
ORIGINAL RESEARCH
published: 24 February 2022

doi: 10.3389/fnut.2022.834557

Frontiers in Nutrition | www.frontiersin.org 1 February 2022 | Volume 9 | Article 834557

Edited by:

Ivan Salmerón,

Autonomous University of

Chihuahua, Mexico

Reviewed by:

Tanase Corneliu,

George Emil Palade University of

Medicine, Pharmacy, Sciences and

Technology of Târgu Mureş, Romania
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Several parameters, including particle size, solvent, temperature, and extraction method,

affect phenolic compounds’ extraction yield from a plant matrix. Considering the wide

availability of sugarcane bagasse (SCB), this study analyzed the effect of different

extraction methods and geographical origins on the yield, quality, and antimicrobial

activity of phenolic compounds from SCB extracts. Samples from three geographical

locations (Veracruz, Mexico; Santa Rosa, Texas, USA; and St. Mary, Louisiana, USA)

were analyzed. Extraction was performed using an orbital shaker or ultrasonic bath

at various times at a fixed temperature of 50◦C, with 90% ethanol or methanol. The

highest yield (5.91mg GAE) was obtained using an orbital shaker for 24 h with 90%

methanol as the solvent. HPLC-MS identified desferrioxamine b, baicalein, madecassic

acid, and podototarin at different concentrations in all three SCB samples. The

antimicrobial activity of these compounds was tested against Escherichia coli K12,

Bacillus cereus, Enterobacter aerogenes, Streptococcus aureus, and Enterobacter

cloacae. The antimicrobial activity was also tested against modifications of the

Saccharomyces cerevisiae: the MutL Homolog 1 (MLH1), Slow Growth Suppressor

(SGS1), O-6-MethylGuanine-DNA methyltransferase (MGT1), and RADiation sensitive

(RAD14), carrying mutations related to different cancer types. In addition, the results

were compared with the effect of ampicillin and kanamycin. The SCB extracts showed

up to 90% growth inhibition against B. cereus at 200–800µg/mL and 50% growth

inhibition against S. aureus at 800µg/mL. The inhibitory effect against modified yeast

SGS1, RAD14, andMLH1 was 50–80% at 800µg/mL. The percentage of inhibition and

the phenolic compound contents differed depending on the origin of the SCB sample.

These findings are promising for using this industrial byproduct to obtain compounds for

nutraceutical, food additive, or medical uses.
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INTRODUCTION

During harvest season, every sugar mill worldwide processes
large quantities of sugarcane, generating vast amounts of bagasse
as a byproduct. For example, in the United States (the 10th
largest producer worldwide), Louisiana milled 15 million tons of
sugarcane (1) in 2018, producing around 4 million tons of SCB.
In Mexico, the state of Veracruz milled over 20 million tons of
sugarcane in 2015, producing over 5 million tons of SCB (2).
This byproduct can be used as a potential source of phenolic
compounds (PhCs) and has beneficial antioxidant properties (3).

Several parameters, such as particle size, solvent, temperature,
and extraction methods, ensure the best extraction yield of PhCs
from a plant matrix. As the first step in extracting polyphenols
from plants, sample grinding is crucial for obtaining the highest
yield of the targeted compounds. In addition, a smaller particle
size offers a greater surface area, allowing better interaction of the
chosen solvent with the samples; however, this may not always be
true because tiny particles can also lead to aggregation, affecting
the overall extraction.

The combination of different parameters (particle size,
temperature, method, and solvent) can result in different
extracted PhCs. The most common PhCs extraction methods
include Soxhlet extraction, maceration, supercritical CO2, and
sonication (4). The type of solvent used is also essential because
PhCs have different chemical properties and polarities that can
affect their solubility. Polar solvents are preferred solvents to
extract PhCs from plant matrices, among which ethanol is a
suitable solvent and is safe for human consumption. On the
other hand, methanol is better to extract polyphenols with low
molecular weights, and acetone is suitable for flavanols (5).

