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Objectives: To explore the association of Children’s Dietary Inflammatory Index

(C-DII) scores with inflammation and markers of inflammatory factors in children

and adolescents.

Methods: Data on dietary nutrient intake, markers of inflammation (ferritin, alkaline

phosphatase, C-reactive protein (CRP), absolute neutrophil cell count and lymphocyte

count) and oxidative stress (serum bilirubin, albumin, and iron) were available for

participants aged 6–19 years (n = 1281). Each participant’s C-DII score was

calculated based on a 24-h diet and recall. Generalized linear models were applied

to examine associations between C-DII and markers of inflammation and oxidative

stress, while adjusting for covariates. Restricted cubic splines were used to explore

the dose-response association of C-DII scores with indicators of inflammatory oxidative

stress. Akaike’s Information Criterionwas applied to compare the performance of linear

and non-linear models.

Results: After adjusting for potential confounders, quantile regression results showed

that when comparing C-DII quartile 4 (most pro-inflammatory) and quartile 1 (most

anti-inflammatory), lymphocytes, ferritin, CRP were statistically significant differences in

serum bilirubin, albumin and serum iron (P < 0.05). The C-DII score showed a non-linear

relationship with inflammatory oxidative stress indicators. Overweight/obese children and

adolescents who ate a high pro-inflammatory diet were more likely to have higher levels

of inflammatory cytokines (P = 0.002).

Conclusions: The dietary inflammatory index in children is associated with markers of

chronic inflammation and oxidative stress. A pro-inflammatory diet resulted in increased

serum concentrations of these markers, implying that early dietary interventions

have implications for reducing chronic inflammation and oxidative stress in children

and adolescents.
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INTRODUCTION

Oxidative stress refers to the overloading of the cytoprotective
polyphenol system with reactive oxygen species, resulting in
oxidative damage to macromolecules, such as DNA, proteins,
and lipids (1). Oxidative stress is well-established as the
trigger and endpoint of multiple events, including inflammation,
hypoxia, and hyperoxia (2). Inflammation is generally divided
into acute and chronic inflammation in accordance with a
temporal criterion. The primary cells of acute inflammation are
mostly neutrophils, while monocytes and lymphocytes are typical
immune cells observed during chronic inflammation (3, 4). A
strong relationship between chronic low-grade inflammation and
oxidative stress has been documented in the literature (5).

An increasing body of evidence suggests that low levels
of chronic systemic inflammation and oxidative stress are
associated with the development of many chronic diseases, such
as diabetes, obesity, cardiovascular disease, cancer, respiratory
and musculoskeletal diseases, and impaired neurodevelopment
(6–9). Given that children and adolescents have unique
nutritional needs and immature immune functions, they are
susceptible to infections (10). Accordingly, factors that may
affect changes in inflammatory and oxidative stress levels
of children and adolescents are currently under study in
immunological studies.

Dietary nutrition is a key variable influencing chronic
inflammation and oxidative stress status, primarily because
daily food intake is a good indicator of a person’s dietary
inflammatory and oxidative stress potential (11, 12). Indeed, a
healthy diet reduces the adverse effects of inflammation and
oxidative stress markers in children (13). Growing evidence
suggests that dietary patterns or indicators represent markers of
inflammatory oxidative stress (14, 15). For example, studies on
indicators and dietary patterns, such as the Mediterranean Diet
Score, Italian Mediterranean Index, and Healthy Eating Index,
have shown that healthier scores are inversely associated with
inflammation and indicators of oxidative stress (16, 17).

