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Background: Human milk oligosaccharides (HMOs) have important biological functions
for a healthy development in early life.

Objective: This study aimed to investigate gut maturation effects of an infant formula
containing five HMOs (2′-fucosyllactose, 2′,3-di-fucosyllactose, lacto-N-tetraose, 3′-
sialyllactose, and 6′-sialyllactose).

Methods: In a multicenter study, healthy infants (7–21 days old) were randomly
assigned to a standard cow’s milk-based infant formula (control group, CG); the same
formula with 1.5 g/L HMOs (test group 1, TG1); or with 2.5 g/L HMOs (test group
2, TG2). A human milk-fed group (HMG) was enrolled as a reference. Fecal samples
collected at baseline (n∼150/formula group; HMG n = 60), age 3 (n∼140/formula group;
HMG n = 65) and 6 (n∼115/formula group; HMG n = 60) months were analyzed for
microbiome (shotgun metagenomics), metabolism, and biomarkers.

Results: At both post-baseline visits, weighted UniFrac analysis indicated different
microbiota compositions in the two test groups (TGs) compared to CG (P < 0.01) with
coordinates closer to that of HMG. The relative abundance of Bifidobacterium longum
subsp. infantis (B. infantis) was higher in TGs vs. CG (P < 0.05; except at 6 months:
TG2 vs. CG P = 0.083). Bifidobacterium abundance was higher by ∼45% in TGs vs.
CG at 6-month approaching HMG. At both post-baseline visits, toxigenic Clostridioides
difficile abundance was 75–85% lower in TGs vs. CG (P < 0.05) and comparable with
HMG. Fecal pH was significantly lower in TGs vs. CG, and the overall organic acid
profile was different in TGs vs. CG, approaching HMG. At 3 months, TGs (vs. CG) had
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higher secretory immunoglobulin A (sIgA) and lower alpha-1-antitrypsin (P < 0.05). At
6 months, sIgA in TG2 vs. CG remained higher (P < 0.05), and calprotectin was lower
in TG1 (P < 0.05) vs. CG.

Conclusion: Infant formula with a specific blend of five HMOs supports the
development of the intestinal immune system and gut barrier function and shifts the
gut microbiome closer to that of breastfed infants with higher bifidobacteria, particularly
B. infantis, and lower toxigenic Clostridioides difficile.

Clinical Trial Registration: [https://clinicaltrials.gov/ct2/show/], identifier
[NCT03722550].

Keywords: human milk oligosaccharides (HMOs), infant formula, gut microbiota, bifidobacteria, Bifidobacterium
longum subsp. infantis (B. infantis), Clostridioides (C.) difficile, intestinal immune response, gut maturation

INTRODUCTION

In human milk, the third largest solid component after
lactose and lipids is a group of over 160 structurally diverse
oligosaccharides known as human milk oligosaccharides (HMOs)
(1, 2). Three main categories of HMOs are generally described
including neutral fucosylated [e.g., 2′fucosyllactose (2′FL) and
2′,3-di-O-fucosyllactose (DFL)], neutral non-fucosylated [e.g.,
lacto-N-tetraose (LNT)], and acidic sialylated [e.g., 3′sialyllactose
(3′SL) and 6′sialyllactose (6′SL)] oligosaccharides (3–6). HMOs
play diverse and important roles in the development of infants
starting with their prebiotic function, which supports the
establishment and maintenance of a balanced gut microbiota
(2, 6–8). HMOs have been long recognized to drive the
Bifidobacterium dominance in breastfed infants. Not all
members of the Bifidobacterium genus can metabolize HMOs.
Bifidobacterium longum subsp. infantis (B. infantis) is known
as a dedicated HMO consumer and able to proliferate in
the presence of HMOs (7). Additionally, a role of HMOs in
immune protection has been demonstrated via anti-adhesive
antimicrobial effects (8–10), regulation of intestinal epithelial
cell response (6, 7), and modulation of immune responses via
direct effects on immune cells and cytokine secretion (11–13).
Furthermore, potential benefits of HMOs on brain development
have been reported (14, 15).

Breastfeeding is the reference for infant nutrition, and
the lack of HMOs in infant formula is likely one of the
factors contributing to differences in health outcomes that have
been observed between breastfed and formula-fed infants (16).
Advances in technology now allow the synthesis of HMOs,
and some of them are being added to formulas to provide
infants who cannot be fed with human milk with identical
oligosaccharides to those found in human milk (7). Clinical trials
have demonstrated safety and good tolerance of infant formulas

Abbreviations: AAT, alpha-1-antitrypsin; 2′FL, 2′fucosyllactose; 3′SL,
3′sialyllactose; 6′SL, 6′sialyllactose; B., Bifidobacterium; C. difficile, Clostridioides
difficile; CG, control group; DFL, 2′,3-di-O-fucosyllactose; HMG, human milk
group; HMOs, human milk oligosaccharides; IF, infant formula; LNT, lacto-N-
tetraose; LNnT, lacto-N-neotetraose; MGS, metagenomic species; PCoA, principal
coordinates analysis; PD, phylogenetic diversity; PERMANOVA, permutational
multivariate analysis of variance; SCFA, short-chain fatty acid; sIgA, secretory
immunoglobulin A; TG1, test group 1; TG2, test group 2.

supplemented with 2′FL alone (17, 18), the combination of 2′FL
and lacto-N-neotetraose (LNnT) (19, 20), and a blend of five
HMOs (21). HMOs have been shown to play an important role in
the development of the intestinal microbiome in breastfed infants
(22, 23), and more recently, infant formula with 2′FL and LNnT
was shown to promote a microbiome more similar to the human
milk-fed reference than formula not containing HMOs (24). In
another trial, infants fed a formula containing 2′FL and galacto-
oligosaccharides had plasma and ex vivo inflammatory cytokine
profiles more similar to the breastfed reference than control
infants fed a formula with galacto-oligosaccharides alone (25).

