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Selenium (Se) is an essential element for maintaining human health. The

biological effects and toxicity of Se compounds in humans are related

to their chemical forms and consumption doses. In general, organic Se

species, including selenoamino acids such as selenomethionine (SeMet),

selenocystine (SeCys2), and Se-methylselenocysteine (MSC), could provide

greater bioactivities with less toxicity compared to those inorganics including

selenite (Se IV) and selenate (Se VI). Plants are vital sources of organic Se

because they can accumulate inorganic Se or metabolites and store them as

organic Se forms. Therefore, Se-enriched plants could be applied as human

food to reduce deficiency problems and deliver health benefits. This review

describes the recent studies on the enrichment of Se-containing plants in

particular Se accumulation and speciation, their functional properties related

to human health, and future perspectives for developing Se-enriched foods.

Generally, Se’s concentration and chemical forms in plants are determined

by the accumulation ability of plant species. Brassica family and cereal

grains have excessive accumulation capacity and store major organic Se

compounds in their cells compared to other plants. The biological properties

of Se-enriched plants, including antioxidant, anti-diabetes, and anticancer

activities, have significantly presented in both in vitro cell culture models

and in vivo animal assays. Comparatively, fewer human clinical trials are

available. Scientific investigations on the functional health properties of Se-

enriched edible plants in humans are essential to achieve in-depth information

supporting the value of Se-enriched food to humans.
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Introduction

Selenium is an essential trace element for human
health. According to the World Health Organization (1), a
recommended consumption level of Se is 55-70 µg day−1 for
adults, with 400 µg day−1 as a toxic concentration. Selenium
deficiency situation has transpired in some parts of the world,
including China (about 72% of the area), Europe (e.g., France
and Norway) and New Zealand (2). Selenium is associated with
the normal function of glutathione protein (GSH) and its family
of antioxidant enzymes such as glutathione peroxidase (GPx),
thioredoxin reductase (TrxR) and other selenoproteins (3).
The lack of Se can severely affect the human immune system
(4, 5), leading to a cardiomyopathy disorder called “Keshan
disease” and the bone and joint connection syndrome called
“Kashin-Beck disease” (6, 7). Keshan disease occurs when
vascular endothelial cells are damaged from oxidative stress due
to non-functional antioxidant proteins (8). This disease also
causes some serious health problems such as atherosclerosis,
hypertension, myocardial necrosis and congestive heart failure
(9). Kashin-Beck disease is an endemic osteoarthropathy,
causing severe symptoms to joints and bone, including joint
pain, elbows flexion and extension disturbances, enlarged
inter-phalangeal joints, and limited joint motion (10, 11).
Moreover, Se deficiency also increases the risk of arthritis,
cancers, and neurodegenerative disorders regarding immune
and inflammatory infections (12, 13).

In contrast to Se deficiency, there are a few high soil Se
regions globally. The prominent one being the Enshi Province
in China, where the soil Se content can rise to 11.4 mg Se
kg−1 in the high Se area (14). People live in the high Se soil
area can suffer from selenosis symptoms and abnormal growth
conditions due to excessive Se consumption of foods produced
from the area (6, 15). The Se intake of Enshi people was reported
to reach 833 µg per day (15), with serum Se concentrations of
up to 41.6 µmol L−1, approximately 20 times higher than the
proposed intake (16). Chronic selenosis is a group of diseases
associated with a wide range of symptoms from hair loss, bone
and joint problems, and cellular damage from reactive oxygen
species which increase the high risk of cancers (17, 18).

In general, toxicity associated with Se intake occurs in a
few isolated areas, and food science and technology innovation
can help lower Se imbalance intake in the diet. Selenium is
present in plant foods in different chemical forms, including
the organic Se-containing amino acids, i.e., selenomethionine
(SeMet), Se-methylselenocysteine (MeSeCys), and γ-glutamyl-
Se-methylselenocysteine (γ-GluMeSeCys), and the inorganic Se,
i.e., selenite and selenate (19). Advanced analytical techniques
are applied for identifying Se compounds in plant food samples
nowadays, contributing to the knowledge of Se chemical forms
present in plant foods, their content, and the safe concentration
for human consumption. In developing Se-enriched food
products, the aim should be focused on providing functional

food products to benefit human health and enhance the quality
of life. Identification of the Se chemical form and content
is essential to justify the use of Se-enriched plant foods for
achieving health benefits and overcoming the deficiency issues
associated with this essential trace mineral. The objectives of
this review are to examine the Se’s accumulation ability and
speciation in a wide range of Se-enriched plant foods, to inspect
Se and Se compounds’ biological effects on human health, and
to explore the prospects of developing Se-enriched plant foods
for health purposes.