The Dietary Inflammatory Index (DII) is a new tool to
assess the inflammatory potential of an individual’s diet; it
measures the likelihood that a person’s diet causes inflammation
(18). In addition, the Children’s DII (C-DII) is a new
tool developed to assess the diet quality and inflammatory
properties in a special child cohort in pediatric practice (19).
Overwhelming evidence substantiates a positive correlation
between C-DII and inflammatory biomarkers (interleukins 1, 2,
and 6; tumor necrosis factor-alpha; and interferon- and soluble
vascular cell adhesion molecule-1) (20). DII was developed to
characterize an individual’s diet’s anti- and pro-inflammatory
effects. However, few studies have hitherto investigated the
role of diet-related inflammation in adolescents (20–24). Since
childhood and adolescence represent critical periods of growth
and development, the health status during these periods may
affect health outcomes in adulthood. Therefore, understanding
the intrinsic relationship between the potential inflammatory
potential of children’s diet and the level of inflammatory oxidative
stress has great guiding significance for dietary intervention in
early disease and sub-health states.

To the best of our knowledge, few studies have examined
the relationship between C-DII scores and biomarkers of
inflammation and oxidative stress in children and adolescents.
Therefore, the current study sought to assess the relationship
of C-DII scores with markers of inflammation [ferritin,
alkaline phosphatase (ALP), C-reactive protein (CRP), absolute
neutrophil count, and lymphocyte count] and oxidative stress
(serum bilirubin, albumin, and iron) among children and
adolescents (aged 6–19 years) in the National Health and
Nutrition Examination Survey (NHANES) datasets from 2015
to 2018. Furthermore, given that inflammatory oxidative stress
levels and C-DII values vary according to the body mass
index (BMI), known to be associated with chronic systemic
inflammation, BMI was examined as a potential modulator
of effects.

METHODS

Study Population
NHANES is a cross-sectional, nationally representative survey
of the US population that is usually carried out over
2 years. The survey respondents are often unorganized,
ordinary, and American nationals. Participants are instructed
to complete in-depth interviews and quizzes involving precise
measurements in medicine and physiology and their laboratory
tests. NHANES applies a complex four-step research design
scheme to obtain symbolic templates. Since 1999, the NHANES
scientific research has been approved by the National Health
Statistics Core Organization Verification Consortium and the
Ethical Review Board. This secondary analysis of application-
identifying information was declared exempt by the Albert
Newton Institute for Tissue Verification Consortium. Written
consent was obtained from all participants in the NHANES
Basic Survey over the age of 12 years and the parents or
legal guardians of pediatric clinic participants aged 7–11 years.
Secondary analysis of current data informationwas not permitted
without actual written material.

This study analyzed sociodemographic data, lifestyle factors,
inflammatory and oxidative stress indicators, and dietary
information data for children and adolescents aged 6–19 years
in two NHANES cycles from 2015 to 2018 (Figure 1).

Outcome Variables
Outcome variables consisted of markers of inflammation
and oxidative stress, including ferritin (measured with the
Roche Elecsys-17 immunoassay), lymphocyte count (evaluated
using automated hematology analyzing devices) (25), absolute
neutrophil count (determined using the Beckman Coulter
MAXM upon receipt of samples of MECs, as described on
the NHANES website) (26), hsCRP [SYNCHRON System(s)
High Sensitivity C-Reactive Protein reagent was based on
the highly sensitive Near-Infrared Particle Immunoassay rate
methodology], and albumin (the DcX800 bichromatic digital
endpoint method), serum iron (the DcX800 timed-endpoint
method), ALP [a simple reaction wherein ALP acts upon a
substrate (p-nitrophenol phosphate, or PNPP) in the presence
of magnesium and zinc activators to form a colored product
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FIGURE 1 | Flow diagram of analytic samples from NHANES 2015-2018.

(p-nitrophenol), whose appearance was measured at 450 nm],
and bilirubin (coupling with 3,5-chlorophenyl diazonium in the
presence of a solubilizing agent in a strongly acidic medium to
produce azobilirubin). The latter three variables are also markers
of liver disease.