The temperature must also be controlled to preserve the
PhCs while drying the plant matrix and extraction. Increasing
temperature has been correlated with the loss of compounds and
their antioxidant activity (6). As every plant is unique, intensive
research has been undertaken to determine the best parameter
combination for PhCs extraction. For example, for extraction
from Guiera senegalensis, 50% ethanol and 70% ethanol using an
ultrasonic water bath for 2 h were reported as the best solvents
and conditions (7). However, for Pinus densiflora Bark, 20%
ethanol, 40% ethanol, or 20% acetonitrile at 60◦C for 9 h in an
isomantle resulted in the highest PhCs extraction (8).

PhCs has been extracted from sugarcane juice usingmethanol:
ammonia (99.5:0.5 v/v), followed by concentration at 40◦C
using roto-evaporation (9). PhCs from sugarcane has also been
extracted using 50% ethanol followed by fractionation with ethyl
acetate (10) or 60% ethanol using an ultrasonic bath at 60◦C (11).

The PhCs in sugarcane varies because of the extraction and
phytochemical profiles (sugarcane wax, juice, and leaves) and
its products. For example, sugarcane wax contains long-chain
fatty alcohols and fatty acids, various phytosterols, steroids,
and high levels of terpenoids (12). The sugarcane juice color
was previously assumed to be attributed to plant pigments.
However, it was recently discovered to be derived from different
components classified into four major classes: plant pigments,
polyphenolic compounds, caramels, and degradation products of
sugars condensed with amino derivatives (12). Luteolin, tricin,

apigenin, caffeic acid, hydroxycinnamic acids, and sinapic acid
have been reported to be present in sugarcane juice (9). HPLC
micro fractionation of the methanolic extract of sugarcane leaves
successfully revealed various flavones –O– and –C– glycosides
(12). Sugarcane tops, including leaves and immature cane, have
also been reported to contain PhCs such as apigenin, caffeic
acid, hydroxycinnamic acid, albanin A, quercetin, australone
A, and moracin M (13). Mill syrups, brown sugar, molasses,
and non-centrifugal sugar are byproducts of sugar processing
from sugarcane. In addition to the PhCs mentioned above,
intensive research has identified three compounds, tricin7-(2′-
rhamnosyl)-α-galacturonide, orientin-7, 3′-dimethyl ether, and
iso-orientin-7,3′-O-dimethyl ether (12), from these byproducts.
The compounds genistin, p-coumaric acid, genistein, and
quercetin have been identified by ethanolic extraction of
SCB (11).

The PhCs presence and its concentration are also affected
by several factors such as its geographical location, rainfall,
temperature, microorganisms, or herbivore exposure. For
example, plants produce flavonoids to protect them from UV
rays, while anthocyanins production is related to temperature.
Therefore, the UV index in different locations and the average
temperature can cause differences in the concentration of the
metabolites mentioned above (10). In another study, green tea
showed more total catechins at higher elevations and high
content of free amino acids at lower temperatures (14). The
secondary metabolites are also related to plants flowering,
such as flavonoids, PhCs, and alkaloids, to name a few. For
example, in comparing sugarcane flowering, higher temperature,
and low precipitation negatively affected the floral stimulus of
sugarcane (15).

Microbial bioassays can be used to estimate the activity of
a substance to stimulate or inhibit the growth of a microbial
test organism. A microbial bioassay requires practical and fully
characterized microbial strains. Culturable and non-culturable
techniques are used to identify and characterize microbial strains.
The agar diffusion method, widely used in antibiotic assays,
relates the size of the zone of inhibition to the antibiotic
assay dose (16). The technique performed in 96-well-microplates
required fewer extracts and produced reproducible results
to determine the minimal inhibitory concentrations of the
possible bactericidal or bacteriostatic effects (17). A previous
study successfully tested SCB extracts against bacterial strains
using 96-well-microplates. The pigment MTT was used as a
growth indicator to avoid the interfering of microorganisms
cells aggregation, the sugarcane extracts color, and compounds
precipitation (3, 17).

