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Since 2020, the world has been suffering from a pandemic that has affected thousands

of people regardless of socio-economic conditions, forcing the population to adopt

different strategies to prevent and control the advance of the disease, one of which

is social distancing. Even though social distancing is a safe strategy to reduce the

spread of COVID-19, it is also the cause of a rising sedentary behavior. This behavior

develops an excess of fat tissue that leads to metabolic and inflammatory disruption

related to chronic diseases andmental health disorders, such as anxiety, depression, and

sleep issues. Furthermore, the adoption of dietary patterns involving the consumption of

ultra-processed foods, higher in fats and sugars, and the reduction of fresh and healthy

foods may play a role in the progress of the disease. In this perspective, we will discuss

how an unhealthy diet can affect brain function and, consequently, be a risk factor for

mental health diseases.
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INTRODUCTION

The COVID-19 outbreak started in March of 2020; this human threat substantially modified
the lifestyle of people around the world. Quarantine and social distancing were the two well-
known initial preventive care measures imposed by governments worldwide to minimize the
spread of infection of COVID-19. Because of the fast virus spread, schools were closed, national
and international travel was restricted or forbidden, and other social activities, such as amateur
and professional sports tournaments and musicals, were canceled. In addition, hundreds of
countries kept their population in lockdown at home in isolation indefinitely to reduce the risk
of transmission of the COVID-19. Although social distancing is a safe strategy to reduce the
spread of the COVID-19, the lockdown increased sedentary behavior [might be defined as an
energy expenditure of ≤1.5 metabolic equivalents of task (METs)] (1), mental and physical health
problems (anxiety, depression, and others) (2, 3), and sleep and circadian rhythm disruption in
the population (4, 5). The latter impacts body composition by promoting the greater intake of
high energy-dense food types (5, 6). On the other hand, circadian misalignment can be achieved
by alteration of the sleep and feed patterns (specially the increase in high-fat food intake), and
potentially leading to cardiovascular disease (7). Furthermore, circadian clock genes trigger the
onset of metabolic disorders, including metabolic syndrome (MetS) (7, 8).
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The gain of excessive adipose tissue leads to local and systemic
pro-inflammatory conditions, impairing glucose metabolism,
and the onset of metabolic disorders (e.g., type-2 diabetes -
T2D-), altering the functionality of organs and systems evenly.
Moreover, the pro-inflammatory state per se harms the structure
of brain topological integration and function. Similarly, poor diet
quality, defined as the diet with a reduced variety and nutritional
deficiency, does not align with international guidelines (9),
represents another factor that generates dysfunctional brain
activity (10). Unfortunately, during the COVID-19 lockdown,
the population adopted unhealthy diet patterns from previous
bad habits or eating behaviors or by emerging social conditions
(e.g., reduction of income as a direct consequence of a sharp
raising in the unemployment rate) (11, 12). Thereby, scientists
and international organizations recommended maintaining a
healthy diet focusing on strengthening the immune system
and coping with the COVID-19 infection (13–15). However, as
mentioned above, an unhealthy diet is a factor that negatively
affects brain function. Therefore, the present perspective article
briefly discusses how a current poor diet in the population during
the COVID-19 lockdown might affect brain health.

ULTRA-PROCESSED FOOD-BASED DIET:
A RISK FACTOR FOR BRAIN
DYSFUNCTION DURING COVID-19

According to information provided by international
organizations and scientists, ultra-processed foods (UPFs)
have undergone excessive industrial manufacture. As a result,
UPFs are deficient in dietary fiber, protein, and micronutrients,
these products contain little to no whole foods, (16–18).
Furthermore, UPFs are energy-dense products that contain
artificial components that modify textures, flavors, and colors,
producing palatable and more attractive foods (17). The UPFs
are typically ready for consumption like soft drinks, sugar drinks,
fatty or salty snack products, ice cream, French fries, burgers,
desserts, and more products offered as a whole variety of fast
foods (16, 17, 19).

The excessive consumption of UPFs is considered the primary
source of non-communicable diseases (i.e., obesity, MetS,
T2D, etc.) (19). In addition, during the COVID-19 lockdown,
individuals have reported higher UPFs consumption in contrast
to pre-pandemic times (20–24).