Exposure Assessment
In NHANES, dietary nutrient intake was assessed by the 24-h
dietary recall (24HR) method, whereby professional technicians
asked participants about the types and quantities of foods
and beverages consumed within 24 h and recorded them in
the NHANES computer-assisted dietary survey system. The
intake of each food component was then estimated from the
University of Texas Food Intake Analysis System and the
USDA Survey Nutrient Database. C-DII was calculated using
the average nutrient intake on the first day of the 24-h meal
recall. For dietary information collected from participants, the
validated C-DII method used consisted of 25 components
(referred to as food parameters in the DII method). The
micronutrients and macronutrients included in the C-DII
calculation provided by NHANES were termed food parameters,
including carbohydrate, protein, fat, alcohol, fiber, cholesterol,
saturated fat, monounsaturated fatty acids, polyunsaturated fatty
acids, niacin, thiamin, riboflavin, vitamin B12, vitamin B6, iron,
magnesium, zinc, selenium, vitaminA, vitamin C, vitamin E, folic
acid, and beta carotene (19).

Calculation of the dietary inflammatory index in children was
conducted as previously described in the literature. Briefly, the
Z score was calculated by comparing the average and standard
deviation of common dietary nutrients with the individual
dietary nutrient intake assessed by 24-h dietary review method.
The obtained Z score was converted to a percentile value, then

the obtained percentile value was doubled, and “1” was subtracted
for centralization (from −1 to +1, centered on 0). Finally, the
obtained value was multiplied by the inflammation effect score
of the corresponding food nutrient provided in the literature
to obtain each nutrient’s dietary inflammation index score. The
dietary inflammation index scores of all food nutrients were
added to obtain every individual’s overall dietary inflammation
index scores.

C-DII calculation formula:

Zscore = [(daily mean intake− global daily mean intake)/

standard deviation]

Zscore1 = Zscore → (converted to a percentile score)× 2− 1

C− DII =
∑

Zscore1×the inflammatory effect

score of each dietary component

Covariates
For regression analysis, we assessed the association with
potential confounders, including age (continuous), race/ethnicity
(categorical), BMI category, poverty-to-income ratio (PIR,
continuous) and cotinine exposure status (categorical). The
BMI of children and adolescents aged 2–19 years in NHANES
was calculated and stratified into normal weight (BMI < 85
percentile) and overweight/obesity (BMI ≥ 85 percentile) (27).
PIR was calculated by dividing household income (based on
poverty guidelines for household size) by year and state to
reflect the socioeconomic status of participants. Race/ethnicity
was stratified into non-Hispanic white, non-Hispanic black,
Hispanics (Mexican American and other Hispanic), and others.
Given that the distribution of serum cotinine was highly right-
skewed even after transformation and was detected in only 68%
of samples, it was adjusted based on the LOD (0.015 ng/mL) to
ensure environmental tobacco exposure was taken into account.

Statistical Analyses
SAS statistical analysis software (version 9.2, SAS Institute) was
used for data analysis. It is well-established that NHANES adopts
a complex multi-link design scheme, in which some subgroups
are oversampled to improve the accuracy of this same set of
data information. A weight calculation was performed on the
sample to obtain the results of the marketing promotion to the
U.S. population to better adjust for this scheme in the statistical
analysis of the data. TheMEC sample weight values that matched
the 2 survey cycles were matched, and WTMEC2YR (matched to
the 2-year mobile exam body weight value) was multiplied by 0.5
(matched to the two phases).

Normally distributed continuous variables were described as
the mean ± standard deviation value, while non-parametric
variables were described by the median and interquartile
range. The student’s t-test was used to compare groups of
normally distributed data; otherwise, the Mann–Whitney test
was applied. Categorical variables were presented as percentages
and compared by the χ2 test. After adjusting for different
covariates, weighted multivariable logistic regression was used
to examine the relationship between measures of inflammatory
oxidative stress and continuous C-DII or quartile C-DII. Model 1
represented the unadjusted model; Model 2 was adjusted for age,
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TABLE 1 | Distribution of characteristics across quartiles of C-DII in national health and nutrition examination surveys, United States, 2015-2018.

