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Epigallocatechin-3-gallate (EGCG), a frequently studied catechin in green tea, has

been shown involved in the anti-proliferation and apoptosis of human nasopharyngeal

carcinoma (NPC) cells. However, the underlying molecular mechanism of the apoptotic

effects of EGCG has not been fully investigated. Recent literature emphasized the

importance of Sirtuin 1 (SIRT1), an NAD+-dependent protein deacetylase, in regulating

cellular stress responses, survival, and organismal lifespan. Herein, the study showed

that EGCG could significantly inhibit cell proliferation and promote apoptosis of 2 NPC

(CNE-2 and 5-8F) cell lines. Moreover, it was also found that SIRT1 is down-regulated

by EGCG, and the SIRT1-p53 signaling pathway participates in the effects of EGCG

on CNE-2 and 5-8 F cells. Taken together, the findings of this study provided evidence

that EGCG could inhibit the growth of NPC cell lines and is linked with the inhibition

of the SIRT1-p53 signaling pathway, suggesting the therapeutic potential of EGCG in

human NPC.
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INTRODUCTION

Nasopharyngeal carcinoma (NPC) is a malignant tumor with a high incidence rate in the Southeast
Asia and Southern China (1, 2). Currently, radiotherapy combined with chemotherapy is routinely
used to control early disease progression. Due to the insidious location of NPC and lack of obvious
early symptoms, over 70% of NPC patients present with locally advanced ormetastatic lesions at the
time of diagnosis (3). The effect of radiotherapy alone is unsatisfactory, so adjuvant chemotherapy
is essential. As first-line chemotherapeutic drugs for NPC, cisplatin, and paclitaxel can significantly
improve NPC’s therapeutic efficacy. But the larger doses of cytotoxic drugs often lead to severe toxic
side effects by inducing cancer multi-drug resistance and, hence, are declared the main treatment
failures (4). Therefore, it is necessary to find high-efficacy with lower toxicity chemotherapeutic
agents to improve the patients’ clinical efficacy and high survivorship.

Natural products have historically contributed to pharmacotherapy, especially for cancer and
infectious diseases (5, 6). (-)-Epigallocatechin-3-gallate (EGCG), is a polyphenolic component
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extracted from green tea, has been demonstrated to exhibit a
variety of health benefits such as anti-tumor, anti-oxidant, anti-
inflammatory, cardiovascular protection, and neuroprotection
(7, 8). The recent studies revealed that EGCG inhibited
proliferation and improved the sensitization of NPC cells to
radiotherapy, which suggested the therapeutic potential of EGCG
on NPCs (9, 10). However, little is known about potential targets
for EGCG-induced inhibition in NPC cells.

SIRT1 is a prominent and extensively studied member of the
sirtuins family of the mammalian class III histone deacetylases
heavily implicated in healthspan and aging (11). The vast
literature demonstrated that SIRT1 expression increased in most
human cancers, especially, prostate cancer, primary colon cancer,
acute myeloid leukemia, and squamous epithelial cell carcinoma
(12). Studies have also reported that the expression levels of
SIRT1 are linked with cancer invasion/metastasis and drug
resistance, which in turn affect the prognosis of cancers (13).
Recently, literature has focused that SIRT1 can promote the
proliferation, migration, and lipid metabolism in NPC cells,
suggesting that SIRT1 is an attractive target to treat NPCs (14).
However, it is not knownwhether the SIRT1-dependent signaling
pathway participates in the effect of EGCG on NPC cells.
Therefore, this study aimed to investigate the effect of EGCG on
the growth of NPC (CNE-2 and 5-8F) cell lines and determine
whether the SIRT1 signaling is involved in this phenomenon
or not.