Few studies have analyzed the microencapsulating potential
of SCB phenolic compounds that can be used as additives
in functional foods. This research’s novelty lies in utilizing
SCB waste as a new source of phenolic compounds and their
comparison between three regions and two different countries.
Furthermore, this research aims to determine the effect of
different extraction methods and geographical origins on the
TPC yield, composition, and characteristics of SCB extracts and
their antimicrobial effects against different bacterial strains and
modified yeast.
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MATERIALS AND METHODS

Sugarcane Bagasse Sample Preparation
The SCB was obtained from three locations: (a) Mahuixtlan, Ver,
Mexico, (b) Santa Rosa, TX, US, and (c) St. Mary, LA, US. All
three samples were oven-dried (Blue M oven, Lindberg/MPH,
Riverside, MI, USA) at 55◦C for 24 h. After drying, the samples
were ground using a Wiley mill Model 4 (Thomas Scientific,
Swedesboro, NJ, USA) and passed through a 500µm sieve.
All samples were vacuum sealed and stored at −20◦C until
further use.

Chemicals
Gallic acid was purchased from ACROS Organics (ACROS
Organics, Geel, Belgium). Sodium carbonate anhydrous ACS
reagent was purchased from Sigma-Aldrich (Sigma-Aldrich,
St. Louis, MO, USA). Folin-Ciocalteu was purchased from
MP Biomedicals (MP Biomedicals, LLC, Irvine, CA, USA).
Ethanol and methanol were purchased from Alfa Aesar
(Alfa Aesar, Tewksbury, MA, USA). HPLC grade methanol
and MTT tetrazolium were purchased from MilliporeSigma
(MilliporeSigma, Burlington, MA, USA). Other chemicals used
were of analytical grade and were obtained from Alfa-Aesar.

Nutrient Composition of Sugarcane
Bagasse Samples
The nutrient composition of SCB samples was assessed using the
following methods. Ash content by AOAC 942.05, the minerals
were determined by digestion of samples in the microwave
and inductively coupled plasma spectrometer (AOAS 2011.14).
The lignin content by filter bag technique, method 9, and
AOAZ 973.18.

Analysis of Extraction Methods of
Bioactive Compounds
The combination of parameters (temperature, method, and
solvent) can lead to different results on the yield of extracted
PhCs. The most common extraction methods of PhCs from
plants are soxhlet, maceration, supercritical CO2, and sonication
(4). The extractionmethods of PhCs selected were sonication and
orbital shaker because they do not need constant supervision, are
easy to handle, and are affordable. The choice of solvents was
methanol and ethanol because of their low cost, low risk, and
proven in PhCs extraction; the ratio solvent-water ranged from
40 to 80% in several studies (4, 11, 13, 18–20). Therefore 90% was
selected to give a new insight. Finally, the temperature was fixed
to 50◦C as a middle point among the temperatures used in other
studies to preserve the extracted PhC and its antioxidant activity
(9, 11, 21).

For the extraction of phenolic compounds, a Central
Composite Experimental Design, with a quadratic model was
conducted (Design Expert 11, STAT-EASE INC, Minneapolis,
MN, USA). Two different solvents (90% ethanol or 90%
methanol) were used. Three extraction methods were used at a
fixed temperature of 50◦C: an ultrasonic bath for 30min (CPXH
series Heated Utrasonic Cleaning bath, ThermoFisher, Waltham,
MA, USA), orbital shaker for 24 h at 120 rpm, and orbital shaker

for 48 h at 120 rpm (MaxQ HP Incubated Tabletop Orbital
Shaker, ThermoFisher Scientific). The experimental design table
is given as Supplementary Material. One gram of sample
mixed with 20mL of either ethanol or methanol was used for
every treatment condition. After extraction, all samples were
centrifuged for 10min at 3,000× g. The supernatant was filtered
through aWhatman filter paper grade 1 and stored at−4◦C until
further use.

Lyophilization Sugarcane Bagasse
Extracted Phenolic Compounds
The PhCs were extracted using the best treatment combination
from the extraction analysis from SCB from all three locations
and concentrated by rotoevaporation (Heidolph Laborota,
4000 efficient, Schwabach, Germany). After collecting the
concentrated extracts, all samples were frozen with liquid
nitrogen and dried by lyophilization for 48 h (FreeZone
Labconco, Kansas City, MO, USA). The lyophilized powder
samples were then stored at−4◦C until further use.