Characteristic Frequency (%) or median (IQR) P-value

Quartile 1

(n = 320)

Quartile 2

(n = 320)

Quartile 3

(n = 322)

Quartile 4

(n = 319)

Age (years) 0.016

15.0

(8.0–17.0)

15.0

(9.0–17.0)

14.0 (11.0–18.0) 12.0

(9.0–17.0)

Sex <0.001

Male 157 (49.1%) 101 (31.6%) 88 (27.3%) 71 (22.3%)

Female 163 (50.9%) 219 (68.4%) 234 (72.7%) 248 (77.7%)

BMI (kg/m2 ) 0.026

<85th percentile, % (normal weight) 283 (88.4%) 274 (85.6%) 272 (84.5%) 258 (80.9%)

≥85th percentile, % (overweight/obese) 37 (11.6%) 46 (14.4%) 50 (15.5%) 61 (19.1%)

PIR 0.064

<1 89 (27.8%) 80 (25.0%) 100 (31.1%) 98 (30.7%)

1–3 135 (42.2%) 152 (47.5%) 137 (42.5%) 157 (49.2%)

>3 96 (30.0%) 88 (27.5%) 85 (26.4%) 64 (20.1%)

Race/ethnicity 0.321

Mexican American 68 (21.3%) 68 (21.3%) 63 (19.6%) 66 (20.7%)

Other hispanic 26 (8.1%) 31 (9.7%) 28 (8.7%) 30 (9.4%)

Non-hispanic white 104 (32.5%) 103 (32.2%) 104 (32.3%0 94 (29.5%)

Non-hispanic black 47 (14.7%) 62 (19.4%) 64 (19.9%) 77 (24.1%)

Other/multi-racial 75 (23.4%) 56 (17.5%) 63 (19.6%) 52 (16.3%)

Cotinine exposure status 0.007

Exposed (>0.015 ng/ml) 125 (39.1%) 124 (38.8%) 117 (36.3%) 88 (27.6%)

Unexposed (≤0.015 ng/ml) 195 (60.9%) 196 (61.3%) 205 (63.7%) 231 (72.4%)

Percent body fat, % 0.002

29.3 (22.2–34.9) 32.9 (26.3–39.4) 32,4 (27.45–38.0) 34.9 (29.0–39.9)

Energy intake (kcal) <0.001

1,214.0

(890.0–1,654.0)

1,643.0

(1,323.8–2,035.0)

1,934.5

(1,557.0–2,463.0)

2,634.5

(2,038.3–3,384.5)

E-DII quartile ranges: quartile 1: −5.46 to −0.06; quartile 2: −0.05, 1.25; quartile 3: 1.26 to 2.25; quartile 4:2.26 to 2.58. C-DII, children’s dietary Inflammatory Index; BMI, body mass

index; PIR, Ratio of family income to poverty; IQR, interquartile range.

sex, race/ethnicity, cotinine exposure status, BMI, and poverty-
income ratio; and Model 3 was based on Model 2 and further
adjusted for body fat percentage and energy intake. Continuous
variables were converted to dichotomous variables based on the
median value of the inflammatory oxidative stress indicator, and
potential non-linear relationships were examined using restricted
cubic splines with three knots in the C-DII range. Non-linearity
was assessed using the Wald test.

Stratified analyses were performed to explore effect

modification by BMI (BMI ≥ 85th percentile and BMI

< 85th percentile). The data were reanalyzed during the

sensitivity analysis without considering sampling weights, and

the relationship between C-DII and inflammatory oxidative

stress indicators was further examined by multivariable

logistic regression.
All statistical tests were two-sided, and a P-value <

0.05 was statistically significant. All statistical analyses were

performed using R software (R Project for Statistical Computing
version 4.0.4).

RESULTS

Population Characteristics
The mean C-DII score was +1.02 (SD = 0.68), with values
ranging from a maximum anti-inflammatory value of −4.02 to
a maximum pro-inflammatory value of 4.42. Participants in the
1st quantile had the lowest inflammation scores (−4.02 to−0.02),
and participants in the 3rd and 4th quantiles had the most pro-
inflammatory diets (2.11–4.42). Overall, the population (n =

1281) was predominantly female (67.4%). In addition to this,
the population was predominantly non-Hispanic White (31.6%),
mostly cotinine exposed (64.6%), moderate household economic
level (mean PIR and standard deviation: 2.09 ± 1.51 years)
and higher energy intake (mean energy intake and standard
deviation: 1,984.34± 959.21 kcal, data not shown).