REGENTS AND METHODS

Reagents
Human NPC cell lines (CNE-2 and 5-8F) were purchased from
cell bank of the Chinese Academy of Sciences (Shanghai, China).
RPMI 1,640medium and fetal bovine serum (FBS) was purchased
from Gibco (Logan, UT, USA). Rabbit anti-caspase 3 (#9,662),
Rabbit anti-α-tubulin (#21,44S), Rabbit anti-Apaf-1 (#89,69S),
Rabbit anti-caspase 9 (#95,08S), Rabbit anti-Acetyl-p53 (Lys382)
(#25,25S), and Rabbit anti-SIRT1 (#2,493) were purchased from
Cell Signaling Technology (Boston, MA, USA). EGCG (purity
> 95%) was purchased from Sigma Aldrich and dissolved in
distilled water at 100µM, and stored at −20◦C until dilution
before use. The cell counting kit 8 (CCK8) was purchased from
DOJINDO (Japan). The terminal deoxynucleotidyl transferase
(TDT)-mediated dUTP nick end labeling (TUNEL) assay kit was
purchased from the Nanjing KeyGen Biotech Co., Ltd. (Nanjing,
China). The BCA protein assay kit was purchased from Thermo
Fisher Scientific (Chicago, IL). Super signal chemiluminescent
substrate (ECL) was obtained from Thermo Scientific (Waltham,
MA, USA).

Cell Culture
Cells (CNE-2 and 5-8F) were grown in RPMI-1640 culture
medium supplemented with 10% FBS, 100 u/ml penicillin, and
100 mg/ml streptomycin at 37◦C in humid incubator contains
95% air and 5% CO2. The medium was changed every other
day. When the culture reaches 70∼90% confluence, cells are
subcultured at a split ratio of 1:3. Before treating with EGCG, cells
were cultured in FBS-free for 12 h.

CCK-8 Analyses
Cells (CNE-2 and 5-8F) were seeded at 1 × 104/well in 96-
well plates. After being cultured in a complete medium for
24 h, the cells changed to an FBS-free medium for another
12 h at 37◦C. Then, the cells were treated with EGCG at the
indicated concentration (0, 10, 20, and 40µm) or with 40µm
after overexpression of SIRT1 for 24 h. A total of 10 µl of CCK-
8 solution was added to each well and incubated for another
1 h, followed by reading the absorbance at 450 nm using a
Multi-Volume Spectrophotometer system (BioTek Instruments,
Inc., USA).

Real-Time PCR
Total RNA from CNE-2 cells was extracted with TRIzol. cDNA
was generated using the PrimeScriptTM RT reagent kit (Takara
Bio Inc., Japan). The mRNA expression levels were measured
using a quantitative PCR Kit (Takara Biotechnology) by the
iCycler iQ system (Bio-Rad). Amplification conditions were
15min at 95◦C, followed by 40 cycles of 30 s at 95◦C, 1min at
55◦C, and 30 s at 72◦C. Human-specific primers (Supplementary

Table S1) for Bax, Bcl-2, and GAPDH were synthesized by
Invitrogen. The GAPDH was used as endogenous control. Each
PCR amplification was performed in triplicate.

TUNEL Assay
TUNEL analyses were performed as described previously (15).
Cells were fixed with 4% formaldehyde in PBS at room
temperature for 30min. After two washes in PBS, the cells
were permeabilized using 0.2% TritonX-100 in PBS for 5min.
Then, the cells were labeled with Biotinylated dUTP and TDT
enzymes in a humidified box at 37◦C for 1 h, followed by
incubation with streptavidin-fluorescein for 30min. Finally, cells
were counterstained with 4’,6-diamidino-2-phenylindole (DAPI)
at room temperature for 10min before observation under a
microscope. Cells were only labeled as being TUNEL positive and
expressed as a percentage of the total nuclei.