Total Phenolic Content
The TPCwas used as a response variable to test each combination
of PhCs extraction methods. The TPC was measured following
the Folin-Ciocalteu reagent method used in a previous study (3).
Briefly, 100 µL of extract from each treatment combination was
diluted by adding 900 µL of distilled water (DI water). After,
0.5mL of Folin-Ciocalteu reagent (previously diluted to 50%
with DI water) were added to each dilution. Next, all mixtures
were incubated in the dark at room temperature for 5min. After
incubation, 1.5mL of 20% sodium carbonate and 7mL of DI
water were added to each tube and vortexed. All tubes were then
incubated for 10min at 75◦C in a water bath (StableTemp, Cole-
Parmer, Vernon Hills, IL, USA). The absorbance from each tube
was then read using a spectrophotometer Genesys 10S UV-Vis
(ThermoFisher Scientific,Waltham,MA, USA) at 760 nm against
a corresponding blank reagent (either ethanol or methanol). A
series of dilutions (using either 90% ethanol or 90%methanol) of
gallic acid were used to obtain the standard calibration curve. The
TPC values were expressed as gallic acid equivalents per gram of
dry weight (GAE).

High-Performance Liquid Chromatography
All sample suspensions were prepared using 2mg of lyophilized
powder suspended in 1mL of HPLC grade methanol. The
analysis was conducted using a mass spectrometer (QTOF
Ultima, Waters, Manchester, UK) and a Waters Acquity UPLC
system (Waters, Manchester, UK). The mass spectra from all
samples were collected in the negative electrospray ionization
mode (ESI-) using eluents A (water) and B (acetonitrile)
containing 0.1% formic acid. Three different runs from each
sample were analyzed and aligned in MS-dial software to identify
the bioactive compounds with a tolerance of 0.1 Da for Ms1/Ms2
and a deconvolution parameter with a sigma value of 0.5 (22).

PLS-Discriminant Analysis
The alignment results were retrieved from Ms-dial, and a
database was created. Finally, the data were filtered, normalized,

Frontiers in Nutrition | www.frontiersin.org 3 February 2022 | Volume 9 | Article 834557

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Velázquez-Martínez et al. Sugarcane Bagasse Extracts

and subjected to PLS-DA were conducted using MetaboAnalyst
(18) web interface software for metabolomics data analysis to test
differences between SCB samples.

Antimicrobial Activity of Sugarcane
Bagasse Extracts
The antimicrobial activity of SCB extracts was measured using a
colorimetric method (19). Briefly, 50mg of lyophilized phenolic
powder from each sample was suspended in 5mL of DMSO:
DI water mixed in a ratio of 1:1. The sample mixture was
filtered through 0.25µm sterile syringe filters and diluted to
final concentrations of 0.8–800 ppm. In a microplate, 20 µL
of each sample concentration was mixed with 220 µL of the
corresponding broth medium to grow each microorganism and
10 µL of a particular microorganism in solution, previously
measured to be between 0.1 and 0.2 absorbances at 630 nm,
was added. After incubation at 30◦C for 16 h, 25 µL of MTT
was added to each well, and the microplate was incubated
again for 1 h. The percentage of inhibition was determined by
spectrophotometry in a microplate reader at 630 nm. The change
in color of MTT from yellow to purple was observed, and the
growth inhibition was calculated as:

Percentage of inhibition = 100%−
As ∗ 100

At1 + At2
(1)

Where As is the absorbance of the sample, At1 is the absorbance
of the sample without microorganisms, andAt2 is the absorbance
of the microorganism without treatment.

The effect of SCB extracts was compared with the effects
of two antibiotics, Kanamycin (KAN) and ampicillin (AMP),
which were prepared the same way as the samples. The
bacterial strains used for this experiment were Escherichia coli
K12, Bacillus cereus, Enterobacter aerogenes, Streptococcusaureus,
and Enterobacter cloacae. The antimicrobial activity was also
tested against modifications of the Saccharomyces cerevisiae:
the MutL Homolog 1 (MLH1), Slow Growth Suppressor
(SGS1), O-6-MethylGuanine-DNA methyltransferase (MGT1),
and RADiation sensitive (RAD14), carrying mutations related
to different cancer types. The effect of samples and antibiotics
against each microorganism was tested using the microplate
technique in triplicates.