Table 1 showed the participant characteristic distribution of
each quartile of C-DII. In contrast, for subjects in the most anti-
inflammatory DII category, the most pro-inflammatory subjects
were more likely to be female, younger, non-Hispanic black, have
higher rates of overweight or obesity, cotinine exposure, and
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TABLE 2 | β Values of C-DII score in linear regression models after adjusting for different covariates.

Model 1 P-value Model 2 P-value Model 3 P-value

Markers of chronic inflammation

Neutrophil count −0.02 (−0.08,0.05) 0.422 0.02 (−0.05,0.08) 0.286 0.01 (−0.06,0.07) 0.312

Lymphocyte count 0.08 (0.02,0.16) 0.001 0.06 (0.01,0.12) 0.008 0.07 (0.02,0.15) 0.006

Ferritin 0.15 (0.06,0.28) 0.007 0.12 (0.04,0.21) 0.012 0.11 (0.02,0.19) 0.015

Alkaline phosphatase 0.12 (−0.05,0.22) 0.186 0.10 (−0.02,0.18) 0.102 0.08 (−0.01,0.16) 0.082

CRP 0.18 (0.08, 0.32) 0.004 0.16 (0.07,0.26) 0.005 0.17 (0.08,0.28) 0.002

Markers of oxidative stress

Serum iron 0.05 (−0.02,0.11) 0.135 0.08 (−0.01,0.15) 0.086 0.06 (−0.02,0.12) 0.092

Bilirubin 0.08 (0.01,0.17) 0.042 0.07 (0.01,0.18) 0.036 0.09 (0.02,0.20) 0.026

Albumin 0.06 (−0.02,0.12) 0.065 0.08 (0.00,0.15) 0.048 0.12 (0.05, 0.18) 0.032

Model 1, unadjusted model; Model 2, adjusted for age, sex, race/ethnicity, cotinine exposure status, BMI and poverty-income ratio; Model 3, adjusted for model 2 plus body fat

percentage and energy intake.

higher energy intake. No significant differences were observed
between C-DII quartiles except for age, sex, BMI, cotinine
exposure, and energy intake. At the same time, we observed
higher concentrations of CRP, serum bilirubin, albumin, and
serum iron in the fourth quantile of DII compared to the first
quantile of C-DII (Supplementary Table S1).

Association Between C-DII and Markers of
Inflammation and Oxidative Stress
After adjusting for different covariates, significant associations
between C-DII and lymphocyte count, ferritin, and CRP
were found among inflammatory markers in unadjusted
logistic regression models and multivariable logistic regression
models. Among oxidative stress indicators, significant positive
associations were also observed for bilirubin and albumin
(Table 2).

In the restricted cubic spline regression, we found a non-linear
relationship between C-DII score and inflammatory oxidative
stress index after adjusting for different covariables, and most
of them had a significant non-linear association (Figures 2,
3, Supplementary Figures S1–S4). The level of inflammatory
oxidative stress increased significantly before c-DII score was
0.15, and the score tended to decrease after 0.15. C-DII scores
were then divided into quartiles of categorical variables, with
individuals in the lowest quartile of C-DII considered an anti-
infective diet, and individuals in the second quartile considered
a neutral diet. Participants in the third C-DII quartile and the
largest C-DII quartile were considered to have weak and pro-
inflammatory diets.

To explore the non-linear relationship between C-DII scores
and indicators of inflammatory oxidative stress, individuals
in the first C-DII quartile were set as reference. We found
that, after adjusting for different covariates, individuals in the
fourth C-DII quartile had higher Inflammation (lymphocytes,
ferritin, and CRP) and oxidative stress levels (serum iron,
bilirubin, and albumin), trend tests showed that these indicators
of inflammation and oxidative stress were significantly
positively correlated with C-DII (P < 0.05) (Figures 4, 5,
Supplementary Figures S5–S8). The AIC values and Pseudo-R2

of different patterns are shown in Table 3. The AIC values for
the C-DII quartile-limited cubic spline regression solid model
and the logistic regression model were lower than the AIC values
for the logistic regression model for persistent C-DII.

