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Shuangsuo Dang1*† and Juanjuan Shi1*†

1Department of Infectious Disease, The Second A�liated Hospital of Xi’an Jiaotong University, Xi’an,
China, 2Xi’an Jiaotong University Health Science Center, Xi’an, China

Objectives:Drug treatment of metabolic associated fatty liver disease (MAFLD)

remains lacking. This study analyzes the e�cacy and mechanism underlying

intermittent fasting combined with lipidomics.

Methods: Thirty-two male rats were randomly divided into three groups:

Normal group, administered a standard diet; MAFLD group, administered a 60%

high-fat diet; time-restricted feeding (TRF) group, administered a 60% high-fat

diet. Eating was allowed for 6 h per day (16:00–22:00). After 15 weeks, liver

lipidomics and other indicators were compared.

Results: A total of 1,062 metabolites were detected. Compared with

the Normal group, the weight, body fat ratio, aspartate aminotransferase,

total cholesterol, low-density cholesterol, fasting blood glucose, uric acid,

and levels of 317 lipids including triglycerides (TG) (17:0−18:1−20:4)

were upregulated, whereas the levels of 265 lipids including phosphatidyl

ethanolamine (PE) (17:0−20:5) were downregulated in the MAFLD group

(P < 0.05). Compared with the MAFLD group, the weight, body fat ratio,

daily food intake, and levels of 253 lipids including TG (17:0−18:1−22:5)

were lower in the TRF group. Furthermore, the levels of 82 lipids

including phosphatidylcholine (PC) (20:4−22:6) were upregulated in the

TRF group (P < 0.05), while serum TG level was increased; however, the

increase was not significant (P > 0.05). Enrichment analysis of di�erential

metabolites showed that the pathways associated with the observed

changes mainly included metabolic pathways, regulation of lipolysis in

adipocytes, and fat digestion and absorption, while reverse-transcription

polymerase chain reaction showed that TRF improved the abnormal

expression of FAS and PPARα genes in the MAFLD group (P < 0.05).
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Conclusion: Our results suggest that 6 h of TRF can improve MAFLD via

reducing food intake by 13% and improving the expression of genes in

the PPARα/FAS pathway, thereby providing insights into the prevention and

treatment of MAFLD.

KEYWORDS

metabolic associated fatty liver disease (MAFLD), intermittent fasting (IF), time-

restricted feeding (TRF), lipidomics, triglycerides

Introduction

Non-alcoholic fatty liver disease (NAFLD), also known as

metabolic associated fatty liver disease (MAFLD), has become

the most prevalent liver disease worldwide. In 2016, a meta-

analysis of 86 studies in 22 countries showed that the global

prevalence of NAFLD was 25.2%, with Africa having the lowest

prevalence at 13.5%, and the Middle East having the highest

prevalence at 31.8%, followed by Asia at 27.4% (1–3). The

prevalence of NAFLD in China has been reported at 29.2% (4).

Although the risk of MAFLD increases with age (5), especially

in women, an increasing number of cases of MAFLD have been

reported in children. To date, no specific drug therapy has been

established, and currently available treatments primarily focus

on diet control and physical activity (6).

Intermittent fasting (IF) is an ancient dietary therapy

characterized by zero or very low-calorie intake (usually for

more than 12 h) alternated with normal eating to prevent or treat

diseases (7). IF, which includes time-restricted feeding (TRF),

alternate-day fasting, and 5:2 modified fasting, can improve

metabolic syndrome, prolong life expectancy, and improve

cognition (8, 9). However, data on the effectiveness of IF

in improving MAFLD are limited, while controversy remains

concerning whether IF aggravates MAFLD due to excessive

fat breakdown.

Therefore, this study analyzes the food intake, therapeutic

effect, and underlying mechanism in rats with MAFLD

undergoing 6 h TRF to provide novel insights into the treatment

of MAFLD.

