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Background: Interpretation of results from diet-induced-obesity (DIO) studies critically

depends on control conditions. Grain-based chows are optimized for rodent nutrition

but do not match the defined composition of purified diets used for DIO, severely limiting

the comparability. Purified control diets are recommended but often contain high starch

and only minor fiber amounts. It is unknown whether this composition leads to metabolic

alterations compared with chow and whether the addition of refined fibers at the expense

of starch affects these changes.

Methods: In this experiment, 6-week-old C57BL/6N mice were fed (i) a conventional

purified control diet (high-starch, low-fiber; Puri-starch), (ii) an alternative, custom-made

purified control diet containing pectin and inulin (medium-starch, higher-fiber; Puri-fiber),

or (iii) grain-based chow for 30 weeks (N = 8–10).

Results: Puri-starch feeding resulted in significantly elevated levels of plasma insulin

(p = 0.004), cholesterol (p < 0.001), and transaminases (AST p = 0.002, ALT p =

0.001), hepatic de novo lipogenesis and liver steatosis, and an altered gut microbiota

composition compared with chow-fed mice. In contrast, Puri-fiber exerted only minor

effects on systemic parameters and liver lipid homeostasis, and promoted a distinct gut

microbiota composition.

Conclusion: Carbohydrate-rich purified diets trigger a metabolic status possibly

masking pathological effects of nutrients under study, restricting its use as control

condition. The addition of refined fibers is suited to create purified, yet physiological

control diets for DIO research.
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INTRODUCTION

Obesity and its related comorbidities, including type 2 diabetes and cardiovascular diseases,
affect millions of children and adults worldwide and cause increased mortality rates and
soaring healthcare costs (1). This warrants intensive research efforts investigating obesity-related
pathological changes and possible intervention strategies. Preclinical animal models provide
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controlled conditions and a high comparability between
the experimental groups and are thus often utilized. Since
interpretation of data critically depends on the chosen control
conditions, the choice of the control diet is an important
issue for animal studies on nutrition-related disorders, that is
nevertheless often not addressed adequately (2–4). In normal
animal husbandry, mice are fed a grain-based chow, which
contains natural ingredients, such as ground corn, wheat and
oat, soybean meal and animal by-products, and very high levels
of both soluble and insoluble fibers (5). However, its exact
composition changes due to harvest supply and is thus charge-
dependent (6). Moreover, chow contains various amounts of
phytoestrogens that can influence study results (7, 8), restricting
its application as control food for diet-induced obesity (DIO)
studies. Purified diets have a clearly defined composition, are
composed of refined and thus charge-independent ingredients,
and are recommended for DIO research (6). However, purified
control diets often contain considerable amounts of starch as
calorie source, but only less amounts of fibers, which are a major
part of physiological mouse food intake. The latter is due to the
fact that often cellulose is the only added fiber component that
is not palatable and only small amounts are, hence, tolerated by
the animals (9). Recently, other purified fiber alternatives, such
as pectin from apple or inulin from chicory, are available to
increase the fiber content of purified foods. This might constitute
a good control diet alternative combining the advantages of a
healthy high fiber content and a defined, charge-independent
comparable nutrient composition. Therefore, this study aimed at
comparing a conventional purified control diet low in fiber and
high in starch (Puri-starch), a custom-made purified control diet
enriched in fibers and reduced in starch (Puri-fiber) with a usual
laboratory, grain-based chow diet (Chow) regarding parameters
relevant for DIO research, including systemic alterations, liver
lipid homeostasis, and gut microbiota composition.