Subgroup Analyses
The interaction results showed that the p-values of the interaction
terms between C-DII and BMI are 0.06, which may indicate
that there is an interaction between C-DII and BMI (data not
shown). According to the results of BMI stratification, compared
with normal-weight children and adolescents, we found that the
level of inflammatory oxidative stress increased significantly with
the increase of C-DII score quantiles in overweight or obese
children and adolescents. A significant association between C-
DII and CRP was only observed in normal-weight children and
adolescents (P < 0.05) (Supplementary Figure S9–S11).

Sensitivity Analyses
We reanalyzed the data by performing limited cubic spline
regression and multiple logistic regression without taking
into account the sampling weight values. A clear non-linear
relationship (P = 0.026) between C-DII scores and markers of
inflammatory cytokines was also observed in the unweighted
computational data information (Supplementary Figure S12).
Also, nonlinear models have better fit than linear models
(Supplementary Table S2).

DISCUSSION

In the present study, we examined the associations between
dietary inflammatory potential and markers of inflammatory
oxidative stress in children and adolescents. We found significant
correlations between C-DII and markers of inflammation,
immunity, oxidative stress, and liver injury (P < 0.05). Subgroup
and sensitivity analyses performed to validate the association
between C-DII scores and markers of inflammatory oxidative
stress showed that the non-linear model provided a better fit than
the linear model. The subgroup analysis further showed a more
significant positive association between C-DII and markers of
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FIGURE 2 | Restricted cubic spline regressions of C-DII and the inflammatory markers after adjusting for different covariates in model 3 for (A) lymphocyte count, (B)

neutrophil count, (C) ferritin (D) CRP, (E) alkaline phosphatase. The red line and area represent the estimated OR values and their corresponding 95% CI. Model 3

adjusted for age, sex, race/ethnicity, cotinine exposure status, BMI, poverty-income ratio, body fat percentage and energy intake.

FIGURE 3 | Restricted cubic spline regressions of C-DII and the oxidative stress markers after adjusting for different covariates in model 3 for (A) serum bilirubin, (B)

albumin, (C) serum iron. The red line and area represent the estimated OR values and their corresponding 95% CI. Model 3 adjusted for age, sex, race/ethnicity,

cotinine exposure status, BMI, poverty-income ratio, body fat percentage and energy intake.

inflammatory oxidative stress in overweight/ obese children and
adolescents than in normal-weight children and adolescents.

It is widely acknowledged that diet affects inflammation
levels, but few relevant studies have assessed how diet affects
markers of inflammation among children and adolescents. One
of the theories is that a pro-inflammatory diet may increase
levels of inflammatory cytokines by affecting oxidative stress and
immune mechanisms (28). Ample evidence substantiates that
phagocytes synthesize oxygen free radicals and release them into
structures after ingesting a pro-inflammatory meal. Importantly,
oxygen free radicals that drive somatic inflammatory factors
are often associated with increased inflammation, suggesting

that a pro-inflammatory diet can lead to inflammation in the
plasma (29, 30). It is well-recognized that diets in Western
countries can cause high postprandial blood sugar and high
blood lipids (31, 32). Indeed, diet is one of the strongest
environmental influences on chronic systemic inflammation.
Dietary combinations that contain fresh fruits, vegetables and
fruits, whole grains, and fingerlings have been associated with
moderate systemic inflammation. In contrast, diets characterized
by high consumption of total body fat and saturated fatty
acids, protein, simple sugars, and carbohydrates (such as
Western diets) were associated with higher levels of circulatory
inflammatory biomarkers (33). Changes in gut microbiota
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FIGURE 4 | Percent change in inflammatory markers associated with increasing C-DII among study participants in model 3 for (A) lymphocyte count, (B) neutrophil

count, (C) ferritin (D) CRP, (E) alkaline phosphatase. Model 3 adjusted for age, sex, race/ethnicity, cotinine exposure status, BMI, poverty-income ratio, body fat

percentage and energy intake.