Accumulation of selenium in
plants

Over the past few decades, Se-enriched plants have been
developed to demote deficiency problems for those living in
low Se regions who cannot maintain the recommended intake
level (18). One of the most simple and robust techniques to
increase Se content in plants is by growing plants in high Se soil
and applying Se fertilizers. This enrichment method relates to
plant species’ absorption, transformation, and accommodation
ability of minerals (6). The Se accumulation ability of plants can
be classified into three levels: hyper-accumulators, secondary
accumulators and non-accumulators. The hyper-accumulators
(e.g., Stanleya, Astragalus, Conopsis, Neptunia, Xylorhiza) can
accumulate more than 1,000 mg Se kg−1 while the secondary
accumulators (e.g., Brassica juncea, Brassica napus, Broccoli,
Helianthus, Aster, Camelina, Medicago sativa) can accumulate
between 100-1,000 mg Se kg−1. The non-accumulators only
accumulate less than 100 mg Se kg−1 and most of the
angiosperm species are included in this category (20–22).

The metabolism of Se in plant species varies among
plants, meaning that different plant varieties can produce
different Se chemical forms in various concentrations. Figure 1
demonstrates the complexity of Se chemical forms in different
plant species. Literature on Se speciation revealed that the
Brassica family, such as broccoli, cabbage, and radish, have MSC
as the main Se compound stored in their cells, while SeMet is the
main Se chemical form found in cereals grains and tuber crops
such as ginger, wheat, and carrot (23–25). On the other hand,
selenolanthionine is a major water-soluble Se compound found
in Cardamine violifolia (26).

As the Se content and chemical form in plant materials are
specific to the plant species and their metabolism pathways,
we need to understand the Se accumulation mechanisms
in the plant when selecting plant species for producing Se-
enriched plant foods and food ingredients for human diets. The
accumulation pathways of Se content start with the inorganic
Se (i.e., selenite and selenate) in soil, which plants could
uptake and transform into organic forms (i.e., selenocystine
(SeCys2), selenomethionine (SeMet), selenohomocysteine,
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FIGURE 1

The Se content and chemical species in plant-based foods from the literature (Please refer to Supplementary Table 1 for the original data from
the literature).

selenolanthionine Se-methylselenocysteine (MSC) and γ-
glutamyl-methylselenocysteine (γGMSC)) through the
metabolic pathways as shown in Figure 2. Briefly, selenate
and selenite are taken through the plant root via high-affinity
sulphate transporter (HAST) and high-affinity phosphate
transporter (PHT). Selenate is converted to adenosine 5’-
phosphoselenate (APSe) via ATP sulfurylase (Figure 2, step
1), then changed to selenite through adenosine phosphosulfate
reductase (Figure 2, step 2). Selenite is reduced to selenide
(Se2−) by sulphite reductase (Figure 2, step 3), and then it
is transformed to selenocysteine (SeCys) by O-acetylserine
thiol-lyase (Figure 2, step 4). SeCys could also be transformed
to Se-cystathionine via cysthathionine-γ-synthase (Figure 2,
step 5), MSC via selenocysteine-lyase (Figure 2, step 7), or
elemental selenium (Se0). Secystathionine could then be
changed into selenohomocysteine (SeHCys) via cysthathionine-
β-lyase (Figure 2, step 6). MSC could be converted to
dimethyldiselenide (DMDSe), a volatile compound and
released from plant cells. SeCys is transported to the cytoplasm
and is reacted with glutamic acid to form γ-glutamyl-Se-
methylselenocysteine (γGMSC) by γ-glutamyl-cysteine
synthetase (Figure 2, step 8). SeHCys can also be transported
to the cytoplasm and synthesized to form selenomethionine
(SeMet) by methionine synthase (Figure 2, step 9). SeMet could
also be converted to methyl-selenomethionine (MSeMet)
by methionine methyltransferase (Figure 2, step 10),
then changed to the volatile dimethylselenoproprionate

(DMSeP) and released as dimethyl-selenide (DMSe) via
dimethylselenoproprionate-lyase (Figure 2, step 11) (27–29).

During the accumulation process, selenite tends to provide
higher bioavailability than selenate, and it is commonly used
as Se fertilizer for producing Se enriched plants (30, 31). Hu
et al. (24) showed that using selenite as the foliar fertilizer
on rice grain increased the Se concentrations in glutelin
and albumin proteins as SeCys2 and SeMet. Selenite could
cause significant phytotoxicity from a generation of superoxide
in plant cells during a non-enzymatic reduction reaction to
produce selenide (25, 32, 33). In another study, Ramkissoon
et al. (34) applied sodium selenate to wheat as foliar fertilizer
and found an increased Se concentration and the highly
bioavailable SeMet fraction in wheat grain. However, Se can
cause cytotoxicity in plants and humans when accumulated
or consumed excessively. At high concentrations, Se shows
cytotoxicity by either generating reactive oxygen species or
malformed selenoprotein (20). Generally, inorganic Se, either
selenite or selenate, generates toxicity via the activation of ROS,
which inhibits the growth rate and causes lipid oxidation related
to malondialdehyde formation in plant tissue (35, 36).