Western Blot Analysis
Western blot assays were performed as described previously (16).
Total protein was exacted from CNE-2 or 5-8F cells using RIPA
lysis buffer, and the protein concentration was evaluated using
a BCA protein assay kit (Thermo Fisher Scientific). The same
amount of protein (20 µg per lane) was separated by SDS-PAGE
gel electrophoresis and then transferred to the PVDF membrane
(Millipore). After blocking 5% nonfat milk, the membranes
were incubated with primary antibodies overnight at 4◦C.
Next, membranes were incubated with appropriate horseradish
peroxidase (HRP)-labeled second antibodies for 1 h at room
temperature. At last, the blotted membranes were visualized by
the enhanced chemiluminescent (ECL) method, and molecular
band intensity was determined by densitometry. α-tubulin was
used as endogenous control. The intensities of the blots were
quantified by densitometry using the image lab analysis system
and NIH image J software.
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SIRT1 Histone Deacetylase Activity Assay
The histone deacetylase activity assay was performed as
described previously (16). Total proteins, extracted from
CNE-2 or 5-8F cells, were immunoprecipitated with anti-
SIRT1 antibody and protein G agarose beads (Pierce).
After incubation overnight at 4◦C, the precipitates were
transferred into a new tube. The reaction was carried out
by mixing 15 µl of precipitates and 35 µl reaction mixture
(20µM fluorosubstrate peptide, 800µM NAD, 0.25 mAU/ml
lysylendopeptidase, 1µm trichostatin A and 50mM Tris-
HCl) according to the manufacturer’s instructions (CycLex,
Ina). Then, the intensity of fluorescence was detected
by microtiter plate fluorometer (excitation filter: 490 ±

10 nm, emission filter: 530 ± 15 nm) and normalized by the
protein concentration.

Plasmid Transfection and RNA Interference
For SIRT1 overexpression and RNA interference, CNE-2
and 5-8F cell lines were transfected with flag-empty, flag-
SIRT1, siSIRT1, and negative control siRNA, respectively, using
Lipofectamine 2000 (Invitrogen) according to the procedure
described in our previous study (17). At 48 h after transfection,
real-time PCR, western blotting, and fluorometric assay kit were
used to evaluate the transfection efficiency. A total of three
different duplex siRNAs (Supplementary Table S2) for SIRT1
(siSIRT1-1, siSIRT1-2, and siSIRT1-3) and negative control
siRNA were purchased from Genepharma (Shanghai, PR China).

Molecular Docking
According to a previous study, the molecular docking was
carried out using Discovery Studio 3.1. The crystal structure
of SIRT1 was obtained from the Protein Data Bank (PDB ID:
4KXQ). We first used the protein preparation wizard to deal
with the protein structure and reassigned the bone orders.
Then, we minimized the sampled hydrogens to fine tune the
hydrogen-bonding network. Finally, a restrained minimization
was conducted by applying the CHARMm force field. In addition,
EGCG was processed through increasing explicit hydrogen
atoms and using the CHARMm force field and geometry
optimization with the prepared ligands module of Discovery
Studio 3.1. The docking grid was generated with its center
set to the native ligand, and the grid size was set similarly
(the search grid of binding site was identified as center x:
32.225016, center y: −16.502403, and center z: 9.395139 with
the radius of 10.297739). After completing the aforementioned
preparatory work, EGCG was performed to docking at the extra
precision (XP) level.

Statistical Analysis
Data are presented as mean ± standard error (SE). Statistical
analyses between two groups were performed by unpaired
Student’s t-test. Differences among groups were tested by one-
way ANOVA. In all the cases, differences were considered
statistically significant with P < 0.05.

RESULTS

Effect of EGCG on Proliferation and
Apoptosis of NPC Cell Lines
To investigate the effect of EGCG on the proliferation of NPC
cell lines, CNE-2 and 5-8F cells were incubated with various
concentrations of EGCG at different times. And the cell viability
was assessed by CCK8 assay. As shown in Figures 1A–D, EGCG
inhibited NPC cell lines (CNE-2 and 5-8F) viability in a dose-
and time-dependent manner. We further tested the proliferation
kinetics of NPC cells and showed that EGCG treatment could
significantly inhibit cell proliferation in CNE-2 and 5-8F cell
lines (Figures 1E,F). Then, we detected the effect of EGCG
on the apoptosis of NPC cells. As shown in Figures 1G–J,
EGCG-induced apoptosis in NPC cell lines. Meanwhile, EGCG
caused caspase-3 cleavage (Figures 2A–C). Moreover, EGCG
also resulted in a dose-dependent increase in the Bax/Bcl-2
ratio that favors apoptosis in NPC cell lines (CNE-2 and 5-8F)
(Figures 2D–I).