With more HMOs becoming available, it is possible
to supplement formulas with blends of HMOs providing
structurally diverse and complex oligosaccharides to formula-fed
infants. Our study evaluated for the first time the gut maturation
effects (microbiota, metabolites, and selected maturation
markers) of an infant formula containing a specific blend of five
HMOs (2′FL, DFL, LNT, 3′SL, and 6′SL) that is based on the
HMO profile found in human milk and covers the major HMOs
from all three categories. We hypothesized that infants receiving
a starter formula with the five-HMO blend for 6 months would
have a gut microbiota composition and metabolic activity
more similar to that observed in human milk-fed infants and
improved gut maturation markers than their control peers. This
article reports the secondary outcomes up to 6 months of age of
a 15-month study.

SUBJECT AND METHODS

Study Design
This randomized, controlled, double-blind trial conducted
between September 2018 and November 2021 at 32 study sites
in Bulgaria, Hungary, and Poland consisted of three randomized
formula-fed groups and a non-randomized human milk-fed
group (HMG) as reference. The study was conducted according
to the Declaration of Helsinki and the International Conference
on Harmonization Guidelines for good clinical practice. All
procedures involving human subjects were approved by the
Scientific and Research Ethics Committee of Medical Research
Council (Budapest, Hungary), the Bioethics Committee at the
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Regional Medical Chamber (Gdańsk, Poland), and the Ethics
Committee of the Scientific Research at Medical University
(Sofia, Bulgaria). Written informed consent was obtained prior
enrollment from the parents of all infants. The trial was registered
on ClinicalTrials.gov as NCT03722550.

The overall study included a follow-up up to 15 months
of age with formula-fed infants consuming a starter infant
formula (IF) from enrollment to 6 months, transitioning to
a follow-up formula from 6 to 12 months, and followed by
growing-up milk from 12 to 15 months. This report encompasses
the first 6 months of the study during which participants
were expected to consume the assigned IF (or breastmilk in
HMG) continuously until 6 months of age, with the addition
of complementary foods permitted after 4 months of age.
Subject demographic data were collected at the enrollment visit.
Fecal samples were collected at enrollment (baseline), 3, and
6 months of age in a random subset of infants whose parents
agreed for the stool sampling (“first-in, first-served principle”).
Parents were instructed to immediately freeze the collected
fecal samples in their freezer at home (∼−20◦C) and to bring
them within 3 days to the study site where samples were
frozen at −80◦C until analysis. Transport to the study sites
was done in cooling bags containing sufficient cool packs to
keep samples frozen.

Study Participants
All infants were required to be healthy and full-term, with birth
weight between 2,500 and 4,500 g, and aged ≥ 7– ≤21 days
at enrollment. For formula-fed infants, parents had elected to
formula feeding prior to enrollment. For the HMG, infants had
to consume human milk exclusively from birth to enrollment,
and their parents had elected to continue exclusive breastfeeding
at least until 4 months of age. Infants with conditions requiring
feedings other than those specified during the trial period or
requiring complementary foods at or prior to enrollment were
not eligible, as were infants with evidence of major congenital
malformations, documented or suspected congenital infections,
a history of admission to the neonatal intensive care unit
for any reason except jaundice phototherapy, and participating
in other clinical trials. In addition, infants having used any
medication known or suspected to affect fat digestion, absorption
or metabolism, stool characteristics, growth, or gastric acid
secretion were not eligible.

Interventions
The three formula-fed groups were the control group (CG)
fed a standard IF without HMOs, test group 1 (TG1) fed the
same standard IF with a concentration of 1.5 g/L of the five-
HMO blend, and test group 2 (TG2) fed the same standard IF
with a concentration of 2.5 g/L of the five-HMO blend. The
concentrations of the five HMOs in TG1 and TG2 were 0.87
and 1.45 g/L for 2′FL, 0.10 and 0.14 g/L for DFL, 0.29 and
0.48 g/L for LNT, 0.11 and 0.18 g/L for 3′SL, and 0.14 and
0.24 g/L for 6′SL, respectively. These concentrations are all in
the range of that reported in human milk for the individual
HMOs (26–30). The standard IF was a bovine milk-based
whey predominant term infant formula with 67 kcal/100 mL

reconstituted formula, consisting of 1.9 g intact protein (70%
whey/30% casein)/100 kcal, 11.1 g carbohydrates/100 kcal, and
5.3 g lipids/100 kcal.

Formula-fed infants were randomized to CG, TG1, or TG2
using Medidata Balance, and randomization was stratified by
study center, sex, and mode of delivery with an equal study infant
allocation ratio of 1:1:1 for CG:TG1:TG2. The study was double
blinded with the identity of the specific product masked to all
parents of enrolled infants, study investigators, and study staff
using individual coding.

Microbiome Analysis and Ecological
Measures
Microbial DNA was extracted from frozen feces, purified,
and shotgun sequenced with 2 × 150 bp sequencing, as
described previously (15). Taxonomic relative abundances
were calculated using the metagenomic species (MGS)
approach, which enables the quantification of both known
characterized and uncharacterized microbial species (31) (see
also Supplementary Methods).

A phylogenetic tree connecting the MGSs was
generated using previously identified conserved genes
(Supplementary Methods). Alpha diversity as Faith’s
phylogenetic diversity (PD) (32) and beta diversity as weighted
UniFrac distance (33) were calculated using this tree with
the PhyloMeasures and phyloseq R packages, respectively.
Additional alpha diversity indexes, including richness and
Shannon diversity, were calculated independently for gene,
MGS, and genus. Centroids for vaginally delivered HMG
infants were calculated at each timepoint using all principal
coordinates analysis (PCoA) coordinates, and distance from
a sample of the respective timepoint to the HMG centroid
(dvaginal delivered HMG−centroid) was calculated as the Euclidean
distance in this PCoA space. All distances and alpha diversity
measures were calculated using rarefied abundances.