In contrast, organic Se, such as SeMet and SeCys, cause
toxicity to plant cells by forming malformed selenoproteins
due to the replacement of Cys/Met with SeCys and SeMet
in the peptide chain. Changing between Cys and SeCys
changes cellular protein’s structure by changing disulfide
bond to diselenide bond to 60 mg Se kg−1, which affects
the peptide chain’s redox potential. Moreover, SeCys is
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FIGURE 2

A general overview of Se uptake, metabolism, and incorporation in higher plants. The numbers 1–12 indicate the possible enzymatic steps
involved in the conversion of selenite and selenate. 1, ATP sulfurylase; 2, adenosine phosphosulfate reductase; 3, sulfite reductase; 4,
O-acetylserine thiol-lyase; 5, cystathionine-γ-synthase; 6, cystathionine-β-lyase; 7, selenocysteine-lyase; 8, γ-glutamyl-cysteine synthetase; 9,
methionine synthase; 10, methionine methyltransferase; 11, dimethyl selenoproprionate-lyase; SeO2−

4 , selenate; SeO2−
3 , selenite; APSe,

adenosine 5′-phosphoselenate; SeCys, selenocysteine; MSC, Se-methylselenocysteine; DMDSe, dimethyldiselenide; SeHCys,
selenohomocysteine; Se0, elemental selenium; γGMSC, γ-glutamyl-methylselenocysteine; SeMet, selenomethionine; MSeMet,
methyl-selenomethionine; DMSeP, dimethylselenoproprionate; DMSe, dimethyl selenide.

more reactive than Cys, which could increase enzyme
activity and the metal binding co-factor activity of malform
selenoproteins (27). Literature has shown that organic Se’s
toxicity level is far less than inorganic ones because they can
be capped with proteins and polysaccharides (37). Moreover,
the organic Se compounds display a higher bioavailability
than the inorganic Se (38). The organic Se involves in the
upregulation of enzymatic antioxidant capacity which play
a key role in Se tolerance (39). As the Se chemical forms
significantly affect the biological activities of Se-enriched
plants, it is essential to perform chemical speciation of Se
compounds to gain scientific insight into the relationship
between chemical forms and the functional properties of Se-
enriched plant foods.

Speciation of selenium
compounds

Speciation of Se compounds in Se-enriched plant foods has
been studied to relate to and explain the biological activity
of the products. Se can accumulate in plant organelle, stay
either in free molecules form, or bound with a larger and more
complex structure such as polypeptides or polysaccharides.
Most inorganic Se compounds and small selenoamino acids
such as selenolanthionine, γGMSC, MSC, SeCys2 and SeMet
are water-soluble molecules, therefore water extraction is a
common method applied to separate these small molecules
from the sources. Proven in some previous studies, extraction
efficiencies in hot water ranged between 47 and 91% Se in
different mushroom species (40); 40% for Se-enriched mycelium
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TABLE 1 Cytotoxicity of Se compounds against human cancer cell lines.

Tumor
organs

Cell lines Se compounds Effective doses
(IC50)

Cell viability
method

Mechanism of cell death References

Lung A549 SeMet 50 µM MTT Assay • Induce ROS generation
• Induce ER stress-related to p53 regulation

(73)

SeMet 50 µM MTT Assay • Induce ROS generation
Interrupt PI3K/Akt/mTOR pathway

(117)

SeMet 500 µM MTT Assay • Induce ROS generation (74)

SeMet 200 µM Cell counting kit-8 • Induce ROS generation
• Increase the intensity of the mitochondrial membrane

(118)

MSC 50 µM MTT Assay • Activate caspase-3,-8,-9
• Interrupt PI3K/Akt pathway
• Induce ER stress

(73)

SeCys2 5 µM ATP measurement • Induce ROS generation
• Decrease total cellular glutathione

(119)

SeCys2 8 µM MTT Assay • Induce ROS generation
• Induce loss of mitochondria membrane by regulating
Bcl-2 family proteins
• Induce apoptosis via inactivating ERK and AKT
pathways

(77)

MSA 2.2 µM MTT Assay • Induce DNA single strand break
• Induce apoptosis via cell cycle arrest G1 phase