METHODS

Mice Husbandry and Diets
This study was conducted in accordance with German animal
protection laws and with the European Directive 2010/63/EU.
Animal experiments were approved by the Local Institutional
Animal Care and Research Advisory committee and permitted
by the Lower Saxony State Office for Consumer Protection
and Food Safety (LAVES; file number 13/1244 and 18/2841).
Male C57BL/6NCrl mice were purchased from Charles River
(Sulzfeld, Germany) at an age of 5 weeks and were randomly
allocated to one of 3 study diets after 1 week of acclimatization.
Study diets were: (i) grain-based chow diet (1324 TPF, Altromin,
Lage, Germany), (ii) purified Puri-starch diet (D12450J,
Research diets, New Brunswick, NJ, United States), and (iii)
purified Puri-fiber diet (S3542-E040, ssniff Spezialdiäten,
Soest, Germany). The composition of the diets is illustrated
in Figures 1A–C and is given in Supplementary Table S3. For
chow, contents of crude ingredients (i.e., fiber, fat, protein,
and ash), moisture, and nitrogen free extractives (NFEs)
were provided by the manufacturer. The starch content was
determined using a polarimetric method, and the contents

of insoluble and soluble dietary fiber were estimated by an
enzymatic-gravimetric method. For Puri-starch and Puri-fiber
detailed diet compositions were provided by the manufacturer.

Mice had ad libitum access to their prescribed diet and
drinking water and were housed individually in cages equipped
with shelters and nesting material under temperature-controlled
conditions (21 ± 2◦C). Body weights and calorie intake of
some animals in chow and Puri-starch groups were presented
previously (10, 11).

Blood Collection and Plasma Analysis
After 10, 20, and 30 weeks, mice were fasted for 6 h, retro-
orbital blood was collected, and blood plasma was isolated by
centrifugation. Plasma concentrations of lipids, enzymes, and
glucose were analyzed in the clinical chemistry department
of the Hannover Medical School using kits according to the
manufacturer’s instructions (Roche Diagnostics, Mannheim,
Germany) and automated analyzer systems (Roche Diagnostics,
Mannheim, Germany). Insulin levels were assessed in duplicates
by an ultrasensitive-mouse-insulin-ELISA (#90080, Chrystal
Chem, Elk Grove Village, IL, United States). HOMA-IR values
were calculated as follows: Glucose (mmol/L)× insulin (µU/ml)
/ 22.5. Moreover, 1/fasting insulin was calculated as surrogate
index for insulin sensitivity. Since adjustment to weight was
shown before to considerably enhance correlation of these
surrogate indexes with glucose clamp-derived measures (12),
HOMA-IR, and 1/fasting insulin are given as body weight ratios.

Oral Glucose Tolerance Test
After 29 weeks, mice were feed-deprived for 6 h, a baseline blood
sample was collected from the tail vein followed by oral gavage
of 1mg glucose/g body weight. Furthermore, blood samples were
obtained from the tail after 15, 30, 60, and 120min. Blood glucose
was assessed with a glucometer (Wellion Calla; Med Trust). The
area under the glucose tolerance curve (area under the curve
(AUC) was calculated using the trapezoidal rule.

Necropsy and Sample Preparation
After 30 weeks, mice were killed under deep anesthesia induced
by intraperitoneal injection of ketamine (100mg/kg body weight)
and xylazine (5 mg/kg body weight) by exsanguination. Livers
were isolated and cut into ∼1mm slices, which were randomly
assigned to either freezing in liquid nitrogen and storage at
−80◦C or to fixation in 4% paraformaldehyde/0.2M Hepes
buffer (pH 7.4) for at least 24 h. From the latter, random
1mm × 1mm × 1mm blocks were cut, incubated in 1.5%
glutaraldehyde/1.5% paraformaldehyde/0.15MHepes buffer (pH
7.4) for at least 24 h, postfixed in 1% osmium tetroxide in 0.1M
sodium cacodylate (pH 7.4), stained en bloc with half-saturated
uranyl acetate in water, and dehydrated in an ascending acetone
series before final embedding in epoxy resin according to the
manufacturer’s instructions.