Materials and methods

Animals and study protocol

Thirty-two specific-pathogen-free male Sprague-Dawley

(SD) rats with a body weight of 185–245 g were purchased and

raised in the Animal Center of Xi’an Jiaotong University [SYXK

(Shaanxi) 2020-005]. After 1 week of adaptive feeding, 10 rats

were randomly selected in the Normal group (262.4 ± 12.5 g)

using the random number table method and fed a normal diet

(10 kcal% fat); 12 rats were assigned to the MAFLD group

(263.9 ± 20.1 g) and had unrestricted access to a high-fat diet

(60 kcal% fat); 10 rats were assigned to the TRF group (264.7

± 19.5 g), in which access to a high-fat diet (60 kcal% fat) was

restricted from 16:00 to 22:00 daily. No significant difference

in baseline body weight between the three groups was observed

(P = 0.958). The high-fat diet was purchased from Changzhou

SYSE BIO (China); the carbohydrate, protein, and fat energy

accounted for 20, 20, and 60%, respectively. All rats had access

to water ad libitum and were exposed to a 12:12 day:night

cycle at a constant temperature of ∼22◦C. During the 15-week

experimental period, food intake was measured daily, while

general conditions such as skin color, hair, and animal behavior

were observed. The rats were weighed every week.

This study was approved by the Biomedical

Ethics Committee, School of Medicine, Xi’an Jiaotong

University (2021-763).

Biochemical parameters

At the end of week 15 and after overnight fasting for 12 h,

the rats were anesthetized with an intraperitoneal injection of 1%

pentobarbital sodium (40 mg/kg). Approximately 4mL of blood

was collected from the heart, incubated at room temperature

for 1 h, and centrifuged at 3,500 rpm for 10min to separate

the serum. Fasting blood glucose (FBG), total cholesterol

(TC), triglycerides (TG), low-density cholesterol (LDL), alanine

aminotransferase (ALT), aspartate aminotransferase (AST), and

uric acid (UA) were measured using an automatic biochemical

analyzer (AU5811, Beckman Coulter, CA, USA). Body fat ratio

was defined as = (epididymis fat + perirenal fat) / weight

× 100%.

Histopathology

Hematoxylin-eosin (HE) staining (10, 11): Perirenal adipose

and liver tissue samples from each group, ∼5mm in size,

were fixed in 4% paraformaldehyde, dehydrated, embedded

in paraffin, sliced, stained with HE, and observed under a

microscope as previously described (12).

Oil red staining: Liver tissue samples from each group,

∼5mm in size, were fixed in 4% paraformaldehyde, dehydrated,
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FIGURE 1

Physical characteristics. (A) Body weight from 1 to 15 weeks (g); (B) weight of liver (g); (C) weight of perirenal and epididymal fat (g); (D) body fat
rate (%). The data are presented as means ± SD or percentile. Normal, rat fed a normal diet ad libitum; MAFLD (metabolic associated fatty liver
disease), rat fed a high-fat diet ad libitum; TRF (time-restricted feeding), fed high-fat diet (60 kcal% fat) strictly only between 16:00 and 22:00
every day.

embedded in optimal cutting temperature compound, sliced,

stained, sealed with glycerin gelatin tablets, and observed

under a microscope. Four images were randomly selected from

each section, and the tissue area occupied by lipid droplets,

representing the fat content of the liver, was calculated using

Image J software (v1.8.0, National Institutes of Health, USA).

Liver lipidomics

Using ultraperformance liquid chromatography and tandem

mass spectrometry (UPLC-MS/MS) withMetware Database and

multiple reactionmonitoring (MRM), the lipid metabolites in all

samples were qualitatively and quantitatively assessed. Quality

control (QC) samples were prepared from a mixture of sample

extracts. During instrumental analysis, one QC sample for every

10 test samples was inserted to ensure the repeatability of

the analysis process. The total ion chromatograms (TICs) of

different QC samples were overlapped and analyzed (13–15).

Principal component analysis (PCA) and orthogonal partial

least squares discriminant analysis (OPLS-DA) were combined

to identify differential metabolites. Metabolites with fold change

(FC) of≥ 2 or≤ 0.5 and variable importance in the projection of

≥ 1 were selected as differential metabolites. Kyoto Encyclopedia

of Genes and Genomes (KEGG) database was used to annotate

and display the differential metabolites and analyze the related

metabolic pathways (15).

Reverse-transcription polymerase chain
reaction of liver

RNA was extracted using Total RNA Extraction Kit I

(OMEGA, R6834-01). RNA concentrations were determined

Frontiers inNutrition 03 frontiersin.org

https://doi.org/10.3389/fnut.2022.838091
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Deng et al. 10.3389/fnut.2022.838091

FIGURE 2

Feeding behavior. (A) Daily food intake of each rat from day 1 to 14; (B) average daily food intake of each rat from 1 to 15 weeks (g). MAFLD
(metabolic associated fatty liver disease), rat fed a high-fat diet ad libitum; TRF (time-restricted feeding), fed high-fat diet (60 kcal% fat) strictly
only between 16:00 and 22:00 every day.