UV Index, Temperature, and Precipitation
The UV index, temperature and precipitation values from the US
locations were obtained from the United States UV Index Report
(23) and the U.S. climate data (24). All data from Mexico were
obtained from the Mexican government site “National Water
Comission CONAGUA” (25).

Statistical Methods
A two-way analysis of variance with blocking was conducted
to test the interaction between the solvent and extraction
method to extract the phenolic compounds from SCB. The
statistical software used was Rstudio v.1.4.1103 (RStudio, Boston,
MA, USA).

RESULTS AND DISCUSSION

Analysis of Extraction Methods for
Bioactive Compounds
Figure 1 shows the interaction effect of solvents (Factor A: 90
% ethanol or methanol) and extraction method (Factor B:1 =

Sonication 30min, 2 = Orbital shaker 24 h, 3 = Orbital shaker
24 h) on the extracted TPC. The interaction between the solvent
type and extraction method was significant (P = 0.0148), and
each of the main effects, solvent type, and extraction method
was found to affect the TPC (P < 0.05). According to the TPC
values in figure 1, methanol as a solvent extracted more PhCs
than ethanol, depending on the extraction method. Sonication
for 30min offered 30 and 50% less TPC than an Orbital shaker
for 24 and 48 h, respectively (Figure 1). There was no significant
difference (P > 0.05) between the 24 h and 48 h orbital shaker
treatments because the volume of the solvent used for extraction
was almost saturated at the end of 48 h. Therefore, an average
TPC yield of 5.91mg GAE/g was obtained from SCB by the
treatment combination of methanol and orbital shaker used for
24 h.

The TPC from SCB obtained in this study was lower than the
average of 7.83mg GAE/g reported in another study on SCB (11).
However, these TPC differences could be related to the number
of times the sample was exposed to the solvent. The TPC yield
obtained from this study was higher than 1.78 mg/GAE and 4.26
mg/GAE obtained from SCB samples subjected to pyrolysis (26).
Further, the TPC extracted from SCBwas higher than the 3.91mg
GAE/g obtained from B-type molasses (27) and the 3.751mg
GAE/g frommolasses retrieved from sugar mills in Pakistan (28).
Compared with other industrial byproducts, this study’s SCB
TPC was lower than the 0.38 mg/GAE extracted from Citrus
limetta bagasse (29). It was also lower than the TPC extracted
from six different white and red wine grape wastes, which showed
TPC in a range of 32–59mg GAE/g (30). However, the total
phenolic content from SCB is significant due to the rawmaterial’s
easy availability.

PLS-Discriminant Analysis
Figure 2 shows the 2-D scores plot between selected components
and the important features identified by PLS-DA. The TX sample
generally showed an intermediate abundance of each compound
compared with the LA and VER samples, which varied between
higher or lower abundance. This variation was expected as the
samples are derived from crops planted on different soils. For
example, the compound NCGC00178802-0 (desferrioxamine b)
was more abundant in the VER samples than LA and TX
samples. This compound is also known for removing excess iron
from the body as a chelating agent. One study used steep corn
liquor’s byproduct to produce desferrioxamine (31). Baicalein, a
compound found in all three samples, is significant because it has
powerful antioxidant properties that can induce programmed cell
death in breast and carcinogenic ovarian cells (32). Podototarin
is a bisditerpenoid that can reduce rapid growth and proliferation
(33). The VER sample had a higher content of Podototarin than
that in the LA and TX samples.
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FIGURE 1 | Model graph and two-way ANOVA with blocking results between factor A (type of solvent−90% ethanol or methanol) and factor B (extraction method).

Pairwise comparison between best methods for extraction of phenolic compounds using methanol 90%.

Effect of Different Factors on the Presence
of Secondary Metabolites in Sugarcane
Bagasse Samples
The values shown in Table 1 are the results from
the nutrient composition analysis carried out in a
previous study.