(120)

Nano-Se 4 µM MTT Assay • Induce apoptosis via cell cycle arrest G2/M phase (121)

95-D MSA 4 µM MTT Assay • Induce ROS generation and oxidative damages (122)

Breast MCF-7 SeCys2 10 µM • Induce H2O2 production
• Decrease mitochondria protein UCP2 and MnSOD

(123)

SeCys2 16.2 µM MTT Assay • Induce DNA single strand break
• Induce ROS generation
• Decrease cellular antioxidant enzymes

(124)

MSA 2 µM FACS CANTO II • Induce apoptosis via cell cycle arrest G2/M phase
• Inhibit DNA methyltransferase 1 (DNMT1)

(125)

MCF-7 SeMet 45 µM SRB Assay (126)

SeCys2 40.8 µM CCK-8 assay • Induce apoptosis via cell cycle arrest G1 phase (127)

Colon HCA-7 SeMet 60 µM SRB Assay • Inhibit cyclooxygenases-2 (COX-2) protein (128)

HT-29 SeMet 130 µM SRB Assay (126)

HCT116 SeMet 100 µM Propidium iodide
staining

• Induce apoptosis via cell cycle arrest G2/M phase
• Decrease mitotic cyclin B RNA expression
• Decrease cdc2 kinase activity

(129)

SW620 SeCys2 7.3 µM MTT Assay • Induce DNA single-strand break
• Induce ROS generation
• Decrease cellular antioxidant enzymes

(124)

Colo201 SeCys2 27.8 µM MTT Assay • Induce DNA single-strand break
• Induce ROS generation
• Decrease cellular antioxidant enzymes

(124)

Prostate LNCaP SeMet 50 µM Model Z F Coulter
Counter

• Increase p53 gene expression (130)

SeMet 1 µM Growth Inhibition
Assay

• Induce apoptosis via cell cycle arrest G2/M phase (131)

DU145 SeMet 40 µM SRB Assay – (126)

SeMet 90 µM Growth Inhibition
Assay

• Induce apoptosis via cell cycle arrest G2/M phase (131)

MSA 5 µM MTT Assay • Induce apoptosis via inactivation of protein kinase C
(PKC)

(132)

PC-3 SeMet 70 µM Growth Inhibition
Assay

• Induce apoptosis via cell cycle arrest G2/M phase (131)

(Continued)
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TABLE 1 (Continued)

Tumor
organs

Cell lines Se
compounds

Effective
doses (IC50)

Cell viability
method

Mechanism of cell death References

Liver HepG2 SeCys2 17.5 µM MTT Assay • Induce DNA single-strand break
• Induce ROS generation
• Decrease cellular antioxidant enzymes

(124)

Selenosulfate >15 µM MTTAssay – (133)

Bone MG-63 SeCys2 20 µM MTT Assay • Induce apoptosis via cell cycle arrest G2/M phase
• Decrease cyclin A and CDK-2, PARP cleavage,
and caspases activation

(134)

Urinary bladder T24 Selenosulfate 3.5 µM MTT Assay – (133)

Brain IPSB-18 Sodium selenite 4 µg/ml MTT/SRB Assay • Downregulation metalloproteases genes and
epidermal growth factor receptor

(135)

Oral HSC-3 MSC >50 µM MTTAssay • Enhance activity of caspase-3, -8, -9
• Induce ER stress
• Reduce phosphorylated Akt levels and vascular
endothelial growth factor (VEGF).

(73)

Skin UACC-375 SeMet 50 µM SRB Assay – (126)

A375 SeCys2 12.8 µM MTT Assay • Induce DNA single strand break
• Activate caspase peptides
• Induce p53 expression

(136)

Selenosulfate 4.7 µM MTT Assay – (133)

SeCys2 20 µM MTT Assay • Upregulate genes encoding cell death and
transcription factors
• Downregulate cell development, cell adhesion
and cytoskeleton genes

(137)

Cervix HeLa SeCys2 99.5 µM XTT cell
proliferation kit

II

• Upregulate apoptosis gene BCL2L11 and DNA
damage GADD45G
• Induce cytoplasmic vacillation via LC-3II protein
formation
• Induce ER stress by decreasing ER-residing
protein

(138)

SeMet, Selenomethionine; MSC, Se-methylselenocysteine; SeCys2 , selenocystine; MSA, methylseleninic acid; ROS, reactive oxygen species.

(Lentinula edodes (Berk.) Pegl.) (41), 85% for Se-enriched
garlic (42) and 60% for Cardamine violifolia (26). Multiple
sample preparation steps have been used to release Se bind
to some larger components in plant cell walls. For example,
hydrolysis of polysaccharides using an enzyme such as cellulase,
hemicellulose, β-glucanase and pectinase, has been applied to
hydrolyze plant cell walls, followed by protease enzymes to
release selenoamino acids (43, 44).