Analysis of Fecal Biomarkers, pH, and
Organic Acids
Commercially available ELISA kits were used to analyze fecal
biomarkers at baseline, age 3, and 6 months, including secretory
immunoglobulin A (sIgA), calprotectin (both Immundiagnostik
AG, Bensheim, Germany), and alpha-1-antitrypsin (AAT;
BioVendor – Laboratorni medicina a.s., Brno, Czech Republic).

Fecal pH and organic acids (including lactate, acetate,
butyrate, isobutyrate, propionate, valerate, and isovalerate)
were assessed at baseline, 3, and 6 months of age using
pH indicator paper (pH range 1–10; Merck, Darmstadt,
Germany) and validated liquid chromatography-tandem mass
spectrometry according to a modified previously published
method (34), respectively.

Statistics
For weighted UniFrac analysis, permutational multivariate
analysis of variance (PERMANOVA) tests assessing marginal
effects of the terms were performed using the adonis2 function
from the vegan R package with 1,000 permutations (35). Alpha
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diversity indexes and taxonomical abundances were compared
among the groups using the Kruskal–Wallis H test with post hoc
Dunn’s test. Fisher’s exact test was used to assess differences in
taxonomical prevalence. To compare dvaginal delivered HMG−centroid
between the feeding groups, we used the Mann–Whitney U test.
For the Kruskal–Wallis H test and the corresponding pairwise
tests, all considered taxa detected in at least 10 formula-fed
infants in the given comparison were subjected to the testing
scheme. For Fisher’s exact test and the corresponding pairwise
tests, we included all entities which were i) detected in ≥ 3
samples and ii) undetected in ≥ 3 samples from formula-
fed infants in the given comparison. All statistical tests were
run using R software (v. 4.0.3). The dataset for microbiota
analyses consisted of infants who provided a stool sample
at any timepoint and were compliant with the study feeding
on ≥ 80% of the days. Up to 4 months of age, a compliant
day was defined as a day on which the study product (or
human milk in the reference group) was exclusively fed (i.e., no
complementary foods or other formulas). From 4 to 6 months
of age, a compliant day was defined as a day on which at
least one serving of the study product was consumed. For
the HMG, there were no specific requirements for the period
between 4 and 6 months age. For bifidobacteria analysis, four
of nine Bifidobacterium (sub)species were defined as infant-type
Bifidobacterium (sub)species based on a previous publication,
including B. longum subsp. infantis, B. longum subsp. longum,
B. bifidum, and B. breve (36), and the sum of their relative
abundance was compared between the groups.

Fecal pH, organic acids, and biomarkers were based on grams
of fecal dry weight and were log-transformed for analysis if
needed. Intervention differences at 3 and 6 months of age were
examined in ANCOVA models adjusted for baseline values of
the measure of interest or Wilcoxon test for infants providing
a baseline sample and a sample at the respective timepoint.
Short-chain fatty acids (SCFA; acetate, butyrate, isobutyrate,
propionate, valerate, isovalerate) were analyzed as a proportion of
total SCFA. Analyses were conducted using SAS/STAT software
version 9.4 of the SAS System (SAS Institute Inc., Cary,
NC, United States).

This article reports the secondary endpoints of a study
for which the sample size calculation was based on the two
co-primary endpoints: growth at 4 months and incidence of
respiratory tract infections at 15 months (ClinicalTrials.gov:
NCT03722550); therefore, no sample size calculation is available
for the endpoints reported herein.

RESULTS

Participants
Of the 693 randomized formula-fed infants (CG, n = 233; TG1,
n = 230; TG2, n = 230) and 96 non-randomized human milk-fed
infants in the HMG who were enrolled for the overall study, the
stool samples of 535 infants were analyzed and included in this
report (CG, n = 155; TG1, n = 158; TG2, n = 153; HMG, n = 69;
Figure 1). Baseline characteristics of the infants included in this
report are shown in Table 1 and were largely comparable among

the feeding groups, except for longer maternal and paternal
education and slightly older gestational age at birth in HMG
compared with the formula-fed groups.

Gut Microbiome
At baseline, no significant differences in alpha diversity indexes
were observed among the formula-fed groups (all pairwise
P > 0.05; Figure 2A and Supplementary Figures 1, 2). At
3 months of age, gene and genus Shannon index were lower
in TG1 than in CG (P < 0.05) (Supplementary Figure 2).
At 6 months of age, Faith’s PD, richness and Shannon index
at gene, MGS, and genus level were lower in TG1 than
in CG (all P < 0.05), approaching HMG (Figure 2A and
Supplementary Figures 1, 2). In TG2, richness and Shannon
index at the genus level were lower than those in CG at 6 months
of age (P < 0.05), approaching HMG. All alpha diversity indexes
in HMG were significantly lower than those in each of the
three formula-fed groups at each timepoint (Figure 2A and
Supplementary Figures 1, 2).

Beta diversity analysis, based on weighted UniFrac and
PERMANOVA and visualized with PCoA, revealed a difference
in gut microbiota composition among the four groups at all
three timepoints (PERMANOVA, P ≤ 0.005, Figure 2B and
Supplementary Table 1). In an analysis of the three formula-
fed groups without HMG, no significant difference was observed
at baseline (PERMANOVA, P = 0.838). However, significant
differences were observed among the formula-fed groups at 3
and 6 months of age (R2 = 1.6%, P < 0.001 and R2 = 3.0%,
P < 0.001, respectively). Between group comparisons showed
that test groups and HMG were significantly different from CG at
both post-baseline timepoints. Each test group was significantly
different from HMG at baseline and 3 months, but TG1 not
at 6 months (TG2 remained significantly different at 6 months,
albeit the level of significance decreased with time from P < 0.001
to P = 0.04), indicating that the test groups transitioned toward
HMG (Figure 2B and Supplementary Table 1).