FIGURE 3

Serum indexes. (A) Alanine transaminase; (B) aspartate aminotransferase; (C) total cholesterol; (D) triglycerides; (E) low-density lipoprotein; (F)
uric acid; (G) fasting blood glucose. The data are presented as means ± SD or percentile. Normal, rat fed a normal diet ad libitum; MAFLD
(metabolic associated fatty liver disease), rat fed a high-fat diet ad libitum; TRF (time-restricted feeding), fed high-fat diet (60 kcal% fat) strictly
only between 16:00 and 22:00 every day.
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FIGURE 4

Pathological results of Normal group, MAFLD group and TRF group. (A–C) HE staining, (D–F) oil red staining of liver tissue (×400), and (G–I) HE
staining of perirenal fat (×200). Normal, rats fed a Normal diet ad libitum; MAFLD (metabolic associated fatty liver disease), rats fed a high-fat diet
ad libitum; TRF (time-restricted feeding), rats fed high-fat diet (60 kcal% Fat) strictly between 16:00 to 22:00 every day.

with spectrophotometric trace (NanoDrop, Thermo Fisher

Scientific, Waltham, MA, USA). Total RNA was transcribed

into cDNA (volume: 20 µL) following the manufacturer’s

instructions of PrimeScript RT Master Mix (TaKaRa, RR036A)

and TB Green Premix Ex Taq II (TaKaRa, RR820A). We

used ABI StepOne Plus (USA) to determine the relative

abundance of the mRNAs of interest. All procedures were

strictly conducted in accordance with the instructions. The

expression of each gene was quantified using the 2−11Ct

method (11, 16).

The primer sequences used were peroxisome proliferator-

activated receptor α (PPARα) upstream primer (5‘-3‘)

TCTGAACATTGGCGTTCGCAG and downstream primer

CTCGTGTGCCCTCCCTCAAG; fatty acid synthase (FAS)

upstream primer (5‘-3‘) AATTTGCTCGGCAGCACAAG

and downstream primer GTCGCAGCGGTTAGCTTTTC;

sterol regulatory element binding proteins-1c (SREBP-1c)

upstream primer (5‘-3‘) GCCATGGATTGCACATTTGAAGA

and downstream primer TGTGTCTCCTGTCTCACCCC;

glyceraldehyde phosphate dehydrogenase (GAPDH)

upstream primer (5‘-3‘) TACCCACGGCAAGTTCAACG

and downstream primer CACCAGCATCACCCCATTTG.

Statistical analysis

Normally distributed data were expressed as mean ±

standard deviation, and one-way analysis of variance was used,

while Fisher’s least significant difference t-test or Tamhane’s

T2-test to determine significance. Skewed data were described

via quartile spacing and compared using non-parametric and

median tests. All rats were tested for routine parameters, such

as body weight, body fat percentage, and serological indicators.

No less than four biological replicates were considered for

lipidomics and PCR.

Lipid data were analyzed using Analyst 1.6.1 software. The

IBM SPSS 23.0 (IBM Corp., Armonk, NY, USA) was used for

all statistical analyses. GraphPad Prism 8.0 software (San Diego,

CA, USA) was used to generate graphs. Statistical significance

was set at P < 0.05.
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FIGURE 5

Area of lipid droplets in liver (%). Four images were randomly
selected from each section, and the tissue area occupied by
lipid droplets, representing the fat content of the liver, was
calculated using Image J software (v1.8.0,National Institutes of
Health, USA). The data are presented as percentile.

Results

Physical characteristics

As shown in Figure 1A, at the end of week 15, the body

weight difference between the three groups was significant (P =

0.005), with rats in both the Normal group (P = 0.001) and 6 h

TRF group (P = 0.044) weighing less than those in the MAFLD

group. As shown in Figure 1B, there was no significant difference

in liver weight among the three groups. As shown in Figure 1C,

the fat weight of theMAFLD group was significantly higher than

that of the Normal group.

As shown in Figure 1D, the body fat ratio of the rats in the

three groups was significantly different (P < 0.001); indeed, the

body fat ratio of the rats in the MAFLD group was significantly

higher than that of the rats in the Normal group (P < 0.001) and

TRF group (P < 0.05), suggesting that TRF reduced body fat.