Selenium compounds extracted from the plants could be
separated by the High-Performance Liquid Chromatography
(HPLC) technique, commonly used in the chemical compound
analysis. Various types of chromatography resin can be used
to separate the specific Se compounds in plants. For example,
ion-exchange chromatography is used in the scouting period,
which can classify Se chemical compounds according to their
electron charge binding to ion exchange resins, either in a
negatively charged resin (cation exchanger) or a positively
charged resin (anion exchanger) (45, 46). Thus, ion-exchange
chromatography is the technique that separates Se molecules
by the positively or negatively charged groups retained on
a stationary phase in equilibrium with free counter ions in
the mobile phase (47). Generally, when the pH of the eluent

buffer is higher than the pKa of the molecule, the compound
shows a negative charge and binds to the positive charge anion
exchanger (46, 48). Anion exchange liquid chromatography
has a positively charged stationary phase to interact with the
negatively charged Se compounds, such as selenate (pKa = 1.92),
selenite (pKa = 2.46) or SeMet (pKa1 = 2.19 and pKa2 = 9.05)
in the deprotonated state which can be strongly retained on
anion exchange resin at pH around 5. In contrast, Se compounds
with higher pKa values, such as SeCys2 (pKa ∼ 8.07 and 8.94),
will be in protonating state and retained very little on anion
column chromatography at pH around 5 in the mobile phase
(49, 50). In contrast, cation exchange chromatography works
similarly to anion exchange, except that the stationary phase
is negatively charged, which could interact with the positively
charged Se compounds (51, 52). Furthermore, some other
types of chromatography could be applied for Se compound
separation. For example, size exclusion chromatography is used
to separate compounds based on their particle size; reversed
phase and hydrophilic interaction chromatography could be
applied to separate Se compounds based on the polarity of
their molecules (51). These types of chromatography can be
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FIGURE 3

A schematic of apoptosis signaling pathways. LPS, lipopolysaccharide; TNFα, tumour necrosis factor alpha; IL-1, interleukin-1; TLRs, Toll-like
receptors; TNFR, tumor necrosis factor receptors; IL-1R, interleukin-1 receptor; GPC, G protein complex; GPCRs, G protein-coupled receptor;
JAKR, Janus kinase receptor; FASR, Fas receptor; IKK, IκB kinase; IκB, inhibitor of NF-κB; NF-κB, nuclear factor (NF)-κB; REL, REL protein; Ras,
Ras protein; Rafs, Raf kinases; MAPK, mitogen-activated protein kinase; MEKs, MAPK/ERK kinase; ERK, extracellular signal-regulated kinase; JNK,
c-Jun N-terminal kinases; MEF-2, myocyte enhancer factor-2; PPAK, family of p21-activated protein kinases; MSK, mitogen and stress activated
protein kinase; MEK, mitogen-activated protein kinase; MAX, MAX protein; c-Myc, c-Myc protein; JUNFOS, Fos and Jun families of DNA binding
proteins; Bcl-2, B-cell lymphoma 2; ELK-1, ETS transcription factor ELK1; AP-1, activator protein 1; ATF-2, activating transcription factor 2; PI3K,
phosphoinositide 3-kinases; Akt, serine/threonine-protein kinases; mTOR, mammalian target of rapamycin; HIF-1α, hypoxia inducible factor 1
subunit alpha; VEGF, vascular endothelial growth factor; AMP, adenosine monophosphate activated protein; ATP, adenosine triphosphate;
AMPK, AMP-activated protein kinase; p53, protein p53; PUMA, p53 upregulated modulator of apoptosis; NOXA, (PMAP1) –
phorbol-12-myristate-13-acetate-induced protein 1; Bcl-xl, B-cell lymphoma-extra large; Bad, Bcl-2 associated death promoter; Bax, Bcl-2
associated protein x; Bid, BH3 interacting domain death agonist; STAT, signal transducer and activator of transcription; JAKs, Janus kinases;
FADP, flavin adenine dinucleotide; cytc, cytochrome complex (187–192).

applied simultaneously to identify different Se compounds
in plant extracts.