Feces samples were collected from the cecum and the distal
colon, snap-frozen in liquid nitrogen, and stored at−80◦C.
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FIGURE 1 | Composition of diets and their effects on body weight, calorie consumption, and food intake. (A) Macronutrient composition of diets in kcal%. (B)

Nutritional composition of diets in g%. (C) Fiber content of diets in g%. (D) Body weights in g. (E) Calorie intake in kcal/week. (F) Food intake in g/week. (G) Mean

fiber intake in g/week. (H) Mean starch intake in g/week. (I) Correlation of mean fiber intake per week and body weight after 30 weeks. (J) Correlation of mean starch

(Continued)
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FIGURE 1 | intake per week and body weight after 30 weeks. (D–F) Data are shown as mean ± SEM, *p < 0.05 Puri-starch compared with Chow, #p < 0.05

Puri-fiber compared with Chow (two-way repeated-measures ANOVA and Tukey post-hoc tests). (G,H) Data are shown as individual data points with indicated

means, *p < 0.05, **p < 0.01, *and **p < 0.001 (one-way ANOVA and Tukey post-hoc tests). (I,J) Data are shown as individual data points with indicated linear

regression (p-values from Spearman correlation analysis and Pearson correlation coefficient shown). Chow n = 10, Puri-starch n = 9, and Puri-fiber n = 8.

Liver Histology
From 3 epoxy resin blocks per animal, 1µm thick sections were
cut, mounted on glass slides, and stained with toluidine blue.
The sections were digitalized with a histological slide scanner
(AxioScan.Z1; Zeiss, Oberkochen, Germany) at an objective lens
magnification of 40×. Automated image analysis was performed
using the tissuemorph DP software (Visopharm, Horsholm,
Denmark). An application was designed for threshold-based
detection of lipid droplets in toluidine blue stained liver tissue.
First, a multistep gray scale conversion was performed for
foregrounding the signal of the lipid droplets. This was carried
out using the blue color band (RGB-B) and the chromaticity
blue–converted version of the image. The signal of the two image
bands was multiplied and then square root transformed. In a next
step, a threshold of 0 to 3,500–7,000 (depending on the staining
intensity) was applied to select the area of lipid droplets within
the liver tissue. The percentage of the lipid fraction was finally
calculated by dividing the area of lipid droplets by the total area
of the liver section.

Liver mRNA Expression Analysis
mRNA was isolated from liver samples using the NucleoSpin
RNA/Protein Kit (#740933.250, Macherey-Nagel, Düren,
Germany) according to the manufacturer’s manual. RNA
concentration was measured with a NanoDrop 2,000
Spectrophotometer (Thermo Fisher Scientific, Waltham,
MA, USA), and cDNA was generated by transcription of 1 µg
RNA using the iScript cDNA Synthesis Kit (BioRad, Hercules,
CA, USA) according to the manufacturer’s instructions. Real-
time PCR reactions were performed with a C1000 Thermal
Cycler (CFX384 Real-Time System, BioRad) utilizing fluorescein
amidite (FAM)-labeled primers and the iTaq Universal Probes
Supermix (BioRad). The following primers were used: ACLY,
qMmuCEP0053217; ACCα (Acaca), qMmuCIP0030034; ACCβ

(Acacb), qMmuCIP0030144; FAS (Fasn), qMmuCEP0054102;
SCD1, qMmuCIP0031297; FABP1, qMmuCIP0034032; SCP2,
qMmuCEP0056614; GPAT1, qMmuCIP0034231; Lipin1 (Lpin1),
qMmuCIP0031637; Lipin2 (Lpin2), qMmuCIP0032366;
DGAT2, qMmuCIP0030922; CCTα (PCYT1a),
qMmuCIP0031233; PLIN2, qMmuCIP0033479; ATGL
(Pnpla2), qMmuCEP0034900; CPT1a, qMmuCEP0054021;
MTPα (Hadha), qMmuCEP0054151; MTPβ (Hadhb),
qMmuCIP0062992; SREBP1 (Srebf1), qMmuCIP0033121;
SREBP2 (Srebf2), qMmuCIP0035147; PPARα (Ppara),
qMmuCEP0054952 (BioRad). The thermo cyclic protocol
was as follows: initially 2× 95◦C for 2min, followed by 40 cycles
of 95◦C for 5 s and 60◦C for 20 s. For each target, all samples to
be compared were run in parallel on the same 384-well plate.
The samples were analyzed as triplicates. The relative mRNA
expression of a gene of interest was assessed by normalization

to HPRT as housekeeping gene (1Ct) and to the chow-fed
animals as “control group” (11Ct), finally the fold expression
was calculated (211Ct).