Currently, some studies pointed out the excess of dietary fats
can promote changes in gut-microbiota and favor augmented
lipopolysaccharides (LPS) extravasation to blood (25).
Augmented LPS in blood lead to Toll-Like Receptor 4 (TLR-4)
activation via binding the cellular membrane, stimulating pro-
inflammatory signaling cascades, increasing cytokine synthesis
(TNFα, interleukin -IL- 1B, IL-6, and interferon γ –IFNγ-). This
constant cycle (higher dietary fat intake and blood LPS) favors
the development of chronic metabolic disruptions, like insulin
resistance (26). Recently, Teixeira et al. (27) demonstrated an
increased microbial translocation and hyper inflammation in
patients with severe COVID-19, provoking higher monocyte

activation, which may be associated with worsening outcomes,
including death.

Linked with the preponderance to UPFs ingestion, the SARS-
Cov2 virus directly and indirectly affects at-risk populations (e.g.,
hypertensive patients, aged people). Social distancing has also
caused the world population’s physical activity reduction (2) both
lifestyle habits induce body weight gain. In agreement, recent
work reported that obesity prevalence has raised during the
ongoing social distancing (28, 29). In obesity, immune, adipose
tissue, skeletal muscle, and liver engage in a particular crosstalk
leading to IR (30–38).

There is evidence that IR leads to hyperglycemia and a
parallel increase in pancreatic β-cell insulin secretion (i.e.,
hyperinsulinemia) (39, 40). These conditions often lead to a
cascade of metabolic risk factors collectively referred to as
MetS, characterized by central obesity, IR, dyslipidemia, and
hypertension (41), and it is known to increase T2D risk by over
2-fold (42–44). Contrary toMetS, T2D is mainly impaired insulin
secretion resulting from IR (42).

Besides the pathological effects ofMetS and T2D on peripheral
organs, recent evidence also suggests a negative impact on brain
function and surrounding areas (45–48), such as the blood-brain
barrier (BBB) (49–52). The BBB regulates themolecular exchange
between the peripheral blood and the brain (53, 54). Conceptual
models suggest that chronic peripheral inflammation due to
T2D and MetS increases the BBB permeability to leucocytes and
external molecules into the brain (41, 42). Thus, the cerebral
response begins with an inflammatory response (43, 44), followed
by a pro-inflammatory response that alters endothelial cells
(ECs), increasing the BBB permeability (55, 56). Other studies
show that T2D increases the inflammatory profile of ECs and
BBB permeability, a response closely associated with cognitive
impairment (57, 58).

In addition, MetS depicts elevated serum triacylglycerol (TGs)
and low high-density lipoprotein (HDL-c) concentrations (33).
Nevertheless, cross-sectional studies have reported equivocal
findings regarding the association between high serum TGs and
cognitive function in humans (59, 60). Some authors report
an adverse effect of TGs on cognitive function (46, 60), while
others suggest a positive outcome on brain function (45). In this
regard, it is worth indicating that the former study was in a
Chinese sample, whereas the other studies were in the western
populations. This evidence suggests racial/ethnic disparities in
the effects of TGs on cognitive function. Finally, IR in the brain
induced by TGs was also demonstrated (47).

Another concern in MetS is the continuous hyperglycemic
state that facilitates the non-enzymatic interaction between
glucose and proteins (48, 49). Glycated protein generates
advanced glycation end-products (AGEs). These molecules have
been associated with reduction in BBB integrity (39, 49).
Moreover, AGEs activate the synthesis of pro-inflammatory
cytokines in the BBB’s ECs, causing a pro-inflammatory feedback
loop (42). Chronic hyperglycemia triggers several metabolic
signaling mechanisms that induce inflammation, apoptosis,
and the synthesis of reactive oxygen species (ROS) (50).
Additionally, studies performed in obese rodents show that ROS
increases BBB permeability, reducing the expression of proteins
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associated with tight junctions (37, 51). On the other hand,
hyperglycemia per se harms the brain in patients with T2D
(31, 52, 53). At least two mechanisms negatively contribute
to this: 1) hyperglycemia is associated with brain atrophy
(53), 2), hyperglycemia increases the risk for stroke, leading to
brain acidosis (52, 54). Furthermore, hyperglycemia increases
the activity of excitatory neurotransmitters (e.g., glutamate),
resulting in a higher calcium concentration in neural cytosol to
induce cell death (54). Finally, hyperglycemia is a factor that
reduces the topological integration in brain (45), which possibly
contributes to cognitive impairment in T2D (45) (Figure 1).