To assess microbiota similarities of formula-fed infants with
vaginally delivered human milk-fed infants, we calculated the
phylogenetic distance between each sample and the centroid
of the vaginally delivered HMG at the same timepoint
(dvaginal delivered HMG−centroid; Figures 3A–C). At baseline, we did
not detect differences in dvaginal delivered HMG−centroid between
the formula-fed groups (all pairwise P > 0.05). At 3 months,
both TG1 (P = 0.001) and TG2 (P = 0.022) were closer
to the vaginally delivered HMG centroid than CG, which
was further strengthened at 6 months (both TG1 and TG2;
P < 0.0001), indicating that the test groups shifted their
microbiota composition toward vaginally delivered HMG. We
next performed the same analysis on the subsets of cesarean-
and vaginally delivered infants (Figures 3D–I). At baseline,
dvaginal delivered HMG−centroid was similar for the formula-fed
groups in both subsets. At 3 months, we detected no differences
between the vaginally delivered formula-fed groups and a lower
dvaginal delivered HMG−centroid in cesarean-delivered TG1 compared
to cesarean-delivered CG (P = 0.004). At 6 months, in both
delivery subsets, dvaginal delivered HMG−centroid was significantly
lower in both TG1 and TG2 than in CG (both P < 0.05;
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FIGURE 1 | Study participant flowchart. Control was without HMOs; test group 1 was with 1.5 g HMOs/L; test group 2 with 2.5 g HMOs/L. HMOs human milk
oligosaccharides.

TABLE 1 | Demographic characteristics, by feeding group (n = 535).

CG
(n = 155)

TG1
(n = 158)

TG2
(n = 153)

HMG
(n = 69)

P-valuea

Age at baseline (days) 14.5 ± 4.6 14.7 ± 4.5 14.3 ± 4.5 15.4 ± 3.8 0.316

Sex 0.426

Male 80 (51.6%) 78 (49.4%) 77 (50.3%) 42 (60.9%)

Female 75 (48.4%) 80 (50.6%) 76 (49.7%) 27 (39.1%)

Gestational age at birth (weeks) 38.7 ± 1.3 38.7 ± 1.2 38.7 ± 1.1 39.1 ± 1.0 0.047

Delivery mode 0.501

Vaginal 64 (41.3%) 64 (40.5%) 63 (41.2%) 35 (50.7%)

Cesarean 91 (58.7%) 94 (59.5%) 90 (58.8%) 34 (49.3%)

Complementary foods by age 6 months (yes) 138 (94.5%) 144 (96.6%)b 144 (96.0%) 58 (87.9%) 0.079

Maternal education (years) 13.7 ± 3.7 13.8 ± 3.9 13.6 ± 3.9 16.7 ± 2.9 <0.001

Paternal education (years) 13.2 ± 3.5 12.9 ± 3.5 13.1 ± 3.9 15.6 ± 3.0 <0.001

Data shown as mean ± SD or n (%). CG, control group; TG1, test group 1 (1.5 g HMOs/L); TG2, test group 2 (1.5 g HMOs/L); HMG, human milk-fed group; HMOs,
human milk oligosaccharides.
aP-values for overall group comparison are derived from one-way ANOVA or Pearson’s chi-squared test. bFor 9 infants in TG1 it was not known whether complementary
foods were consumed or not by age 6 months.

Figures 3F,I), indicating that the five HMO formulas shifted the
gut microbiome composition of both cesarean- and vaginally
delivered infants toward that of vaginally delivered human milk-
fed infants.

We compared abundances of predefined bacteria taxa
(Bifidobacterium [including infant-type Bifidobacterium
(sub)species], Streptococcus, Lactobacillus, Clostridia, and
Peptostreptococcaceae; Figure 4 and Supplementary Figure 3).
The relative abundance of Bifidobacterium seemingly increased
in TG1 and TG2 over 6 months, while in CG, it decreased
between 3 and 6 months. Consequently, at 6 months of age,

the relative abundance of Bifidobacterium was higher by
∼45% in TG1 and TG2 compared to CG (P < 0.001) and was
similar to that in HMG (P > 0.05; Figure 4A). Separated by
delivery mode, a similar pattern was observed, particularly
in the cesarean-delivered infants (Figures 4B,C). Of the
Bifidobacterium (sub)species showing statistical differences
among formula groups, Bifidobacterium longum subsp. infantis
(B. infantis) relative abundance at 3 and 6 months of age
was higher in TG1 (P < 0.0001 and P = 0.010, respectively)
and TG2 (P = 0.016 and P = 0.083, respectively) than in
CG and approaching HMG. However, relative abundance of
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FIGURE 2 | (A) Alpha diversity (Faith’s phylogenetic diversity) of the gut microbiota of the infants in the four feeding groups at each timepoint (baseline left, 3 months
of age center, 6 months of age right). Box plots show the median and 25th and 75th percentiles with Tukey whiskers. Within each timepoint, all feeding groups were
compared pairwise (Dunn’s test), and significant differences are highlighted with significance bars. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. (B) Principal
coordinates analysis (PCoA) based on weighted UniFrac distance. Feeding groups are color-coded and faceted by timepoint. Individual data points are shown, with
the mean (centroid) of each group indicated as a larger symbol. The x- and y-axis labels indicate the microbial variance explained by the first two principal
coordinates. P-values for permutational multivariate analysis of variance (PERMANOVA) using feeding group as explanatory variable are shown for all infants and the
subset of formula-fed infants at each visit. At baseline/3/6 month of age, CG, n = 135/135/111; TG1, n = 140/138/113; TG2, n = 136/140/117; HMG, n = 50/55/50.
CG, control group; TG1, test group 1 (1.5 g HMOs/L); TG2, test group 2 (1.5 g HMOs/L); HMG, human milk-fed group; HMOs, human milk oligosaccharides.