Microbiome Analysis
Fecal DNA was extracted using the ZymoBIOMICS DNA Kit
according to the manufacturer’s instructions (Zymo Research,
Irvine, CA, USA). Amplification of the V3V4 region of the
16S rRNA-gene was carried out using a two-step PCR, and
sequencing was performed on Illumina MiSeq (2x250)(13).
Obtained sequences were processed using the DADA2 pipeline
in R (14), where amplicon sequence variants (ASVs) were
assigned the RDP taxonomy. Follow-up analyses were carried out
within phyloseq (15) on relative abundance data (Figure 4 and
Supplementary Tables S1, S2); for diversity measures, samples
were rarefied to equal depth (4,700 sequences). Ordination
was based on principal coordinate analyses using Bray-Curtis
dissimilarities of proportional count data.

Statistical Analysis
Statistical parameters are stated in the specific figure legends.
Two-way repeated-measures ANOVA, followed by a post-hoc
Tukey test, and one-way ANOVA and a post-hoc Tukey test
were performed using Sigma Plot version 13.0 (Systat Software
Inc.). Spearman correlation analysis and calculation of Pearson
correlation coefficient were performed using GraphPad Prism
(version 4; GraphPad Software). PERMANOVA analyses of
microbiota composition were performed in R (function adonis
from the vegan package), and differential abundance analysis
of microbial taxa was carried out based on Analysis of
Compositions if Microbiomes with Bias Correction (ANCOM-
BC) (16). P-values< 0.05 were considered statistically significant.
Data are presented as dot plots with individual values and
indicated means or as means ± SEM. All n values are true
biological replicates (separate mice). Figures were created with
Adobe Photoshop (Version 13.0).

RESULTS AND DISCUSSION

Diet Composition Affects Food Intake and
Body Weight
The analyzed diets were similar in macronutrient contents
(Figure 1A, Supplementary Table S3) but differed substantially
in their detailed composition with starch accounting for ∼28 g%
in Chow, 48 g% in the Puri-starch diet, and 36 g% in the Puri-
fiber diet (Figure 1B, Supplementary Table S3). While Chow
contained ∼25 g% soluble and insoluble fibers, the Puri-starch
diet contained 4.7 g% cellulose representing the whole fiber
amount of this diet. In contrast, the Puri-fiber food contained 2
g% cellulose, 1 g% lignocellulose, 6.8 g% pectin, and 6.8 g% inulin,
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FIGURE 2 | Effects of diets on glucose homeostasis and circulating lipids and enzymes. (A) Blood glucose concentrations during the oral glucose tolerance test. (B)

Area under the curve (AUC) of glucose tolerance test curves. (C) Fasting plasma glucose concentrations. (D) Fasting plasma insulin concentrations. (E) Calculated

Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) related to body weight. (F) Calculated 1/insulin (index for insulin sensitivity) related to body weight.

(Continued)
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FIGURE 2 | (G) Fasting plasma total cholesterol concentrations. (H) Fasting plasma HDL cholesterol concentrations. (I) Fasting plasma LDL cholesterol

concentrations. (J) Fasting plasma triglycerides concentrations. (K) Fasting plasma amylase concentrations. (L) Fasting plasma lipase concentrations. (M) Fasting

plasma alanine transaminase concentrations. (N) Fasting plasma aspartate transaminase concentrations. (A,G–N) Data are shown as mean ± SEM, *p < 0.05

Puri-starch compared with Chow, #p < 0.05 Puri-fiber compared with Chow (two-way repeated-measures ANOVA and Tukey post-hoc tests). (B–F) Data are shown

as individual data points with indicated means, *p < 0.05, **p < 0.01, and ***p < 0.001 (one-way ANOVA and Tukey post-hoc tests). Chow n = 10, Puri-starch n = 9,

and Puri-fiber n = 7–8.

which together accounted for 16.6 g% fiber content (Figure 1C,
Supplementary Table S3).