After the chromatographic separation, the mass of Se
molecules can be detected by techniques such as the Inductively
Coupled Plasma-Mass Spectrometry (ICP-MS) or Inductively
Coupled Plasma-Optical Emission Spectrometry (ICP-OES).
These techniques detect Se molecules based on their transition
ions which provide high accuracy detection, low detection limit
(part per trillion), and less matrix interference (53, 54). The
HPLC-ICP-MS has been considered a robust workflow and
is widely used for Se determination in Se-containing plants
and foods. A study by Ogra et al. (55) successfully applied
size-excursion chromatography incorporated with ICP-MS to
identify the Se metabolic pathway of ginger and Indian mustard
using selenate or SeMet as Se fertilizers. The study found that γ-
Glutamyl-Se-methylselenocysteine and MSC were the common
metabolites of selenate and SeMet in garlic and Indian mustard.

As mentioned earlier, the Se compounds accumulated and
stored differ by plant genus/species, and some Se can be
bound to highly complex structure. In addition to the methods

described above, other technique can be applied to identify
the Se compounds started with compound purification by ion-
exchange chromatography, followed by identification of the
molecular mass by Electrospray Ionization-Mass Spectrometry
(ESI-MS) (26, 56, 57). The ESI-MS is a technique that ionizes
chemical compounds by electrospray ionization, and a mass
analyzer then detects the ionized molecules according to
their mass/charge (m/z) ratio (58). This high sensitivity mass
spectroscopy technique can provide effective approaches to
the speciation of Se bound in complex structures such as
selenosugars and selenoproteins (59, 60). Some novel analysis
methods have also been used to specify Se compounds in food
materials. For example, Laser Ablation-Inductively Coupled
Plasma-Mass Spectrometry (LA-ICP-MS) is a solvent free
analytical technique used to analyze Se compound in solid
sample and it can provide greater accuracy results compared
to traditional liquid chromatography (61). Moreover, the
X-Ray Absorption Spectroscopy (XAS) technique was used to
identify Se compounds in biological sample with less sample
preparation step to prevent the degradation of Se compound
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from chemical reaction during sample preparation (62). These
analytical techniques can be valuable to identify any specific
and new-found Se compounds in plants that could then be
studied to understand their biological activity in the Se-enriched
plant food products.

Bioactivity of Se compounds

Generally, literature shows that organic Se species tend to
have higher bioactivities, bio-accessibility and lower toxicity
than inorganic Se species. Research in human immortalized
keratinocytes (HaCaT) cells showed that SeMet had a lower
cytotoxicity effect on HaCaT cells than sodium selenite, where
the IC50 of SeMet was 55.4 µM, much higher than 2.3 µM from
sodium selenite (63). The lower cytotoxicity might be related
to the antioxidant activity of organic Se compounds to prevent
toxicity and cellular damage by increasing selenoamino acid and
selenoproteins, which could enhance the activity of antioxidant
enzymes such as glutathione peroxidase and thyroxine reductase
(19, 64). For example, SeMet had increased GPx activity in rat
skin cells at a higher dose than inorganic Se (selenite), which
caused a toxic effect at 1µM (Hazane-Puch et al. (63). Moreover,
SeMet increased the GPx activity and total antioxidant content
while lower MDA formation in broiler chicken tissue compared
to the sodium selenite-treated subjects (65).

On the other hand, the presence of Se compound in
high concentration could generate cytotoxicity in human
cells. Literature has identified several cytotoxic pathways
of Se compounds across various human cancer cell lines
(Table 1). Inorganic Se species, i.e., sodium selenite, was
widely studied, especially on prostate cancer cells. The cellular
toxicity mechanism of sodium selenite against human prostate
cancer cells has been identified as below: generation of anti-
proliferation effect via the expression of mRNA of the SELV,
SELW, and TGR selenoproteins (66); promotion of GLS1
protein degradation and APC/C-CDH1 apoptosis pathways
(67); induction of cell apoptosis via activation of caspase-8
protein (68); and activation of p53 protein (69). Moreover,
the anti-proliferation activity of inorganic Se, including sodium
selenite, has been reported in human lung cancer cell lines; it has
involved inhibiting the Trx1 expression (70). Several signaling
pathways are involved in cell anti-proliferation and apoptosis
in human cells, as shown in Figure 3. Briefly, Se could cause
cell death via apoptosis pathways by activating the executioner
caspase-3, 6, 7, and 9, and promoting pro-apoptosis genes Bax
and Bid on mitochondria and producing cytochrome C (CytC).
The toxic effect of Se compounds could also mediate DNA
repair and cell angiogenesis by promoting pro-apoptosis genes,
including Bax and Bid (71).