B. infantis was also higher in TG1 than in CG at baseline
(P = 0.006; Figure 4D). Relative abundance of infant-type
Bifidobacterium species was higher in HMG than in CG at
all timepoints (all P < 0.05). At 3 months, TG1 was higher
than CG (P < 0.001), and at 6 months of age, both TG1
and TG2 were significantly higher than CG, while TG1 was
indifferent compared to HMG (Figure 4E). At 6 months,
abundances of B. catenulatum subsp. kashiwanohense and
B. pseudocatenulatum were higher in TG2 than in CG and
TG1 (P < 0.05; Supplementary Figures 4E,H). In addition,
B. dentium abundance was significantly higher in TG2 than

in CG at all three timepoints (Supplementary Figure 4F). At
baseline, we did not observe any significant differences among
the three formula-fed groups for Clostridia, Lactobacillus,
Peptostreptococcaceae, and Streptococcus (all pairwise P > 0.05).
At 3 and/or 6 months, the abundance of these taxa in TG1 and/or
TG2 were significantly different from that of CG (P < 0.05) and
approaching HMG (Supplementary Figure 3).

At baseline, the relative abundance and prevalence of toxigenic
Clostridioides (C.) difficile were similar in the three formula-
feeding groups (P > 0.05; Figure 5A). By contrast, at age
3 and 6 months, the relative abundances in TG1 and TG2
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FIGURE 3 | Distance to the centroid of vaginally delivered HMG infants in principal coordinates analysis space of weighted UniFrac distance
(dvaginal delivered HMG-centroid) at each timepoint for all infants (A–C), cesarean-delivered infants (D–F, indicated with “_C” in the labels), and vaginally delivered infants
(G–I, indicated with “_V” in the labels). Box plots show the median and 25th and 75th percentiles with Tukey whiskers. Within each timepoint, all groups were
compared pairwise with Mann–Whitney U tests, and significant differences are highlighted with significance bars. *P < 0.05, **P < 0.01, ***P < 0.001,
****P < 0.0001. At baseline/3/6 month of age, CG, n = 135/135/111; TG1, n = 140/138/113; TG2, n = 136/140/117; HMG, n = 50/55/50 for all infants (A–C), CG,

(Continued)
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FIGURE 3 | n = 79/77/69; TG1, n = 81/82/66; TG2, n = 80/85/66; HMG, n = 26/28/24 for cesarean-delivered infants (D–F), CG, n = 56/58/42; TG1, n = 59/56/47;
TG2, n = 56/55/51; HMG, n = 24/27/26 for vaginally delivered infants (G–I). CG, control group; TG1, test group 1 (1.5 g HMOs/L); TG2, test group 2 (1.5 g
HMOs/L); HMG, human milk-fed group; HMOs, human milk oligosaccharides.

were lower than those in CG by 75–85% (all P < 0.05) and
comparable to HMG (Figures 5B,C). At age 3 months, the
prevalence of toxigenic C. difficile trended to be lower in TG1
(6.5%) and TG2 (5.7%) than in CG (13.3%; P ≤ 0.069). At
6 months, toxigenic C. difficile prevalence was lower in TG1
(10.6%) and TG2 (6.0%) than in CG (27.9%; P ≤ 0.001) and
comparable with HMG (10.0%; P > 0.05). Other pathogens,
such as Campylobacter jejuni, Campylobacter coli, Clostridium
perfringens, enteropathogenic Escherichia coli, enterotoxigenic
Escherichia coli, Klebsiella pneumoniae, and Salmonella enterica,
had low prevalence (≤ 4 infants/feeding group) and were not
investigated further.

Fecal Biomarkers
Adjusted mean concentrations of sIgA, AAT, and calprotectin at 3
and 6 months are shown in Figure 6. At 3 months, concentrations
of sIgA in TG1 and TG2 were 53% (P < 0.01) and 43% (P < 0.05)
higher than those in CG, respectively, and the difference persisted
at 6 months for TG2 (P < 0.05). HMG had the highest sIgA
concentration at both post-baseline timepoints compared to the
formula-fed groups (all pairwise P < 0.001). AAT was lower in
TG1 and TG2 than in CG at 3 months (P < 0.05). No significant
difference was found at 6 months. The concentration of AAT in
HMG was not statistically different from the formula-fed groups
at either timepoint. Calprotectin tended to be lower in TG1 than
in CG at 3 months (P = 0.088). At 6 months, calprotectin was
lower in TG1 vs. CG (P < 0.05) and tended to be lower in HMG
vs. CG (P = 0.059).

Fecal pH and Organic Acids
Fecal pH in the test groups was lower than that in CG at 3 and
6 months (P < 0.05; Table 2). At 6 months, HMG showed the
lowest pH (all pairwise P < 0.05), and pH in TG2 was lower
than in TG1 (P < 0.05). At both post-baseline timepoints, CG
had a significantly lower concentration of lactate than the other
groups (Table 2). At 6 months, HMG had the highest lactate
concentration (all pairwise P < 0.05). The relative proportion of
acetate to total SCFA at 3 and 6 months was lower in CG vs. test
groups (P < 0.01, except CG vs. TG1 at 6 months P = 0.059) and
highest in HMG (all pairwise P < 0.001). At 3 months, relative
proportions of butyrate and isobutyrate were lower in TG1 and
TG2 than in CG (P < 0.05) and similar as in HMG. At 6 months, a
similar pattern was observed with HMG being lowest (all pairwise
P < 0.05), but butyrate in TG1 was no longer different from
CG and isobutyrate only trended to be lower in TG1 vs. CG
(P = 0.060). At 3 and 6 months, the proportion of propionate
was not significantly different in the formula-fed groups but was
significantly lower in HMG. At 3 months, the relative proportion
of isovalerate was significantly higher in CG than in TG1, TG2,
and HMG. At 6 months, CG trended to be higher than TG1
(P = 0.052) and was higher than TG2 and HMG (P < 0.001). At
3 months, TG1 had significantly lower valerate proportion than

CG and HMG. At 6 months, CG was significantly higher than
TG1 and HMG, and TG2 was significantly higher than HMG.