Temperature
The lignin content (Table 1) in all three samples was significantly
different; the VER sample contained more lignin than the other
two samples. However, the lignin content was unrelated to the
temperature during each sample’s growth and harvest season.
Based on the annual average temperatures when the samples were
retrieved (Figure 3), none of the samples appeared under cold
stress. The LA sample was exposed to temperatures below 10◦C
during January 2018 and 2019, probably increasing the ethanol
soluble carbohydrates (ESC) or simple sugar values (Table 1)
as a cryoprotectant measure. The optimum temperature for
sugarcane growth and to retrieve stems for obtaining raw sugar is
at a daily average of 22–30◦C. However, the desired temperature
for enhancing the sucrose content is 10–20◦C (27). Low
temperatures can induce cold stress on secondary metabolites.
Therefore, the plant synthesizes cryoprotectant compounds such
as sugars and nitrogen-based compounds (28). Further, cold

stress can also increase the production of PhCs and lignin to
protect against freeze damage (28).

On the contrary, higher temperatures can reduce
photosynthesis, and for some plants, this can increase the
production of anthocyanins (34). However, the registered
temperatures (Figure 3) during 2018 and 2019 were
not high enough to affect the production of the selected
secondary metabolites.

Drought Stress
The rainfall or precipitation levels during 2018 and 2019
(Figure 3) differed depending on the location. On average, VER
had weekly precipitation of 29.16mm in 2018 and 29.3mm
in 2019, whereas LA had 1.04 and 1.19mm in the same year.
The TX location had only 0.46 and 0.53mm of average rainfall
every week. The rainfall levels in TX could explain why the
TX samples show an intermediate abundance of secondary
metabolites (Figure 2). Based on the precipitation levels and
production of SCB from each location, it is evident that the
sugarcane was not under drought stress because of the irrigation
practices used in each location to overcome the absence of
rainfall. Therefore, an additional in-depth study is needed to
study the effect of pH, salinity, and metal concentration in the
water source used for irrigation on the factors studied.
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FIGURE 2 | (A) Scores plot between the selected principal components. The explained variances are shown in brackets. (B) Important features identified by PLS-DA.

The colored boxes on the right indicate the relative concentrations of the corresponding metabolite in each group under study.

TABLE 1 | Multivariate analysis results from the nutrient composition of sugarcane

bagasse samples from three different locations.

VER LA TX MANOVA

% Lignin 13.8 ± 0.21 11.10 ± 0.75 9.20 ± 0.36 *

% Ash 6.4 ± 0.10 7.9 ± 0.06 9.5 ± 0.10 *

% Calcium 0.16 ± 0.01 0.11 ± 0.01 0.49 ± 0.02 *

ESC (simple sugars) 0.53 ± 0.06 4.37 ± 0.31 0.50 ± 0.17 *

% Phosphorus 0.05 ± 0.00 0.03 ± 0.01 0.04 ± 0.00 *

% Magnesium 0.08 ± 0.00 0.06 ± 0.00 0.11 ± 0.00 *

% Potassium 0.24 ± 0.01 0.18 ± 0.01 0.28 ± 0.01 *

% Sodium 0.01 ± 0.00 0.01 ± 0.00 0.08 ± 0.00 *

ppm Iron 2103.3 ± 131 1,690.0 ± 30 2,080.0 ± 52.9 *

ppm Zinc 15.0 ± 0.00 14.3 ± 0.58 33.3 ± 0.58 *

ppm Cooper 54.7 ± 17.93 3.00 ± 0.00 5.33 ± 0.58 *

ppm Manganese 93.3 ± 0.58 79.3 ± 0.58 52.33 ± 1.53 *

ppm Molybdenum 1.10 ± 0.20 1.03 ± 0.15 0.93 ± 0.06 NS

% Sulfur 0.06 ± 0.00 0.04 ± 0.00 0.06 ± 0.00 *

% Chloride ion 0.07 ± 0.01 0.05 ± 0.01 0.06 ± 0.01 NS

VER, Mahuixtlan, Ver; MX, LA, St. Mary, LA, US; TX, Santa Rosa, TX, US. ESC, ethanol

soluble carbohydrates. NS, not significant different within the same line.