A high concentration of Se compounds also performs a
redox-active act as prooxidants, generating ROS in reaction
(72). The redox action of Se compounds that generate ROS in

the human cell could be the primary focus when using Se as
an anticancer agent against human cancer cells. According to
some studies (Table 1), SeMet could inhibit cell proliferation
by inducing ROS generation and activating apoptosis cellular
proteins, including the caspase family and p53 (73, 74). The
ability to generate ROS could meditate the toxicity of Se due to
the production of oxidative stress involved in cell cytotoxicity
and apoptosis induction (75, 76). Moreover, MSC can induce
cancer cell apoptosis via an interface of cell proliferation
PI3K/Akt pathway (73), while SeCys2 downregulated Bcl-2
survival genes in lung cancer cell lines (77). A study by Hui
et al. (78) also showed that selenite induced cell apoptosis by
upregulate cell death protein p38 MAPK and inhibition of the
PKD1/CREB/Bcl-2 survival pathway.

The current research on Se compounds focuses on both sides
of the spectrum: the protective effect against cell damage or the
anti-proliferation effect against cancer cell lines. Se compounds’
bioactive information could impact the functional properties of
Se-enriched plant foods, not only the concentration of Se in the
sample but also the chemical form of Se accumulated. Besides,
the bioactive compounds such as polyphenol, polypeptides and
polysaccharides in plant foods could also significantly affect
the uniqueness of bioactivities and functional properties of Se
enriched plants.

Biological properties of
Se-enriched plant foods

The biological properties of Se-enriched plant foods have
received more interest from researchers in the past two
decades. Figure 4 shows that the Se compound in Se-
enriched plant foods induces biological activities through
different metabolism pathways in human cells. Metabolism
pathways of Se compounds begin with a reduction of
inorganic or organic Se compounds from food supplements
to hydrogen selenide (H2Se). This H2Se will be metabolized
and synthesized into several selenoproteins, then transported
and stored in human organs (79, 80). More than 25
selenoproteins have been identified in human cells, and
some are considered antioxidant enzymes, such as glutathione
peroxidase (GPxs), iodothyronine deiodinases, thioredoxin
reductases (TrxR). These individual selenoproteins perform
biological properties, including balancing plasma glucose levels
and insulin sensitivities, anti-inflammatory and enhancing cell
proliferation (4).

At their non-toxic concentration, Se-enriched plants could
protect against cellular damage from hydrogen peroxide (H2O2)
stress and enhance antioxidant enzymes in normal human cells.
Table 2 shows a compilation of research on the health effects
of Se-enriched plants using in vitro human cells models. The
antioxidant effect of Se-enriched food products has prevented
oxidative stress induced by H2O2 in human cell lines. For
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FIGURE 4

Metabolism of dietary selenium compounds in human cells. Na2SeO4, sodium selenate; Na2SeO3, sodium selenite; GSH, glutathione; TrxR,
thioredoxin reductase; GSSeGS, selenodiglutathione; GSSeH, glutathioselenol; H2Se, hydrogen selenide; GPx, glutathione peroxidase family;
Se-P, selenoprotein P; Se-W, selenoprotein W; SeO2, selenium dioxide; H2O2, hydrogen peroxide; SeCys, selenocysteine; SeMet,
selenomethionine; MeSeCys, methylselenocysteine; CH3SeH, selenol; CH3SeCH3, dimethylselenide, (CH3)3Se+, trimethylselenonium ion.

example, Se-enriched polysaccharides extracted from Pleurotus
ostreatus and Se-enriched rice grass extract showed a protective
effect against cellular oxidative stress from H2O2-induction in
human muscle and human kidney cells (81, 82). Moreover,
Se-enriched soybean peptide increased the activities of cellular
antioxidant enzymes, including GPx, SOD, and CAT, in human
colon cells (83, 84).

In contrast, Se-enriched plants could generate cellular
ROS and influence cell death via the apoptosis mechanism at
their toxic concentrations. For example, with human cancer
cell lines, Se-konjac glucomannan performed anti-proliferation
properties against human lung cancer cells (A549) and human
breast cancer cells (HCC1937) by activating mitochondria pro-
apoptosis protein caspase-3 (85). Furthermore, Se-enriched
hawthorn fruit induced cellular apoptosis on human liver
cancer (HepG2) cells by upregulation of pro-apoptosis protein
caspase-9, downregulation of anti-apoptosis protein Blc-2,
and increasing intracellular ROS level (86). These findings
indicated that Se-enriched plant foods could perform both
proliferation and anti-proliferation on either cancer or non-
cancer cell lines and the effects depend on Se’s dose and chemical
forms in the diets.