DISCUSSION

To our knowledge, this is the first study investigating the effect
of an infant formula with a specific blend of five HMOs on gut
maturation, including microbiota composition and metabolism,
as well as gut barrier and immune function. Our main findings
are the ability of this specific HMO blend to drive the gut
microbiota development of formula-fed infants directionally
toward that of breastfed infants, including higher bifidobacteria
and lower toxigenic C. difficile abundance, and to improve early-
life intestinal immune response as indicated by the higher fecal
sIgA concentration in the test groups vs. CG. Our results unveil
important roles of the tested HMO blend in the development of
the gut microbiome in early life. Given the importance the gut
microbiome has in regulating and fine-tuning the development
of the immune system, the tested HMO blend can potentially
contribute beneficially to the short- and long-term health of
formula-fed infants.

The HMO formulas impacted the gut microbiota composition
as early as 3 months of age as indicated by beta diversity analysis.
At 6-month age, gut microbiota modulating effects were even
more distinct with some of the alpha-diversity indexes (richness
and Shannon index at the genus level) being significantly lower in
the test groups than in CG, with TG1 being no longer significantly
different from HMG based on beta diversity analysis. Our data
also show that the shift of the test groups toward the vaginally
delivered HMG was observed irrespectively of the delivery mode,
which is an interesting observation considering the reference role
the vaginally delivered breastfed babies play in the interpretation
of the gut microbiota findings.

The findings at 6 months suggest that HMOs play a crucial
role in shaping the gut microbiome even after introduction of
complementary foods and that the five-HMO blend promotes a
human milk-fed alike bifidobacteria pattern beyond the exclusive
formula-feeding period. Bifidobacterium species found in the
gastrointestinal tract of infants are known to metabolize HMOs
(37). A noteworthy difference in our study was the higher
abundances of B. infantis in the test groups than in CG. These
results indicate that B. infantis gains a competitive advantage in
the presence of the five HMOs. B. infantis is expected to have
the genetic makeup to use the dominant oligosaccharides (38),
and several strains were shown to broadly metabolize HMOs
like those used in this study (39, 40). Interestingly, the effects
of the HMO-supplemented formula on the gut microbiota in
cesarean- or vaginally born infants were similar, changing the
microbiota toward the composition observed in vaginally born
infants of HMG, including an increase in Bifidobacterium. This
suggests that HMOs help correct some of the potential underlying
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FIGURE 4 | Relative abundance of (A) Bifidobacterium including all infants,
(B) Bifidobacterium in cesarean-delivered infants, (C) Bifidobacterium in
vaginally delivered infants, (D) Bifidobacterium longum subsp. infantis
(B. infantis), and (E) infant-type Bifidobacterium species in the four feeding
groups at each timepoint (baseline left, 3 months of age center, 6 months of
age right). Infant-type Bifidobacterium species is defined as the summarized
relative abundance of B. longum subsp. infantis, B. longum subsp. longum, B.

(Continued)

FIGURE 4 | bifidum, and B. breve (36). Box plots show the median and 25th

and 75th percentiles with Tukey whiskers. Relative abundance of B. infantis is
plotted on a pseudo-logarithmic scale to display values spanning several
orders of magnitude, as well as zeros. Within each timepoint, all feeding
groups were compared pairwise (Dunn’s test), and significant differences are
highlighted with significance bars. *P < 0.05, **P < 0.01, ***P < 0.001,
****P < 0.0001. At baseline/3/6 month of age, CG, n = 135/135/111; TG1,
n = 140/138/113; TG2, n = 136/140/117; HMG, n = 50/55/50 for all infants
(A,D,E), CG, n = 79/77/69; TG1, n = 81/82/66; TG2, n = 80/85/66; HMG,
n = 26/28/24 for cesarean-delivered infants (B), CG, n = 56/58/42; TG1,
n = 59/56/47; TG2, n = 56/55/51; HMG, n = 24/27/26 for vaginally delivered
infants (C). CG, control group; TG1, test group 1 (1.5 g HMOs/L); TG2, test
group 2 (1.5 g HMOs/L); HMG, human milk-fed group; HMOs, human milk
oligosaccharides.

dysbiosis in cesarean-born delivered infants (41). A similar
beneficial effect on dysbiotic gut microbiota in cesarean-born
delivered infants has been reported for breastfeeding (41, 42).
A previous study also found a bifidogenic effect in infants
receiving formula with two HMOs (2′FL, LNnT) which was more
pronounced in the cesarean-born infants. However, the study did
not find any specific effect on B. infantis (24).

In our study, acetate proportion and lactate concentration
were higher in the infants receiving the HMO formulas than
those of CG. Since acetate and lactate are the main end-products
of the bifidobacteria catabolism (43), our results can be explained
by the increased growth of bifidobacteria in the test groups and
possibly also by HMO-stimulated increased activity of enzymes
involved in the metabolic pathways of bifidobacteria (44). On
the other hand, we observed that proportions of butyrate,
isobutyrate, or isovalerate were lower in the test groups and
HMG than in CG, indicating a more diverse microbiota in CG,
for example, butyrate is produced by Bacteroides and Firmicutes
(e.g., Clostridium), but not by Bifidobacterium (45). Lactate and
acetate play a vital role for the pH regulation in the colon (46),
and the lower pH observed in the test groups in our study possibly
contributed to the reduction in C. difficile in the test groups.
Acetate might also have contributed directly to the lower relative
abundance of C. difficile as results from an in vivo study indicate
that acetate promotes innate host responses against C. difficile
through coordinated action on neutrophils and group 3 innate
lymphoid cells (47). A direct effect of the HMOs preventing
epithelial adhesion of C. difficile by acting as decoy receptors
might have been possible too; however, pre-clinical work suggests
that the effect is rather indirect via gut microbiota modulation
(48). Our findings about toxigenic C. difficile are of importance
because they indicate that the five-HMO blend can reduce a risk
factor for infectious diarrhea in formula-fed infants.