Feeding behavior

The amount of food eaten was determined by subtracting

amount of food administered from that remaining at the end

of the eating period. As shown in Figure 2A, the food intake

of rats in the 6 h TRF group was relatively low on day 1 after

IF initiation; however, it increased significantly on day 2, as rats

began to adapt to the fasting mode.

In the first 4 weeks of the study, the average daily food intake

of both the MAFLD and 6 h TRF groups decreased, possibly due

to rats not fully adapting to the high-fat diet, and subsequently

increased on weeks 5–6 and remained relatively stable thereafter

(Figure 2B).

During the entire experimental period, the average daily

food intake in the 6 h TRF and MAFLD groups differed (P <

0.001), being 16.6± 1.6 g in the MAFLD group and 14.4± 0.9 g

in the 6 h TRF group;∼13% of total calories were restricted.

Biochemical parameters

As shown in Figure 3, after 15 weeks of a high-fat diet,

AST, TC, LDL, UA, and FBG levels in the MAFLD group were

significantly higher than those in the Normal group (P < 0.05),

whereas in the 6 h TRF group, AST, TC, LDL, and UA levels were

reduced. However, the difference was not significant (P > 0.05).

Compared with that in the MAFLD group, the serum

TG level in the 6 h TRF group was increased, although not

significantly (P > 0.05).

Histopathology

The Normal group showed normal hepatic cord structure

and radially arranged hepatocyte morphology (Figure 4A). In

the MAFLD group, the hepatic cord structure was disorganized,

while the hepatic cells were significantly swollen. Inmost hepatic

cells, vacuoles of varying sizes and numbers of lipid droplets

were observed, while some cells showed obvious nuclear

deviation (Figure 4B). The number of fat vacuoles decreased in

the 6 h TRF group (Figure 4C).

Oil red staining showed that the liver cells of the rats in the

Normal group were slightly stained with scattered, red-stained

lipid droplets (Figure 4D), while in the MAFLD group, several

bulla-like red lipid droplets were observed in the cytoplasm

(Figure 4E); liver lipids were significantly less deposited in the

6 h TRF group (Figure 4F). Compared with the Normal group,

the MAFLD group had significantly higher fat content (P <

0.001), whereas the 6 h TRF group had significantly lower

fat content in the liver than the MAFLD group (P < 0.001;

Figure 5).

The adipose cells of rats were arranged regularly and

uniformly (Figure 4G), whereas in the MAFLD group, cells

showed different sizes, and were disordered (Figure 4H). The

adipose cells in the 6 h TRF group were arranged more

neatly than those in the MAFLD group with uniform cell size

(Figure 4I).

Liver lipidomics

The TICs of different QC samples were overlapped and

analyzed. The results showed that the TICs of metabolite

detection highly overlapped; the high stability of the instrument
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FIGURE 6

Liver lipidomics results. PCA for all groups (A). OPLS-DA scores plots (B,C) of Normal vs. MAFLD and MAFLD vs. TRF, respectively. In the Venn
diagram (D), each circle represents a comparison group, the number of circles and overlapped parts represent the number of common
di�erential metabolites between the comparison groups, and the number of non-overlapped parts represents the number of unique di�erential
metabolites in the comparison groups. Normal, rats fed a normal diet ad libitum; MAFLD (metabolic associated fatty liver disease), rats fed a
high-fat diet ad libitum; TRF (time-restricted feeding), rats fed high-fat diet (60 kcal% fat) strictly between 16:00 and 22:00 every day.

guaranteed the repeatability and reliability of the data. PCA

showed that the samples demonstrated aggregation within the

group and dispersion between groups, with a good sample

identification which reflects the results of the subsequent

analysis (Figure 6A).

The OPLS-DA models (Figures 6B,C) were qualified

(Normal vs. MAFLD, R2X = 0.731, R2Y = 0.999, Q2 = 0.982;

MAFLD vs. TRF, R2X= 0.717, R2Y= 0.996, Q2 = 0.843).

A total of 1,062 metabolites were detected. Compared with

the Normal group, the levels of 317 lipids, including that of

TG (17:0−18:1−20:4) were higher, whereas those of 265 lipids,

including phosphatidyl ethanolamine (PE) (17:0−20:5) were

downregulated in the MAFLD group (P < 0.05). Compared

with the MAFLD group, the levels of 253 lipids, including that

of TG (17:0−18:1−22:5) were lower, while 82 lipids such as

phosphatidylcholine (PC) (20:4−22:6) were upregulated in the

TRF group (P < 0.05; Figures 7, 8). There were 129 identical

differential metabolites in the three groups (Figure 6D).