*indicates statistical differences within the same line.

Sugarcane requires 1,500–2,500mm of water during the
growing season or 25–50mm each week (35). Drought stress is
induced by a prolonged period with low rainfall or water deficit
and can reduce the chlorophyll contents in the plant. Water

deficit can also increase the content of flavonoids and phenolic
acids in Salix tree leaves (36). The production of flavonoids helps
protect the plant during this stress. However, this phenomenon
can reduce the saponin content in plants.

Heavy Metal Stress and Nutrients
The sugarcane needs high levels of nitrogen and potassium
and low phosphorus levels. Based on the values from Table 1,
TX samples showed higher potassium concentrations than
the LA and VER samples. However, the potassium levels
were generally normal for sugarcane growth. Further, all three
samples showed low phosphorus levels, consistent with the
requirements of sugarcane. Accumulation of copper can help
increase the production of secondary metabolites; for example,
it has been reported to increase digitalin production (37).
However, the levels of Copper (Table 1) among the present
samples were significantly different. The VER sample had a
higher concentration with 54.7 ppm than the low values of
3.0 ppm in the LA sample and 5.33 ppm in the TX sample,
which probably contributed to the increased abundance of some
secondary metabolites.

The manganese content can also increase secondary
metabolite production and antioxidant activity (38). In one
study, different concentrations of this mineral were supplied to
samples of Mentha aquatica. This addition to the concentration
of manganese increased the secondary metabolite abundance
and the total superoxide dismutase (SOD), catalase (CAT),
and peroxidase (POX) activities (38). The manganese values
were significantly different among the three samples in this
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FIGURE 3 | (A1) Temperature (oC) in 2018, (A2) temperature (oC) in 2019, (B1) precipitation (mm) in 2018, (B2) precipitation (mm) in 2019, (C) UV index in 2019.

Records registered in three different locations of sugarcane production. VER: Mahuixtlan, Ver; MX, LA: St. Mary, LA, US.; TX: Santa Rosa, TX, US.

study. The VER sample showed a higher concentration with
93.3 ppm, followed by LA with 79.3 ppm and TX with 52.33
ppm, explaining the differences in the abundance of secondary
metabolites (Figure 2).

Ultraviolet Radiation
Sugarcane requires a fair amount of solar light. According to
Figure 3, the UV index reached values of 11 during most of
2019 in VER, whereas TX reached a UV index of 11 during July

and August. LA had a UV index of 8 between May and August.
In general, all three locations had sufficient solar radiation
to grow sugarcane, but the differences in the abundance of
secondary metabolites could be related to the UV index observed
during 2019.

According to NASA, UV light presents wavelengths shorter
than visible light. This radiation from the sun is divided into
UV-A, UV-B, and UV-C, where the most harmful is UV-C,
which is entirely absorbed by the atmosphere (39). Most of the
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TABLE 2 | Minimum inhibitory concentration of antibiotics and SCB extracts

against bacteria strains (µg/mL).

Sample Bacterial strains

E. coli K12 E. cloacae E. aerogenes B. cereus S. aureus

KAN 25 25 25 25 25

AMP 25 400 400 25 –

VER – – – 200 800

LA – – – – –

TX – – – 800 800

SCB, Sugarcane bagasse; KAN, Kanamycin; AMP, Ampicillin; VER, Veracruz; LA,

Louisiana; TX, Texas; –, No inhibition.

TABLE 3 | Minimum inhibitory concentration of antibiotics and SCB extracts

against modified yeast strains (µg/mL).

Sample Modified yeast strains

SGS1 RAD14 MLH1 MGT1

KAN 800 – – –

AMP – – – –

VER 800 800 800 –

LA 800 800 800 –

TX 800 800 800 –

SCB, Sugarcane bagasse; KAN, Kanamycin; AMP, ampicillin; VER, Veracruz; LA,

Louisiana; TX, Texas; –, No inhibition.

plants are UV resistant and use this radiation to their benefit by
stimulating secondary metabolite production. For example, the
effect of UV radiation on anthocyanin production was studied
in sweet cherries and was found to increase flavonoids while
decreasing the chlorophyll content (40, 41).