The Puri-starch-fed mice were heavier compared with Chow-
fed mice from week 21 to 28, whereas the body weight of Puri-
fiber-fed mice did not differ significantly from Chow-fed mice
at any time point during the protocol (Figure 1D). Chow-fed
mice ingested significantly higher amounts of food and calories
compared with both purified diets (Figures 1E,F). Puri-fiber-fed
mice ingested the lowest amount of calories of all groups what
may be related to the added dietary fibers pectin and inulin that
were shown previously to decrease food intake, body weight, and
adiposity (17).

Chow-fed mice consumed the highest mean fiber amount
per week, whereas Puri-fiber-fed mice ingested less fibers and
Puri-starch-fed animals only minor fiber amounts (Figure 1G).
Mice in the Puri-starch group had a significantly higher mean
starch intake compared with both Chow- and Puri-fiber-fed mice
(Figure 1H). Moreover, the mean starch intake correlated with
the body weight after 30 weeks (Figure 1J), which was not the
case for the fiber intake (Figure 1I).

In summary, starch content and fiber composition of the
individual diets affected both food intake and body weight. A
high starch intake was associated with higher body weights.

Puri-Starch Diet Increases Plasma Insulin,
Cholesterol, and Transaminase Levels
In DIO research, it is important that the control diet does not
have a major influence on glucose and fat metabolism. The
glucose tolerance and the fasting blood glucose concentration
were not affected by any of the diets (Figures 2A–C). In contrast,
fasting insulin levels and HOMA insulin resistance related to
body weight were increased in Puri-starch-fed animals compared
with Chow and Puri-fiber or compared to Chow, respectively
(Figures 2D,E). This is in accordance with previous reports
using Puri-starch as control diet for 12 weeks in C57BL/6J
mice (18) and for 19 weeks in Sprague-Dawley rats (19).
In contrast, other studies using shorter feeding periods (8–9
weeks) observed lower and Chow-like insulin concentrations
(20–22), indicating feeding duration-related effects. Moreover,
the insulin sensitivity related to body weight showed a strong
tendency to be decreased in Puri-starch compared with chow (p
= 0.052).

Circulating total cholesterol, high-density lipoprotein
(HDL) cholesterol and low-density lipoprotein (LDL)
cholesterol concentrations were significantly higher under
the Puri-starch regimen compared with Chow during the
whole course of the experiment (Figures 2G–I). Similar
cholesterol levels were observed before in several studies that

applied the Puri-starch diet as control condition (19, 23–
25). Moreover, alanine transaminase (ALT) and aspartate
transaminase (AST) were increased after 30 or after 20 and
30 weeks, respectively (Figures 2M,N), indicating hepatocyte
injury. In contrast, plasma cholesterol and transaminase
levels of Puri-fiber-fed mice were similar to the Chow group
(Figures 2G–I,M,N).

In conclusion, Puri-starch diet caused a prediabetic metabolic
condition and had significant adverse effects on circulating blood
lipids. In contrast, Puri-fiber diet had no negative effects on
glucose and lipid parameters and showed similar values as Chow.

Puri-Starch Diet Causes Hepatic Lipid
Accumulation due to de novo Lipogenesis
The increases in ALT and AST in Puri-starch-fed animals
were accompanied by a profound hepatic lipid accumulation
(Figures 3A,B). The area of lipid droplets in the liver positively
correlated with the mean starch intake of the animals over
30 weeks, as well as the circulating cholesterol, ALT and AST
concentrations after 30 weeks (Figure 3C). A lipogenic effect of
Puri-starch on the liver was also mentioned by two recent reports
using the diet as control condition (26, 27).