KEGG enrichment analysis of differential metabolites

showed that the pathways involved in the observed results

mainly included metabolic pathways, fat digestion and

absorption, regulation of lipolysis in adipocytes, lipid and

atherosclerosis, cholesterol metabolism, and glycerolipid

metabolism (Figure 9).

Frontiers inNutrition 07 frontiersin.org

https://doi.org/10.3389/fnut.2022.838091
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Deng et al. 10.3389/fnut.2022.838091

FIGURE 7

Volcano plot of di�erential metabolites in liver tissue. Using FC ≥ 2 or ≤ 0.5 and VIP ≥ 1 as criteria, a group of lipids with significant di�erences
were screened. Lipids with significant di�erences are shown as red (upregulated) or green (downregulated) dots, while gray dots indicate lipids
with no significant di�erences. Normal, rats fed a normal diet ad libitum; MAFLD (metabolic associated fatty liver disease), rats fed a high-fat diet
ad libitum; TRF (time-restricted feeding), rats fed high-fat diet (60 kcal% fat) strictly between 16:00 and 22:00 every day.

Expression of genes associated with lipid
metabolism in the liver

As shown in Figures 10A,B, the expression levels of lipid

synthesis genes SREBP-1c and FAS in liver tissues were

significantly higher in the MAFLD group than in the Normal

group (P < 0.01), whereas the expression level of FAS in the 6 h

TRF group was lower than that in the MAFLD group (P < 0.05).

Meanwhile, the expression level of the lipid oxidation gene

PPARα in the MAFLD group was lower than that in the Normal

group (P < 0.05). Compared with the MAFLD group, the 6 h

TRF group had significantly higher PPARα expression level in

the liver tissue (P < 0.01; Figure 10C).

Discussion

In this study, rats adapted to the 6 h TRF mode on day

2, and after 15 weeks of 6 h TRF, the average daily food

intake for this group was reduced by 13%, while the body

weight, body fat ratio, and liver fat content were lower than

those of the MAFLD group. Hundreds of liver lipidomics also

improved. Weight loss of 3%–5% within 1 year can improve

metabolic syndrome and reverse simple hepatic steatosis,

whereas a 7%–10% decrease in body mass can significantly

reduce serum amino acid transferase levels and improve non-

alcoholic steatohepatitis (6); our results suggest that a 6 h TRF

can improve MAFLD.

Unhealthy lifestyles, such as excessive eating and lack of

exercise, increase the risk of MAFLD (17). When the body takes

in more calories than it burns, the excess calories are stored as

fats. Additionally, dietary structure can promote the occurrence

of metabolic diseases, such as MAFLD. Excessive intake of

fat, cholesterol, and fructose can promote the occurrence of

MAFLD; fructose consumption also increases the survival

rate of intestinal epithelial cells, which in turn increases the

length of intestinal villi, thereby allowing them to absorb more

nutrients (18).

Calorie restriction (CR) limits the total number of calories

and requires no eating schedule; conversely, IF places more

emphasis on restricting the eating schedule, usually for more

than 12 h, during which the body will undergo a metabolic

switch to burn fat (19) and restore the body’s internal clock,

which can lead to weight loss and improve metabolic disorders

(20–25). Circadian clocks and feeding times regulate the

oscillations and levels of hepatic TG (26). Studies have shown

that TRF resets the circadian clock in the liver and enhances

the transcription of key metabolic regulators of sugar and

lipid homeostasis, while dawn-to-sunset fasting is a potentially

cost-effective intervention for obesity, metabolic syndrome,

and NAFLD (27, 28). TRF can reduce the adverse effects of

a high-fat diet by regulating the circadian rhythms of liver
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FIGURE 8

Ten di�erential metabolites with the most significant upregulation and downregulation in liver tissue. Normal, rats fed a normal diet ad libitum;
MAFLD (metabolic associated fatty liver disease), rats fed a high-fat diet ad libitum; TRF (time-restricted feeding), rats fed high-fat diet (60 kcal%
fat) strictly between 16:00 and 22:00 every day.
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FIGURE 9

KEGG pathway was enriched according to the results of di�erential metabolites in liver tissue. The abscissa represents the Rich factor
corresponding to each pathway, the ordinate represents the pathway name, and the color of the point indicates the p-value: the redder the
point, the more significant the enrichment. The size of the dot represents the number of enriched di�erential metabolites. Normal, rats fed a
normal diet ad libitum; MAFLD (metabolic associated fatty liver disease), rats fed a high-fat diet ad libitum; TRF (time-restricted feeding), rats fed
high-fat diet (60 kcal% fat) strictly between 16:00 and 22:00 every day. (A) Normal vs. MAFLD; (B) MAFLD vs. TRF.

lipid metabolism and gut microbiota (29). Indeed, early TRF

improves insulin sensitivity, blood pressure, and oxidative stress

in men with prediabetes, even without weight loss (30).