POOR DIET QUALITY: A RISK FACTOR
FOR BRAIN INTEGRITY DURING COVID-19

The human body is a structure that requires energy for anabolic
and catabolic processes. In this sense, ingesting food was initially
considered a survival practice. However, anthropologists proved
hypotheses concerning the diet role in Hominids evolution (61–
65). For instance, cooking foods improved digestion capacity
(62, 66). Additionally, cuisine foods increased the availability
of the nutrients present in plants and meat (66). The previous
conditions and others facilitated the brain evolution (i.e.,
encephalization) (62, 67). Therefore, the diet components have
played a relevant role throughout the Homo evolution in
conjunction with food processing. In this sense, fatty acids,
mainly the long-chain polyunsaturated fatty acids (PUFAs),
docosahexaenoic acid (DHA), and arachidonic acid (AA), have
provided essential effects on brain evolution (63, 68). Moreover,
AA is a lipid that strengthens synaptic transmission (69, 70).
However, the AA is also a precursor of molecules linked
with inflammatory responses such as prostaglandins and pro-
inflammatory cytokines, such as TNFα and IL-1B (71, 72).
Another example of dietary adaptations is the lactose tolerance
of some populations. The latter is due to milk consumption after
the weaning period, keeping the lactase enzyme active (73). As
can be noted, the diet helps humans deal with the context of
living, allowing us to say that we are what we eat. Therefore, the
population who show a poor-quality diet will have few tools to
cover all the surrounding challenges.

The COVID-19 lockdown disrupted the dietary patterns in
the world population (74, 75), affecting low-and-middle-income
countries (11, 12, 76, 77). Therefore, besides the enhancing effect
on the UPFs consumption, the COVID-19 outbreak reduced
food security, and consequently, the dietary quality (11, 12, 75,
78, 79). Food security is a complex phenomenon that implicates
time, physical and economic access to sufficient healthy food to
satisfy the nutritional needs and food preferences for a healthy
lifestyle (80). The opposite condition is known as food insecurity
(FI) (80, 81), which is related to malnutrition (i.e., undernutrition
and micronutrient deficiency) (81). During the COVID-19
lockdown, unemployment growth and increased food prices were
the main factors reducing food affordability (11). In addition,
the lockdown restrictions reduced the food supply chain (78),
which in turn reduced the ingestion of fresh products such as fruit
and vegetables (75). Together with the prior information, other

authors have reported that the population with high FI scores
showed higher anxiety levels (78), independent of the socio-
economic factors (82). Besides the FI, an inverse relationship is
reported between quality diet and anxiety levels in individuals
undergoing lockdown (29).

The nutrient deficiency intake might impact brain function.
For instance, the PUFAs role on neural membrane integrity, gray
matter, and hippocampal volume (83), makes them an important
nutrient whose low ingestion contributes to a reduced brain
plasticity (83–85). Together with lipid actions, other molecules
are also essential to strengthen brain function. Concretely,
polyphenols found in fruits and vegetables also have positive
effects (86). Resveratrol for example, a phytoalexin present in
grapes, berries, tomatoes, nuts, and cocoa (87), demonstrated
positive effects on brain function and structure (88, 89). Chronic
consumption of resveratrol led to a better cognitive performance
(i.e., improving memory) and mood in postmenopausal women
(89), the hypothetical mechanism explaining these responses
was a better cerebral perfusion modulation in the participants
(89). A similar effect was reported in healthy men (90);
moreover, this polyphenol enhances the functional connectivity
from the hippocampus to frontal, parietal, and occipital areas,
improvement in the memory retention correlated with a
topological shift in brain, and glucose metabolism in healthy
older adults (91).

Conversely, protein malnutrition (PMN) is a risk factor for
neuroinflammation and oxidative stress (10, 92, 93). Moreover,
the PMN in pregnant women affects brain development and
cognition considerably in the offspring (10). The previous
findings emphasize the impact of the diet on brain integrity
during the COVID-19 outbreak (Figure 1).