In the liver, the Puri-starch diet induced the expression of
the lipogenic transcription factor SREBP1 and of all analyzed
enzymes involved in de novo lipogenesis. With the exception
of glycerol-3-phosphate acyltransferase (GPAT 1), Puri-starch
had no further effects on the analyzed hepatic lipid metabolism
enzymes. This is in accordance with previous studies from
rodents and humans, demonstrating that excess carbohydrate
intake stimulates the hepatic de novo lipogenesis resulting in
increased intrahepatic triglyceride content (28). In contrast, the
Puri-fiber diet increased the liver lipid content only slightly (not
reaching statistical significance) and had no significant effect on
any of the lipidmetabolic pathways except a decreased expression
of single enzymes involved in triglyceride lysis and fatty acid
oxidation (Figures 3A,B,D). However, expression of lipogenic
enzymes showed a tendency to increased levels in Puri-fiber
compared with Chow (Figure 3D), despite similar starch intake
(Figure 1H). This indicates that the lipogenic response to the
purified diets is not simply a starch-related effect but may also
be associated with the contained fiber types as well. The dietary
fibers pectin and inulin in the Puri-fiber diet are indigestible
by mice but are fermented by gut microbiota to produce short
chain fatty acids (SCFAs) (29). SCFAs in turn can be used as
fuel source or act as signaling molecules excerting regulatory
functions in local, intermediary, and peripheral metabolism (30,
31). Moreover, dietary fiber supplementation leads to overall
shifts of microbiota composition (32, 33), which was analyzed in
a next step.

Frontiers in Nutrition | www.frontiersin.org 6 July 2022 | Volume 9 | Article 915082

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Schipke et al. Purified Control-Diets Differentially Affect Lipid-Metabolism

FIGURE 3 | Effects of diets on hepatic lipid accumulation and liver lipid metabolism. (A) Percentage of area occupied by lipid droplets in the liver. Data are shown as

individual data points with indicated means, ***p < 0.001 (one-way ANOVA and Tukey post-hoc test). (B) Representative images of liver sections stained with toluidine

blue, enlargements of indicated regions shown next to the overviews. (C) Correlations of liver lipid droplet area and (i) mean starch-intake averaged over 30 weeks, (ii)

plasma cholesterol concentration after 30 weeks, (iii) plasma ALT concentration after 30 weeks, and (iv) plasma AST concentration after 30 weeks. Data are shown as

individual data points with indicated linear regression (p-values from Spearman correlation analysis and Pearson correlation coefficient given in rectangles). Chow n =

10, Puri-starch n = 9, and Puri-fiber n = 8. (D) mRNA expression levels of proteins implicated in hepatic liver metabolism. Data are shown as mean ± SEM, *p < 0.05

compared with Chow (one-way ANOVA and Tukey post-hoc test). Chow n = 8, Puri-starch n = 9, and Puri-fiber n = 8.

Purified Diets Change Gut Microbiota
Composition
The gut microbiota composition is susceptible to nutritional
changes and is believed to play a causal role in the development
of obesity and its comorbidities, making it an emerging field
for DIO studies. Each of the tested diets was associated with

a distinct microbiota composition that clustered separately

from the other groups (Figures 4A,B). Moreover, permutational

ANOVA analyses using Bray-Curtis dissimilarities of normalized
abundance data indicated that bacterial composition between the

groups (beta-diversity) was significantly different (p < 0.01). The

microbial diversity, reflected by the number of observed ASVs
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FIGURE 4 | Effects of diets on gut microbiota composition. (A,B) Microbial community composition of individual mice shown by multidimensional scaling analysis

(principal coordinates based on Bray-Curtis dissimilarities). (C,D) Microbiota diversity; data are shown as individual data points with indicated means, *p < 0.05, **p <

0.01, and ***p < 0.001 (one-way ANOVA and Tukey post-hoc tests). (E,F) Phyla relative abundances; data are shown as mean ± SEM, *p < 0.05 compared with

(Continued)
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FIGURE 4 | Chow (ANCOM-BC analysis); Firmicutes-to-Bacteroidetes ratio shown as individual data points and indicated means, *p < 0.05 (one-way ANOVA and

Tukey post-hoc tests). (G,H) Family relative abundances; data are shown as mean ± SEM, *p < 0.05 compared with Chow (ANCOM-BC analysis). (A,C,E,G) analysis

of cecum luminal contents; (B,D,F,H) analysis of colon luminal contents. Chow n = 10, Puri-starch n = 9, and Puri-fiber n = 8.