The intestinal immune response, gut barrier
function/permeability, and the inflammatory signals in the
gut are evolving during gut maturation. Fecal sIgA, a marker of
intestinal immune response (49), was higher in TG1 and TG2
than in CG at 3 months, and the difference persisted in TG2 at
6 months. This may be linked to the increases in bifidobacteria,
which have been shown to interact with human immune
cells (50), and their surface-associated molecules and their
metabolites may exert immunomodulatory functions (51, 52).
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FIGURE 5 | Relative abundance of toxigenic Clostridioides difficile in the four feeding groups at each timepoint (baseline left, 3 months of age center, 6 months of
age right). Bars show the mean relative abundance with error bars indicating the standard error. Prevalence for each group (percentage of infants with detectable
levels of toxigenic C. difficile) is displayed below the bar. Within each timepoint, the relative abundance of C. difficile in all feeding groups were compared pairwise
(Dunn’s test), and significant differences are highlighted with significance bars. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. At baseline/3/6 months of age,
CG, n = 135/135/111; TG1, n = 140/138/113; TG2, n = 136/140/117; HMG, n = 50/55/50. CG, control group; TG1, test group 1 (1.5 g HMOs/L); TG2, test group 2
(1.5 g HMOs/L); HMG, human milk-fed group; HMOs, human milk oligosaccharides.

FIGURE 6 | Concentration of sIgA (A), AAT (B), and calprotectin (C) in the four feeding groups at 3 and 6 months of age. Data presented as adjusted means with
the 95% CI as whiskers and expressed per gram fecal dry weight. Within each timepoint, all feeding groups were compared pairwise using ANCOVA models
adjusted for baseline value of the measure of interest. *P < 0.05 vs. CG; **P < 0.01 vs. CG; § P < 0.001 vs. all formula groups. At 3/6 months of age, CG,
n = 102/85; TG1, n = 110/90; TG2, n = 113/99; HMG, n = 35/37 for sIgA; CG, n = 102/85; TG1, n = 109/88; TG2, n = 112/99; HMG, n = 34/36 for AAT; CG,
n = 102/85; TG1, n = 110/89; TG2, n = 113/99; HMG, n = 35/37 for calprotectin. AAT, alpha-1-antitrypsin; CG, control group; TG1, test group 1 (1.5 g HMOs/L);
TG2, test group 2 (1.5 g HMOs/L); HMG, human milk-fed group; HMOs, human milk oligosaccharides; sIgA, secretory IgA.

Recently, Laursen and colleagues demonstrated that human milk-
promoted Bifidobacterium species produce indole-3-lactate, a
tryptophan metabolite, which may impact intestinal homeostasis
and immune response in early life (36). In our study, test groups

had significantly higher abundance of these breastmilk-promoted
Bifidobacterium species, indicating that the five-HMO blend
likely increases the production of some immunomodulatory
metabolites in formula-fed infants. Furthermore, acetate has been
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TABLE 2 | Fecal pH, total concentration of lactate, and relative proportion of individual short-chain fatty acids at 3 and 6 months of age.

3 months 6 months

CG TG1 TG2 HMG CG TG1 TG2 HMG

Fecal pH1 6.49a

[6.30; 6.68]
6.05b

[5.87; 6.24]
5.82b

[5.63; 6.00]
5.95b

[5.66; 6.24]
6.57a

[6.34; 6.81]
6.14b

[5.90; 6.37]
5.66c

[5.44; 5.88]
5.19d

[4.85; 5.52]

Lactate (umol/g)1 2.38a

[1.69; 3.35]
4.64b

[3.34; 6.44]
4.73b

[3.41; 6.57]
4.63b

[2.81; 7.63]
0.68a

[0.44; 1.07]
1.98b

[1.29; 3.04]
1.77b

[1.18; 2.66]
4.58c

[2.46; 8.53]

Acetate (%)2 77.1 (12.0)a

32.6; 98.4
81.8 (9.8)b

53.7; 99.4
81.2 (10.7)b

43.9; 99.1
89.2 (9.6)c

54.7; 99.3
75.3 (10.9)a

44.4; 94.3
77.4 (12.3)a,b

8.6; 99.5
79.4 (9.8)b

41.2; 97.5
86.9 (11.6)c

44.2; 98.7

Butyrate (%)3 2.76a

[2.20; 3.47]
1.69b

[1.32; 2.17]
1.94b

[1.54; 2.43]
1.41b

[1.00; 1.98]
3.73a

[2.97; 4.70]
2.59a,b

[1.93; 3.47]
2.47b

[1.95; 3.13]
1.43c

[0.94; 2.16]

Isobutyrate (%)3 0.66a

[0.53; 0.83]
0.34b

[0.27; 0.42]
0.32b

[0.26; 0.40]
0.25b

[0.19; 0.34]
0.80a

[0.64; 1.01]
0.60a

[0.47; 0.76]
0.37b

[0.29; 0.47]
0.25c

[0.17; 0.36]

Propionate (%)3 12.6a

[11.0; 14.5]
10.4a

[9.0; 12.0]
10.4a

[8.9; 12.2]
3.7b

[2.6; 5.3]
13.9a

[12.1; 16.1]
12.1a

[10.0; 14.6]
12.6a

[11.1; 14.3]
5.7b

[4.2; 7.7]