FIGURE 5 | Percent change in oxidative stress markers associated with increasing C-DII among study participants in model 3 for (A) serum bilirubin, (B) albumin, (C)

serum iron. Model 3 adjusted for age, sex, race/ethnicity, cotinine exposure status, BMI, poverty-income ratio, body fat percentage and energy intake.

caused by different dietary patterns may account for changes
in circulating inflammation levels. Mounting evidence suggests
that dietary habits can further regulate the composition of gut
microbiota by affecting inflammatory levels in the body. A
pro-inflammatory diet such as the Western diet is associated
with lower bacterial diversity. In contrast, anti-infective diets
characterized by increased intake of fresh fruits, vegetables and
fruits, whole grains, legumes, and dried fruits, increase gut
microbial diversity (34).

Our research shows that the C-DII scores reflected an
increased risk of elevated inflammatory markers, including

reticulocytes, ferritin, and CRP. Indeed, prolonged exposure
to pro-inflammatory stimuli can alter the body’s overall
balance, resulting in additional structural damage. The number
of reticulocytes may increase with prolonged inflammation,
resulting in further increases in pro-inflammatory cytokines and
their ozone and other molecular structures that can sustain
inflammation (28). It has been shown that increased lymphocytes
can lead to chronic diseases, especially cerebrovascular disease
(35). For example, the accumulation of excessive reticulocytes
can cause the walls of blood vessels to thicken. At the same
time, increased accumulation of reticulocytes can increase
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TABLE 3 | AIC values and pseudo R2 in different models.

Model 1 Model 2 Model 3

AIC Pseudo-R2 AIC Pseudo-R2 AIC Pseudo-R2

Linear model 3,086.72 0 2,265.18 0.28 2,257.62 0.30

Non-linear model 3,080.15 0 2,258.06 0.28 2,248.27 0.30

Quartile model 3,076.62 0 2,252.65 0.29 2,242.16 0.30

Model 1, unadjusted model; Model 2, adjusted for age, sex, race/ethnicity, cotinine exposure status, BMI and poverty-income ratio; Model 3, adjusted for model 2 plus body fat

percentage and energy intake. AIC, Akaike’s Information Criterion value.

inflammation in the affected area, causing further damage
(36). In recent years, ferritin has been extensively used as
an inflammatory marker in childhood obesity research (37).
However, it is well-established that the ferritin/transferrin
saturation ratio is a more accurate indicator of ferritin values
because of the interference of changes in systemic iron status.
Although serum ferritin is often used clinically to assess the
systemic iron status and the risk of anemia, ferritin is also
an acute-phase protein produced in the body’s inflammatory
response to infection and injury, similar to CRP. The relationship
between C-DII and ferritin has been validated in experimental
scientific studies, which showed that dietary nutrients stimulate
the release of inflammatory cytokines from human squamous
epithelial cells, human umbilical vein endothelial cells, and rat
bronchi (38). Elevated CRP serum protein concentration values
are commonly used as inflammatory biomarkers associated with
various systemic diseases. As an acute phase reactant, CRP
increases significantly with somatic cell damage or infection
(39, 40).

In this study, we used serum bilirubin, iron, and albumin
as biomarkers of oxidative stress. Our results showed that C-
DII was significantly positively correlated with oxidative stress
indicators. It is widely acknowledged that bilirubin is a biological
reductant of endogenous antioxidant activity and a scavenger
of reactive oxygen species. Moreover, bilirubin is a product
of hemoglobin catabolism, catalyzed by heme oxygenase to
decompose heme into carbon monoxide, iron, and bilirubin,
produced by biliverdin reductase. Bilirubin can be excreted from
the body mainly in the form of pyran through the formation of
oxidative metabolites. Both bilirubin and pyran have antioxidant
activity and are hence used as biomarkers to assess the level of
oxidative stress (41, 42). In addition, a significant association
has been documented with other commonly known markers of
oxidative stress, such as malondialdehyde (43). It has long been
thought that bilirubin is a marker of oxidative stress used to
predict several common diseases in children and adolescents
(44, 45). Iron is one of the common biological essential
trace elements, which plays many critical cellular functions
in all organisms while catalyzing the formation of potentially
toxic free radicals. A large body of evidence substantiates the
potential additive effect of oxidative stress as iron stores increase,
further exacerbating disease susceptibility and responses to
infection and inflammation (46, 47). The observed increase in
iron concentration with C-DII in our study suggests that an
inflammatory diet may lead to inflammatory oxidative stress in
the body (especially the liver).