Effect of EGCG on Expression and Activity
of SIRT1 in NPC Cell Lines
Previous studies have demonstrated that SIRT1 activation
promoted NPC cells’ proliferation, migration, and lipid
metabolism. It indicated that SIRT1 might participate in the
effect of EGCG on NPC cell lines. To elucidate the potential
molecular mechanisms of EGCG on NPC cells in vitro, we
checked the protein level of SIRT1. As shown in Figures 3A–D,
EGCG could inhibit the protein expression of SIRT1 in a time-
and dose-dependent manner. Then, we further assessed the
histone deacetylase activity of SIRT1 and found that EGCG
inhibited the enzyme activity of SIRT1 in NPC cell lines
(Figures 3E–H).

SIRT1 Participate in the Regulation of
EGCG on Proliferation and Apoptosis in
NPC Cell Lines
To examine the role of SIRT1 in EGCG-induced apoptosis,
cells were transfected with SIRT1. Overexpression of SIRT1
significantly increased the expression and activity of SIRT1
in CNE-2 and 5-8F cells (Supplementary Figure S1). Then,
we checked the cell viability and apoptosis in NPC cell
lines. As shown in Figures 4A–F, EGCG treatment inhibited
the proliferation and induced apoptosis in CNE-2 and 5-8F
cells, which could be attenuated by preincubation with SIRT1
overexpression. Moreover, when SIRT1 was overexpressed,
EGCG failed to increase the Bax/Bcl-2 ratio (Figures 4G,H) and
caspase-3 cleavage (Figures 4I,J). Then, we tested the effect of
SIRT1 siRNA interference on proliferation and apoptosis of NPC
cells induced by EGCG. When the cells were transfected with
siSIRT1, the expression and activity of SIRT1 were decreased
significantly (Supplementary Figure S2). We further measured
the cell viability and apoptosis in NPC cell lines. As shown in
Figure 5, knockdown of SIRT1 aggravated the cell proliferation
inhibition and apoptosis in NPC cell lines (Figures 5A–F), as
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FIGURE 1 | Effect of EGCG on proliferation and apoptosis of NPC cell lines. CNE-2 and 5-8F cells were treated with various concentrations of EGCG for 48 h or with

40µM EGCG for indicated time points. The cell viability (A–D) and proliferation kinetics (E,F) were detected by CCK8 assay. Cells were treated with various

concentrations of EGCG for 48 h. (G–J) The cell apoptosis was detected by tunnel assay. *P < 0.05 and **P < 0.01 vs. the group without treatment, n = 5. ns = no

significance which means no statistical difference.
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FIGURE 2 | Effect of EGCG on apoptosis-related genes expression in NPC cell lines. CNE-2 and 5-8F cells were treated with various concentrations of EGCG for

48 h. (A–C) The protein expression of caspase 3 was analyzed by Western Blotting. (D–I) The mRNA expression of Bax and Bcl-2 was determined by real-time PCR.

*P < 0.05 and **P < 0.01 vs. the group without treatment, n = 5. ns = no significance which means no statistical difference.

well as the Bax/Bcl-2 ratio (Figures 5G,H) and caspase 3 cleavage
(Figures 5I,J).

Effect of EGCG on p53-Dependent
Apoptotic Pathways in NPC Cell Lines
Previous studies showed that SIRT1 might deacetylate p53,
thereby inverting p53-mediated cell growth arrest and apoptosis

in many cancer cells (18). So, the effect of EGCG on p53-
dependent apoptotic pathways in the NPC cells was studied. As
shown in Figure 6, EGCG treatment could significantly increase
the protein expression of Ac-p53, Apaf-1, and cleaved-caspase
9, which could be attenuated by preincubation with SIRT1
overexpression. However, the knockdown of SIRT1 aggravated
the level of these proteins in CNE-2 (Figures 6A–D) and 5-8F
(Figures 6E–H) cells. These results suggested that SIRT1 may
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FIGURE 3 | Effect of EGCG on expression and activity of SIRT1 in NPC cell lines. CNE-2 and 5-8F cells were treated with various concentrations of EGCG for 48 h or

with 40µM EGCG for indicated time points. The protein expression (A–D) and deacetylase activity (E–H) of SIRT1 were detected by Western Blotting and deacetylase

fluorometric assay kit, respectively. *P < 0.05 and **P < 0.01 vs. the group without treatment, n = 5. ns = no significance which means no statistical difference.

participate in the effect of EGCG on the protein expression of
p53-dependent apoptotic pathways.

