139).
However, about 31% of the worldwide population is inactive (140),
which also may be a factor responsible for the increasing incidence
of autoimmune diseases. Furthermore, low levels of physical activity
increase the risk of being overweight and obese. The prevalence
of overweight and obesity in patients with CD increases and
varies from 6 to 39% and from 3 to 13%, respectively (141–145).
Obesity promotes chronic, systemic low-grade inflammation and is
linked to increased production of pro-inflammatory cytokines and
chemokines through endocrinal active white adipose tissue (146).
Considering the increasing prevalence of both CD and obesity,

studies contemplating obesity as one of the risk factors for developing
CD would be interesting.

5.3. Pollutants

Gaylord et al. analyzed persistent organic pollutant (POP)
exposure in a cohort of 30 children aged 3–12 years with CD and 58
non-celiac patients aged 5–11 years presenting with gastrointestinal
complaints. Authors observed the statistically significant association
of POPs, especially p,p

′

-dichlorodiphenyldichloroethylene (DDE)
with the manifestation and development of celiac disease (147). What
is interesting, the meta-analysis by Wijarnpreecha et al. shows that
current smokers have a significantly decreased risk of developing CD
compared with never-smokers (148).

5.4. Gut microbiota changes

WD changes intestinal microbiota composition and increases the
risk of gut dysbiosis which conversely is linked to a higher risk of
CD (108, 114). The intestinal microbiota of people consumingWD is
characterized by increased Firmicutes: Bacteroidetes ratio (105).

What is interesting, it seems that the HLA genotype impacts gut
colonization (149). Herein, Olivares et al. observed in a cohort of
healthy infants with at least one first-degree relative with CD, that
infants carrying the HLA-DQ-2 haplotype have different microbiota
composition than non-HLA-DQ-2/8-carriers. Children with a high
risk of CD had increased Firmicutes and Proteobacteria proportions
but reduced Actinobacteria proportions compared to those with
low genetic risk (150). HLA-DQ-2 carriers had significantly less
Bifidobacterium and unclassified Bifidobacteriaceae proportions
and more Corynebacterium, Gemella, Clostridium, unclassified
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Clostridiaceae, unclassified Enterobacteriaceae and Raoultella

proportions (150). On the other hand, gut microbiota alterations
seem to contribute to the development of CD (108). In the same
cohort, Olivares et al. observed that the diversity of gut microbiota
in healthy children increased over time—increases in Firmicutes

families. Those who remained healthy showed increases in TNF-α
correlated to Bifidobacterium spp. and increased relative abundance
of Bifidobacterium longum. Increased proportions of Bifidobacterium
breve and Enterococcus spp. and reduction in secretory IgA (sIgA)
levels were associated with CD development (151). Ou et al.
characterized the microbiota of the small intestine in children
with CD and controls. They observed that a significant fraction
constituted rod-shaped bacteria—Clostridium spp., Prevotella spp.,
and Actinomyces spp.,—suggesting that it could be an important risk
factor for CD, contributing to the increase in disease incidence in
children below 2 years of age during Swedish CD epidemic (152).

6. Recommendations for the prevention
of celiac disease

Actual data are insufficient to compose evidence-based
recommendations for CD prevention. Yet, considering the latest
findings, we can present the following directions.

First, we underline the role of theMediterranean diet as a possible
preventive approach to CD (15, 135). MD is characterized by a high
intake of vegetables including legumes, olive oil, fresh, seasonal fruits,
daily intake of whole grains, and regular consumption of nuts and
seeds. Furthermore, according to MD’s dietary pattern, fish should be
consumed 2–3 times a week, dairy several times a week in moderate
amounts, and meat should be consumed in moderate amounts. In
addition to dishes should be used herbs and spices, and sweets should
be limited. Three to four eggs per week and a moderate intake of
wine can also be part of the MD diet (153). MD has the potential
of a gut microbiota modulator, since consumption of MD increases
the production of favorable bacteria and their metabolites, whereas
dysbiosis and LPS levels decrease. In contrast to occidental dietary
patterns, MD is associated with greater gut microbiota diversity and
better function and integrity of the gut barrier (105).

Furthermore, taking into account the outcomes of several studies
indicating the impact of viral infections on CD development, we
suggest considering the preventive role of vaccination (65). Finally,
it seems that in the prevention of CD bigger quantities of gluten
should be avoided (101). Moreover, the latest studies indicate the
cumulative effect of gluten and enterovirus infections, so it seems that
especially during gastrointestinal infections gluten intake should be
limited (66).

7. Conclusions

In conclusion, apart from genetic and immunological factors,
environmental determinants play an important role in the

pathogenesis of CD. Viral infections in early life seem to be
important agents predisposing to CD development. On the other
hand, current research does not confirm the protective effect of
natural childbirth and breastfeeding on celiac disease. Regarding
gluten introduction to an infant’s diet—evidence shows that the
time of gluten introduction does not have an impact on overall
CD development but it seems that greater amounts of gluten can
increase the risk of CD in genetically predisposed individuals.
Furthermore, a western lifestyle, including a high-fat and high-
sugar diet and a diet high in gluten, particularly gliadin, may
be associated with a higher prevalence of CD. The predisposing
effect of a WD on the development of CD may be related to
changes in intestinal microbiota, intestinal permeability, or
mucosal inflammation. Further research is needed to expand the
knowledge of the relationship between environmental factors and the
development of CD. Further validated studies are needed to define
evidence-based preventive interventions against the development
of CD.
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