and the Shannon Diversity Index, was similar in Chow- and Puri-
starch-fed mice but diminished under the Puri-fiber regimen in
both the cecum and colon (Figures 4C,D). Thus, the high intake
of inulin and pectin in the Puri-fiber group possibly promoted
the growth of specific bacteria specialized for the degradation
of these fiber types, whereas the complex fibers in chow or
the high starch amount in Puri-starch exerted less selective
pressure. Interestingly, reduced diversity was also observed in
humans on high-fiber diets, which was associated with alleviating
type-2 diabetes (34). The authors argued that administration
of fibers promoted selective growth of specific SCFA-producing
bacteria that resulted in reduced overall diversities, challenging
the common view that higher diversity is per se beneficial for
the host.

Differential abundance analyses of taxa showed increases
in Proteobacteria in the cecum and colon of Puri-starch-fed
mice compared with the Chow group, representing major
indications of dysbiosis (35), which was accompanied by a
decrease in Actinobacteria (cecum only) (Figures 4E,F). The
Firmicutes:Bacteroidetes ratio was slightly increased in the
cecum of Puri-fiber-fed animals (Figure 4E) supporting its
role in fiber degradation (36). At the family level, several
differences between purified diets and Chow were detected
at both sites (Figures 4G,H). For instance, the abundance of
Prevotellaceae that was shown to be associated with human
body mass index (BMI) (37) and believed to promote beneficial
effects on glucose metabolism (38) was reduced in the Puri-
starch group. In contrast, Desulfovibrionaceae were increased—a
sulfate-reducing bacterial family that produces hydrogen sulfide
that is known to elicit adverse effects (39). In Puri-fiber fed mice,
the abundance of Bifidobacteriaceae, which are SCFA-producing
bacteria implicated in pectin and inulin fermentation (29) was
increased, whereas Prevotellaceae were reduced.

As a limitation of this study, energy expenditure was not
measured. It was shown for nutritional components, such as soy-
derived phytoestrogens, that they can affect energy expenditure
in mice (8). Thus, it is possible that diet-related differences
in energy expenditure contributed to the findings reported
in this study, and this parameter should be addressed in
future studies. Besides diet, housing conditions can influence
experimental results from animal studies. It is increasingly
acknowledged that standard housing temperatures of 21◦C are
below the thermoneutrality of mice (which is about 30◦C).
This mild cold stress can influence various physiological
parameters, including sympathetic activity, heart rate, and energy
expenditure (40). Since in this study, the housing temperature
(21◦C) was the same for all mice, it is unlikely that it influenced
the reported results. However, environmental temperatures
should be taken into account for future studies to increase

the translation of findings in animal models to insights into
human disease.

CONCLUSION

The choice of control diet composition is of high importance
to animal studies on nutrition-related disorders. This study
demonstrates that despite similar macronutrient composition,
grain-based chow, and purified control diets differ significantly
regarding their effects on circulating insulin and lipids, liver
lipid homeostasis, and gut microbiota. A starch-rich purified
diet induced higher body weights, higher plasma insulin,
cholesterol and transaminase concentrations, liver steatosis,
and elevated hepatic expression levels of enzymes involved
in de novo lipogenesis compared with chow. This was
accompanied by alterations in gut microbiota composition
that was characterized by an increase in potentially harmful
bacteria. In contrast, a fiber-rich-purified diet resulted in lower
calorie intake, normalization of body weight, plasma insulin and
cholesterol, and only minor alterations in liver lipid homeostasis.
The gut microbiota displayed unique signatures indicative of
fiber degradation.

Thus, purified control diets containing high carbohydrate

amounts lead to metabolic alterations themselves that
presumably mask the pathological effects of nutrients under

study, restricting its use as control condition. Grain-based
chow consists of complex varying natural sources that do

not match the composition of purified experimental diets

used for DIO, limiting the comparability and rendering it
suboptimal as control diet. The addition of refined fibers at
the expense of carbohydrates is suitable to create purified
control diets that combine a defined composition matching
the experimental diet under study, as well as a physiological
metabolic status, and are yet well suited as control condition for
DIO studies.
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