Molecular Docking Study Analyzed the
Interaction Between EGCG With SIRT1
To investigate the mechanism by which EGCG-inhibited SIRT1,
molecular docking was performed using Discovery Studio 3.1
software. We first obtained the SIRT1 crystal structures from
the Protein Data Bank (PDB: 4KXQ) (Figure 7A). As shown in
Figure 7B, the binging mode of EGCG and crystal structure of
SIRT1 showed that EGCG enters the pocket of SIRT1 by seven
hydrogen bonds, which turns out to be ARG-466 (1.9 Å), ASN-
465 (2.4 Å), GLU-467 (2.3 Å), SER-442 (2.4 Å), SER-441 (1.9 Å),
ARG-274 (1.8 Å), and GLY-263 (2.4 Å). ARG-274 and ARG-466
have been reported as the critical amino acids affecting SIRT1
activity, which suggested the regulatory effect of EGCG on the
deacetylase activity of SIRT1 may be related to its interaction
with SIRT1.

DISCUSSION

Nasopharyngeal carcinoma is the most prevalent malignant
tumor in China, characterized by insidious location, lack of

obvious early symptoms, and poor specificity (19–21). Currently,
radiotherapy combined with chemotherapies is considered the
standard treatment for NPCs (22). However, NPC patients
often have a poor prognosis following treatment due to specific
toxicities and drug resistance against chemotherapeutic drugs
(23). Hence, it is urgent to exploit highly efficient and low-toxicity
anticancer drugs combined with radiotherapy to improve the
therapeutic effect of NPC.

Epidemiological studies have shown that the consumption
of green tea is inversely associated with the incidence of
certain cancers, and long-term consumption of green tea may
reduce the risk of developing cancer and metastasis (24, 25).
Green tea contains polyphenolic compounds, including flavanols,
flavanonols, flavonoids, and phenolic acids accounting for almost
30% of the dry weight of green tea leaves. Most of the
polyphenols in green tea are flavanols commonly known as
catechins (26). EGCG, the major catechins in green tea, shows
multiple biological activities such as antibacterial, antiviral,
cardiovascular protection, and antiangiogenesis (7). Currently,
the anti-cancer potential of EGCG has gained much attention
on a global scale. Studies have shown that EGCG may intervene
in the occurrence and development of cancers by inhibiting
cell proliferation, inducing apoptosis, interference in cellular
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FIGURE 4 | SIRT1 overexpression ameliorated the effect of EGCG on proliferation and apoptosis in NPC cell lines. Cells transfected with or without SIRT1 were

treated with 40µM EGCG for 48 h. (A,B) The cell viability was detected by CCK8 assay. (C–F) The cell apoptosis was detected by tunnel assay. (G,H) The mRNA

expression of Bax and Bcl-2 were determined by real-time PCR. (I,J) The protein expression of caspase 3 was analyzed by Western Blotting. **P < 0.01 vs. the group

without treatment, #P < 0.05 vs. the group without treatment with EGCG alone, n = 5.
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FIGURE 5 | SIRT1 knockdown aggregated the effect of EGCG on proliferation and apoptosis in NPC cell lines. Cells transfected with or without siSIRT1 were treated

with 40µM EGCG for 48 h. (A,B) The cell viability was detected by CCK8 assay. (C–F) The cell apoptosis was detected by tunnel assay. (G,H) The mRNA expression

of Bax and Bcl-2 were determined by real-time PCR. (I,J) The protein expression of caspase 3 was analyzed by Western Blotting. *P < 0.05 and **P < 0.01 vs. the

group without treatment, #P < 0.05 vs. the group without treatment with EGCG alone, n = 5.
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FIGURE 6 | Effect of EGCG on p53-dependent apoptotic pathways in NPC Cell Lines. Cells transfected with or without SIRT1/siSIRT1 were treated with 40µM