The fasting duration of alternate-day fasting is 24 h,

which may not be suitable for those with modern lifestyles.

Alternatively, if the fasting duration is too short, the effect

will be compromised. The 6 h TRF has little effect on work

and life, and is similar to the long-standing dictum in

China, “no food after noon”, which is conducive to long-term

adherence (31).

The results of this study show that compared with the

MAFLD group, the 6 h TRF group had significantly higher

PPARα mRNA expression in the liver tissue (P < 0.01).

PPARs control various intracellular metabolic processes and

contain three subtypes (32), of which PPARα, a member of

the nuclear receptor superfamily, is the primary regulator
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FIGURE 10

The mRNA levels associated with lipid metabolism in liver. (A) SREBP1, (B) FAS, and (C) PPARα. The data are presented as percentile. Normal, rats
fed a normal diet ad libitum; MAFLD (metabolic associated fatty liver disease), rats fed a high-fat diet ad libitum; TRF (time-restricted feeding),
rats fed high-fat diet (60 kcal% Fat) strictly between 16:00 to 22:00 every day.

of liver β-oxidation and microsomal ω-oxidation. Moreover,

PPARα is involved in mitochondrial fatty acid β-oxidation.

Using carnitine palmitoyl transferase-1 as a key enzyme, fatty

acids can pass through the mitochondrial inner membrane

to the mitochondrial matrix where they are metabolized. The

activation of PPARα can reduce the production of TG and fat

in the liver and improve MAFLD (33, 34).

Moreover, our results showed that the expression levels of

SREBP-1c and FAS in liver tissues were significantly higher

in the MAFLD group than in the Normal group (P < 0.01),

whereas the expression levels of FAS mRNA were lower in

the 6 h TRF group than those in the MAFLD group (P <

0.05). The FAS system is a key multi-enzyme complex in fat

synthesis. The downregulation of FAS reduces fat synthesis,

thus preventing or treating MAFLD (35, 36). SREBP-1c plays a

major role in the control of lipid production by controlling the

expression of several adipogenesis-related genes, and regulates

lipid metabolism by promoting lipid synthesis by the liver and

inhibiting its transport, while the downregulation of SREBP-

1c expression restores the balance of liver lipid metabolism to

normal (37, 38).

Exercise and hunger can promote PPARα (39), and changes

in lipid metabolic pathways during fasting have been reported

(9, 19). KEGG enrichment analysis of differential metabolites

showed that the pathways involved mainly included glycerolipid

metabolism, metabolic pathways, fat digestion and absorption,

regulation of lipolysis in adipocytes, lipid, and atherosclerosis.

Therefore, we compared the expression of fatty acid metabolism

genes to determine the mechanism of 6 h TRF in the treatment

ofMAFLD. The results showed that, compared with theMAFLD

group, the expression of PPARα in the 6 h TRF group was

significantly increased, and that of the lipid synthesis gene FAS

was decreased. Furthermore, by recording the daily food intake,

which has not been performed prior to this study, we found that

6 h TRF reduced the daily food intake of rats (16.6 ± 1.6 > 14.4

± 0.9 g, P < 0.001) compared with that of the rats that freely

consumed a high-fat diet. This is another significant reason

for the decrease in body weight, body fat ratio, and liver fat

content in the 6 h TRF group, which is a novel finding of this

study (40–42).

The 6 h TRF could reduce the trend of AST, TC, LDL,

and UA levels increased with the high-fat diet, however, the

difference was not significant. The results also showed that 6 h

TRF could increase serum TG level, although not significantly.

This suggests that 6 h TRF has no significant effect on the

serological indices of MAFLD rats.

Nevertheless, our findings support the hypothesis that 6 h

TRF can improve MAFLD; 6 h TRF can not only control the

total caloric intake but also reshape metabolic rhythms and

regulate the biological clock by restricting eating time. These

results provide novel insights pertaining to the prevention and

treatment strategies against MAFLD.
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