Poor diet, nutrient availability, and quality will also impact the
gut microbiome and, eventually, brain health. Intestinal content
and the brain represent a dynamic bidirectional communication
described as the “gut (microbiota)-brain axis” (94). The human
gut microbiome includes different types of bacteria responsible
for several functions such as energy metabolism, immunity,
vitamin synthesis, hormone, and neurotransmitter production,
and it also influences human behavior (94–96). Environmental
factors (e.g., diet changes caused by the COVID-19 pandemic,
medication, exercise) can potentially change the gut microbiome
rapidly. In addition, special conditions might lead to a microbial
imbalance (i.e., dysbiosis), a factor contributing or associated
to the development of some diseases like inflammatory bowel
disease (97), atopic diseases (e.g., eczema, asthma, food allergies)
(98), type-1 diabetes (99), schizophrenia, and other cognitive
disorders (94, 100, 101). Changes in the gut microbiome have
shown concomitant changes in brain structure, function, and
behaviors (e.g., stress, anxiety, depression) (94, 101). Indeed,
the effect of gut microbiome diversity on brain function is
partially accounted for by vitamin-mediated neuronal function,
neurotransmitter composition, and short-chain fatty acid (sCFas)
metabolites (94, 102).

Previous evidence suggests that vagal afferent sensory
neurons are microbiota-mediated, regulating information
transmission through the kynurenine pathway (103). Probiotic
supplementation impacts the central nervous system, and
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FIGURE 1 | Summary overview of the malnutrition effects on brain health during the COVID-19 pandemic. (A) The preponderance by the UPF’s ingestion, circadian

disruption, and a sedentary lifestyle will facility the gain of body weight, leading to suffering overweight/obesity, and in a worst-case scenario suffer metabolic

syndrome and T2D. Moreover, overweight/obesity increases the risk of low-grade chronic inflammation; the pro-inflammatory cytokines hinder the blood-brain barrier

function deteriorating brain health. Additionally, the higher rate of unemployment and the rising price of food have reduced the affordability of fresh products, and

protein based-products, resulting in a poor quality diet. This condition is a factor that reduces brain integrity that leads to suffering brain disorders. (B) The public

services focused to facilitate the practice of physical exercise during the lockdown, and better distribution and access to healthy food will strengthen the brain health

and reduce the risk to suffer brain disorders.

research has shown its effects on anxiety disorders (i.e.,
anxiolytic effect) (102, 104). Although specific probiotic species
affecting brain health are currently under study, recent evidence
suggests that anxiety and depressive disorders correlate to
higher pro-inflammatory species and lower abundance of
sCFas-producing species (105).

CONCLUSIONS AND FINAL REMARKS

Social distancing was a strategy implemented worldwide by
several governments to reduce the risk of COVID-19 infection.
However, this outbreak has impacted the household economy
considerably, reducing food affordability and, consequently, the
food quality. Although different documents highlight the diet’s
relevance to strengthening the immune system, there is a lack
of emphasis on the diet’s role in maintaining brain integrity
and functionality during the COVID-19 outbreak. In the current
work, we discussed how overweight and obesity impact brain
function. Even though this effect is widely reported, the social
distancing during COVID-19 increased the risk of suffering
obesity. We also discussed how undernutrition is a condition
with deleterious effects on brain integrity. Although the mobility

restriction is less severe today, the economic impact of the
COVID-19 pandemic is still present in society; furthermore,
it is projected to reach the pre-pandemic levels until 2023
(106). This scenario impairs individuals’ availability to secure
adequate nutrients and causes changes in the gut microbiome,
resulting in vulnerable brain health and increasing the risk
of suffering anxiety, cognitive deficiency, mental disorders,
and impaired mood. Finally, different authors indicated that
the brain is directly and indirectly affected by COVID-19
(107–109). Therefore, we believe that a fragile brain resulting
from malnutrition (i.e., over-nutrition and undernutrition)
could worsen the consequences after the COVID-19 infection.
Consequently, we consider that governments worldwide must
develop strategies to improve the diet quality in the population,
mainly during the COVID-19 outbreak. If fulfilled, the possibility
of increasing brain health in children, adults, and the elderly
is nigh.
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