EGCG for 48 h. The protein expression of Ac-p53, Apaf-1, and caspase 9 was detected by Western Blotting in CNE-2 (A–D) and 5-8F (E–H) cell lines. *P < 0.05 and

**P < 0.01 vs. the group without treatment, #P < 0.05 vs. the group without treatment with EGCG alone, n = 5.

FIGURE 7 | EGCG was docked to the SIRT1 protein structure. (A) The protein structure of SIRT1. (B) Molecular docking between EGCG and SIRT1.

metabolism, inhibiting oncogene expression, and inhibiting
tumor neovascularization (27). In a clinical study on subjects
given EGCG at a single dose of 1,600mg or 800mg a day for
1 month, no obvious toxicity or side effects were seen except

mild gastrointestinal reactions (28, 29). However, some animal
studies reported the adverse effects linked with the consumption
of high doses of EGCG.Moreover, an oral administration of 2,000
mg/kg, e.g., Teavigo, to rats resulted in about 80%mortalities, and
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histological analysis revealed hemorrhagic lesions in the stomach
and intestine (30). In addition, high oral doses of EGCG (2,000
mg/kg) have also been reported to induce hepatotoxicity in vivo
mice models (31). Despite this, the high doses of EGCG used
in these articles have far exceeded the conventional doses used
in animals and humans, suggesting the safety of EGCG. The
EGCG significantly inhibited proliferation by inducing apoptosis
in NPC cells. These results indicated that EGCG might be a
potential chemotherapeutic agent for the treatment of NPCs.
However, the exact molecular mechanism of EGCG-mediated
inhibition of proliferation in NPC cells is not well elucidated.

A recent study has shown that EGCG could inhibit the
proliferation of the nasopharyngeal CNE-1 cell line by inhibiting
NF-κB nuclear translocation and EGFR phosphorylation (32).
Moreover, EGCG has also been reported to inhibit the migration
of the HONE-1 cell line by inhibiting the expression of MMP-
2 (33). In addition, EGCG also inhibits NPC cells’ invasion by
regulating miRNA-296 (34). However, the mechanism of EGCG
regulating the proliferation of NPC cells is still poorly known;
hence, it is necessary to explore the precise molecular mechanism
of EGCG inhibition of nasopharyngeal carcinoma cell growth.
Sirtuins are a family of NAD+-dependent deacetylases involved
in the multiple biological processes, including cell survival, DNA
damage/repair, life span, and aging (35). There are seven different
sirtuins in mammals, namely, SIRT1-SIRT7 (36). Recently, the
sirtuin family has attracted much attention in cancer research,
as they play an essential role in the onset and progression
of cancer (37). SIRT1, the most extensively characterized
family member, has also been demonstrated to be involved in
cancer progression (38, 39). However, SIRT1 can function as
both a tumor promoter and tumor suppressor simultaneously,
depending on the immediate microenvironment (40). On the
one hand, SIRT1 inhibits tumor formation by inhibiting tumor

promoters such as NF-κB and c-Myc (41, 42). Furthermore,
SIRT1 may suppress tumor cell apoptosis by inhibiting tumor
suppressor genes such as P53, FOXO1, and FOXO3 (43, 44).
Among them, the first discovered non-histone target of SIRT1,
the p53 is suggested to play a central role in SIRT1-mediated
functions in tumorigenesis (18). SIRT1 physically interacts with
p53 and deacetylates p53 K382, inhibiting p53 activity, thus
enabling cells to bypass p53-mediated apoptosis help the cells
survive (43). In both of the NPC (CNE-2 and 5-8F) cell lines,
the expression of SIRT1 were significantly increased compared
with normal nasopharyngeal epithelial cells NP69, and SIRT1
overexpression could promote the proliferation and migration of
NPC cells (14). In addition, SIRT1 is a direct target of miR-34a,
and overexpression of miR-34a could increase the radiotherapy
sensitivity of nasopharyngeal CNE-1 cells by inhibiting SIRT1
(45). These results suggest that SIRT1 plays a vital role in the
developing and progression of NPCs. However, whether EGCG
inhibits NPC cells’ proliferation by regulating SIRT1 has not been
reported. Herein, it is demonstrated for the first time that EGCG
could inhibit protein expression and enzyme activity of SIRT1
in CNE-2 and 5-8F cells in a dose-dependent manner. Further
studies showed that SIRT1-p53 signaling participated in the effect
of EGCG on NPC cells.