Isovalerate (%)3 0.53a

[0.43; 0.66]
0.28b

[0.23; 0.35]
0.28b

[0.23; 0.33]
0.27b

[0.21; 0.36]
0.58a

[0.46; 0.73]
0.43a

[0.34; 0.55]
0.29b

[0.23; 0.36]
0.22b

[0.17; 0.29]

Valerate (%)2 0.33 (0.91)a

0.02; 6.65
0.21 (0.48)b

0.02; 3.91
0.23 (0.79)a,b

0.03; 8.11
0.31 (0.41)a

0.05; 2.64
0.37 (0.72)a

0.04; 5.13
0.27 (0.70)b,c

0.02; 5.96
0.30 (0.60)a,b

0.03; 3.85
0.23 (0.37)c

0.04; 1.76

1Values are adjusted means [95% confidence intervals]. For lactate, absolute concentrations in the feces based on dry matter are reported.
2Values shown are mean (SD); Min, Max for the relative proportion to total short-chain fatty acid concentration.
3Values shown are geometric means [95% confidence intervals] for the relative proportion to total short-chain fatty acid concentration.
Values without a common superscript letter within one timepoint are significantly different from each other (P < 0.05 based on pairwise comparison using ANCOVA
models adjusted for baseline value of the measure of interest or Wilcoxon test for valerate). At 3/6 month of age, CG, n = 127/101; TG1, n = 133/102; TG2, n = 135/113;
HMG, n = 56/51 for fecal pH; CG, n = 115/89; TG1, n = 125/95; TG2, n = 125/105; HMG, n = 54/45 for lactate; CG, n = 114/81; TG1, n = 122/84; TG2, n = 119/98;
HMG, n = 54/46 for acetate, butyrate, isobutyrate, propionate, isovalerate, and valerate. CG, control group; TG1, test group 1 (1.5 g HMOs/L); TG2, test group 2 (1.5 g
HMOs/L); HMG, human milk-fed group; HMOs, human milk oligosaccharides.

shown to support T-cell-dependent intestinal IgA production in
mice (53), and bifidobacteria-supplemented infant formula has
been associated with increased fecal sIgA (54, 55). In addition
to the sIgA produced by the B lymphocytes in the submucosal
tissues, sIgA is also provided to infants via consumption of
human milk (56), which is consistent with our finding that the
HMG had a significantly higher sIgA concentration than the
formula-fed groups. We observed that concentrations of AAT,
a marker of intestinal permeability, were significantly lower in
TG1 and TG2 than in CG at 3 months. In formula- and human
milk-fed infants, AAT is known to decrease during infancy
(57), and our results indicate that HMOs may contribute to this
development in formula-fed infants in the first months after
birth. HMG also showed the expected downward trend from
3 to 6 months, but AAT concentration was numerically higher
at 6 months than that in the formula groups. This is likely due
to AAT found in human milk which contributes to the overall
measured concentrations but is not produced by the infant
(58). We also found some indication that the HMO formulas
contribute to the known decrease in the gut inflammation marker
calprotectin in infants over time (59, 60). Together, our fecal
biomarker results indicate that HMO-supplemented formula
may be supportive of the infant intestinal immune development
and gut barrier function.

Our study has several strengths. We had a substantial sample
size with > 100 infants in the formula groups and > 50
in HMG. We used shotgun metagenomics which, compared
with traditional 16S rRNA technique, provides more accurate
and reliable profiling of bacterial (sub)species, allowing us to

assess different Bifidobacterium (sub)species and to evaluate
pathogenicity of species based on the presence of corresponding
virulence genes (e.g., toxigenic C. difficile). To strengthen our
assessment of the impact of the HMOs on infant gut physiology,
we complemented our analysis with selected fecal metabolites
and biomarkers. A limitation of our study is the lack of detailed
data of complementary feeding after 4 months of age, which likely
contributed to the gut maturation between 4 to 6 months of age.
The available data show that most of the formula-fed infants have
received complementary foods between 4 and 6 months of age
(>90%), and there are unlikely any substantial differences in the
types of consumed complementary foods among the formula-fed
groups due to the randomization. Our study tested two different
dosages of the five-HMO blend, but we did not observe any
substantial dose-dependent response. Either the difference of
1 g HMOs per liter was not enough to detect potential dose-
dependent responses or above 1.5 g HMOs per liter, there is a
kind of a saturation effect for changes in microbiota and gut
development using our HMO blend. The actual difference in
HMOs actively used by the microbiota between the test groups
might have been even smaller than 1 g per liter as the HMOs
also act as decoy receptors and interact directly with the intestinal
epithelium, and a small proportion is absorbed intact (7). The
higher dose (TG2) doing slightly less good than TG1 for certain
microbiota outcomes when compared to CG might therefore be
due to data variability. Also, the proportion of HMOs not used
by the microbiota might be increased with higher concentrations,
which would be consistent with the findings for sIgA, where the
direct interaction of HMOs with the intestinal mucosa might be
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more important than the prebiotic effect and for which TG2 was
numerically higher than TG1 at 6-month age and significantly
different from CG. Further research is needed on potential dose-
dependent effects of HMOs and HMO blends.

CONCLUSION

This multi-country, double-blinded trial demonstrates that the
intestinal maturation of formula-fed infants can be beneficially
modulated by an infant formula containing a specific blend of five
HMOs. Consumption of HMO-supplemented formula in the first
6 months of life shifts the microbiota composition closer to that of
infants receiving human milk. This includes a strong bifidogenic
effect and less toxigenic C. difficile, which is expected to decrease
the risk of diarrheal illness. The shift in the gut microbiota may
mediate, to a certain extent, the effects that have been seen on
intestinal immune response evidenced by the substantial increase
in fecal sIgA. Supplementing infant formula with our blend of
five HMOs is therefore a promising and efficacious approach
to support the gut microbiome and gut barrier and immune
maturation during early infancy of formula-fed infants.
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