Antimicrobial Activity of Sugarcane
Bagasse Extracts
The antibiotic KAN inhibited the growth of each of the five
bacterial strains to near 100%, even at low concentrations of
25µg/mL. The antibiotic AMP was very effective against E.
coli K12 and S. aureus at the same concentration (Table 2).
Further, the effect of AMP against E. cloacae and E. aerogenes
was significant at 400µg/mL. However, it showed only 10%
inhibition of S. aureus at the highest concentration used in
this study.

The SCB extracts showed different effects depending on
the geographical origin of the sample (Table 2). The most
effective sample was VER, which showed 90% inhibition
against B. cereus at 200µg/mL and 50% inhibition against
S. aureus at 800µg/mL. The TX sample showed 50%
inhibition against the same bacterial strains at 800µg/mL.
In comparison, the LA samples did not show more than 10%
inhibition of any bacterial strain at the highest concentration of
800 µg/mL.

Against modified yeast, AMP showed only 20%
growth inhibition at 800µg/mL (Table 3). KAN

showed 50% growth inhibition against SGS1 at
800µg/mL but showed only 20% growth inhibition
at the same concentration against the other
yeast strains.

The SCB extracts generally affected the growth of SGS1,
RAD14, and MLH1 yeast strains at 800µg/mL concentrations.
The VER and TX samples were the most effective against SGS1,
with more than 80% growth inhibition, whereas the LA sample
showed 60% growth inhibition. Against RAD14, the VER sample
was the most effective with 50% growth inhibition (Table 3).
The SCB extracts showed a similar MIC (200µg/mL) against B.
cereus and lower (800µg/mL) against S. aureus compared with
the phenolic extracts from annatto seeds and leaves (19). The
MIC of 800µg/mL was comparable with the MIC shown by
the crude methanolic extract from Peperomia galioides against S.
aureus (42).

Overall, the SCB extracts showed important antimicrobial
properties that can be used as a potential nutraceutical or
food additive. The effects against bacterial strains B. cereus
(MIC = 200µg/mL) and S. aureus (MIC = 800µg/mL)
can be beneficial because these bacteria are related to food
poisoning. In addition, the effects against SGS1 RAD14,
and MLH1 yeast strains (MIC = 800µg/mL), offer an
opportunity for future research using actual carcinogenic cells
because these yeast strains harbor mutations relevant to the
Bloom and Werner syndrome (SGS1), XPA human homolog
(RAD14), and colon, ovary, or renal cancer (MLH1) (43–
45).

CONCLUSIONS

The samples’ phenolic content and antioxidant activity
remained stable across different extraction processes from
the three locations. However, the SCB from the three locations
showed differences in the abundance of secondary metabolites.
Such differences are related to the UV radiation, nutrient
components, temperature, and water stress present in the
different geographical regions. The bioactive compounds
in SCB have been previously reported as therapeutic and
anticarcinogenic agents. SCB extracts showed promising
effects against well-known pathogenic bacteria. In addition,
they may possess possible anticancer activity based on their
inhibitory effects on yeast strains harboring mutations relevant
to various cancer types. Overall, this study provides a baseline
to understand the potential benefits of using SCB as a source
of phenolic compounds. To our knowledge, few studies
have identified these compounds in SCB and indicated their
antimicrobial activities along with their microencapsulation
processing. These findings indicate the potential of using
SCB as a potential source of food additives or nutraceuticals,
in addition to its value as an industrial byproduct with
easy availability.

Further studies are required to develop a food additive
or nutraceutical from SCB phenolic compounds. Also, test
the anticarcinogenic properties against real carcinogenic cell
lines and conduct in vivo tests. The microencapsulation
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analysis of the extracted bioactive compounds is in preparation
along with this study. Further investigation is necessary to
determine the bioavailability of microencapsulated bioactive
compounds by in vitro digestibility assays and their final
nutrient composition.
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