Although it was also found that EGCG induces apoptosis in
NPC cells through SIRT1 inhibition, however, whether SIRT1
acts as an oncogene or tumor suppressor may depend on the
stages of tumor development or upstream and downstream
regulators. In some cases, whether activation of SIRT1 also could
inhibit the growth of NPC cells is still worth exploring. Moreover,
initially, the inhibitory effect of EGCG on SIRT1 was not specific
and displayed different modalities of regulation in different cell
lines. The research showed that EGCG inhibits homocysteine-
induced oxidative damage in endothelial cells by activating the

FIGURE 8 | Schematic diagram of the proposed mechanisms of EGCG-induced apoptosis and anti-proliferation in NPC cell lines.
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SIRT1/AMPK pathway (46). The study also demonstrated that
EGCG inhibits hepatic cholesterol synthesis by targeting SREBP-
2 through modulation of the SIRT1/FOXO1 signaling pathway
(47). Our previous work showed that EGCG inhibited the growth
of H9C2 cardiomyocytes by suppressing the expression of SIRT1
(15). In this study, we are the pioneers to report that EGCG-
induced apoptosis in nasopharyngeal carcinoma CNE-2 cells
by inhibiting the expression and activity of SIRT1. In addition
to SIRT1, EGCG also affected other Sirtuin family proteins.
For example, previous EGCG could regulate senescence and
anti-SASP via SIRT3 in 3T3-L1 Preadipocytes (48). Moreover,
previously we reported that EGCG increased SIRT6 activity
by affecting the level of NAD (16). The regulatory role of
EGCG on other members of the Sirtuins family needs to be
further investigated.

How does EGCG carry out its inhibitory regulatory role on
the expression of SIRT1 or not? Following the literature, it is
shown that the regulation mode of SIRT1 by EGCG remained
variable in the different cell lines. It was demonstrated that
EGCG could activate SIRT1 in endothelial cells (46), while
our previous study also showed that EGCG could inhibit
SIRT1 expression in H9C2 cardiomyocytes (15). This work
demonstrated that EGCG inhibited proliferation and induced
apoptosis in NPC CNE-2 cells by downregulating SIRT1.
However, the specific molecular mechanism by which EGCG
regulates SIRT1 expression in NPC cells is still unknown.
To clarify the regulatory mechanism of EGCG on SIRT1, at
first, the effect of EGCG on the mRNA expression of SIRT1
was examined, and no impact on the mRNA level of SIRT1
was observed, suggesting that EGCG does not inhibit the
expression and activity of SIRT1 at the transcriptional level
(Supplementary Figure S3). Therefore, the interaction between
EGCG and SIRT1 using a molecular docking approach to
clarify EGCG was the only molecule to bind directly to SIRT1
(Figure 7). However, the interaction between EGCG and SIRT1
needs to be further justified through surface plasmon resonance
(SPR) methods. Moreover, whether the binding of EGCG to
SIRT1 affects the expression and activity of SIRT1 needs to be
further investigated.

In conclusion, this study has demonstrated for the first time
that EGCG could activate the mitochondrial apoptotic pathway
by inhibiting the SIRT1-p53 signaling pathway and finally

inducing the apoptosis in human NPC cell lines (Figure 8).
Our study further elucidated the critical role of SIRT1 in
the occurrence and development of NPC, which provided
the necessary experimental data and theoretical basis for the
application of EGCG in the prevention and treatment of NPCs.
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