Moreover, studies have shown that consumption of a pro-
inflammatory diet during adolescence is associated with changes
in cardiometabolic risk factors, particularly systolic blood
pressure, diastolic blood pressure, and BMI, and higher C-DII
scores are directly associated with pro-inflammatory adipokines
(22, 23). Indeed, childhood and adolescence are important stages
of growth and development, and maternal, paternal, familial and
individual risk factors have varying degrees of influence on the
C-DII score. Furthermore, early childhood interventions that
promote healthy lifestyle behaviors and feeding habits at home
and in parenting in children and their parents may help reduce
dietary inflammation and associated obesity risk in children (48).
Therefore, new public health policies should be implemented
to promote healthy eating habits during childhood to prevent
premature systemic inflammation and adverse health effects later
in life.

Our findings further suggest that the association of C-
DII with inflammatory and oxidative stress markers was
more pronounced in the overweight and obese subgroup of
children and adolescents. In this regard, current evidence
suggests that obesity mediates the occurrence of many diseases
through low-grade inflammation and plays an essential role
in disease pathogenesis (49). During obesity, circulating pro-
inflammatory cytokines increase in response to chronic stress
leading to increases in inflammatory oxidative stress biomarkers
through various actions, including disruption of normal cell
division processes and signal transduction (50). Furthermore,
diet-induced inflammation was significantly associated with
the overweight risk for obesity-related obesity (FTO) gene
polymorphism (51). These changes all contribute to a chronic
pro-inflammatory state in obese individuals. A valid assumption
is that children with high BMI and high inflammation are more
vulnerable to harm from a pro-inflammatory diet.

This study evaluated the potential association between C-DII
and common biomarkers of oxidative stress and inflammation
based on a large sample size (n = 1,281). We further
explored the possible regulatory effects of dietary intervention on
inflammatory oxidative stress levels in children and adolescents.
Stratification and quartile analysis were conducted to increase
the reliability of our findings. However, several limitations and
shortcomings were present in this study. First of all, given
the cross-sectional study design, the chronological order and
causality could not be determined. Besides, the included data
were from a single time point, making it difficult to draw
conclusions about the long-term effects of dietary inflammation
on markers of inflammatory oxidative stress. High C-DII scores
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in childhood may contribute to health problems in adulthood
that could not be examined in the present study, at least not
without complex data associations over the long term. This
issue is indeed an inherent problem in studies that examine
children. Moreover, only one 24-h dietary recall was used to
calculate C-DII. A 24HRmay not be able to explain daily changes
in dietary intake, which may lead to inaccurate estimates. In
addition, potentially confounding variables, such as puberty,
were not included in the survey. Furthermore, although C-
DII was previously validated using NHANES, its application in
other populations is limited, and it has not been validated in
other countries or specific subgroups. Further research is indeed
warranted to fully characterize its utility.

CONCLUSIONS

The study found that a pro-inflammatory diet was associated
with higher levels of inflammatory cytokines, especially in
overweight or obese children and adolescents. Elevated levels
of inflammatory oxidative stress were associated with several
chronic diseases. Given that pro-inflammatory diets are
significantly associated with elevated markers of inflammatory
oxidative stress, they may impact chronic diseases by affecting
levels of inflammatory oxidative stress. However, this particular
hypothesis was not explored in the current study. Accordingly,
future longitudinal studies are needed to validate how pro-
inflammatory diets affect markers of inflammatory oxidative
stress and chronic disease pathways.
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