Table 3 shows positive results on the biological properties
of Se-enriched plants and some food ingredients (microalgae,
probiotics bacteria and milk casein) in the in vivo animal
models compared with Se-enriched yeast, an alternative

source of SeMet (around 60-84%) with a lower toxic
effect (87, 88). Various bioactive effects have been reported
from Se-enriched plants, including increasing Se content in
animal serum and tissue, enhancing antioxidant enzymes,
lowering lipid oxidation in liver-stress animals, upregulation
of cellular proliferation proteins, and downregulation of pro-
inflammation and apoptosis cellular proteins. Some food
products, for example, Se-enriched Auricularia auricular
mushroom and Se-enriched radish sprouts, showed similar
effects on improving antioxidant activities such as GPx and
catalase, lower malondialdehyde (MDA) levels, and protecting
liver damages in high-fat diet mice (89, 90). Se-polysaccharide
from Astragalus also has anti-inflammatory effects on diabetic
mice by lower serum inflammation-related proteins, including
C-reactive protein, tumor necrosis factor-alpha (TNF-α),
interleukin-6 (IL-6) and nuclear factor kappa B (NFκB) (91,
92). Moreover, Se-polysaccharide purified from Pyracantha
fortuneana, and Se-enriched sweet potato inhibited tumor
growth via apoptosis pathway and decreased IL-2, TNF-α, and
VEGF in mice xenograft with human cancer tumor (93, 94).

In comparison, Se-enriched yeast (Saccharomyces cerevisiae)
provides antioxidant and antitumor activities in animal studies
with a lower affecting dose than Se-containing plants (95,
96). Se-enriched yeast could protect from oxidative stress and
increase anti-inflammation by downregulating inflammatory
cytokines such as TNF-a and NF-kB in aluminum-stress mice
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TABLE 2 In vitro studies of Se-enriched plant foods against human cell lines.

Se-enriched food Cell lines Concentrations Mechanisms/Pathways References

Kale and kohlrabi sprouts Human colon cancer cells (SW480, SW620), liver
cancer cell (HepG2), uterus (SiHa) cells

1 mg ml−1 Inhibit cell growth (139)

Konjac glucomannan Human lung cancer (A549), breast cancer
(HCC1937) cells

0.15-0.6 µg ml−1
↑Mitochondria apoptosis
↑Cleaved caspase-3 and
↑PARP-activated fragments

(140)

Polysaccharide from Malus
toringoides (Rehd.) Hughes

Human liver cancer (HepG2) cells 50-200 µg ml−1
↓ROS generation
↓H2O2 induction

(141)

Polysaccharide from alfalfa root Human liver cancer (HepG2) cells 140 µg ml−1 Inhibit cell growth (142)

Soybean peptide Human colon tumor cells (Caco-2) 10 µg ml−1
↓H2O2 induction
↑GPx; ↑SOD; and ↑CAT

(84)

Polysaccharide from Tithonia
diversifolia (Hemsley) A.

Human gastric cancer (MKN7) cells 72.9-92.6 µg ml−1 Inhibit cell growth (143)

Hawthorn fruit Human liver cancer (HepG2) cells 19.2 µg ml−1
↑ROS generation
↑Caspase-9
↓Blc-2

(86)

Broccoli sprout Human prostate cancer (LNCaP) cells 0.27 µg ml−1
↓PI3K/Akt/mTOR pathway (144)

Polysaccharide from Pleurotus
ostreatus

Human murine skeletal muscle (C2C12) cells 400 µg ml−1
↓H2O2 generation
Inhibit cell apoptosis

(82)

Ricegrass Human kidney Cell (HEK293) cells 10 mg ml−1
↓MDA
↓Oxidative stress and DNA damage

(81)

Kale roots Human liver cancer (HepG2) cells 20 mg ml−1
↑Nrf2 protein (145)

Se-enriched Astragalus
polysaccharide

Human liver cancer (HepG2) cells 10 mg ml−1 Inhibit cell growth (146)

Polysaccharide from Cordyceps
gunnii

Human ovarian cancer (SKOV3) cells 0.4 mg ml−1
↑Cleavage caspase-3, -9, ↑PARP and
↑BAX
↓Bcl-2

(147)

Polysaccharide from Rosa
laevigata

Human neuroblastoma (SH-SY5Y) cells 0.1 mg ml−1
↓H2O2 generation (148)

Polysaccharide from Ginkgo
biloba L. leaves

Human bladder cancer (T24) cells 200 µg ml−1
↑Cleavage caspase-3, -9, ↑PARP and
↑BAX
↓Bcl-2

(149)

Polysaccharide from Pyracantha
fortuneana

Human breast cancer (MDA-MB-231) cells 400 µg ml−1 Inhibit cell growth via cycle arrest at
G2-phase
↑p53; ↑Bax; ↑Puma; ↑Noxa
↑Casepase-3,-9.↓Bcl2

(150)

Polysaccharide from Pyracantha
fortuneana

Human ovarian cancer (SKOV3, HEY) cells 400 µg ml−1
↑PARP;
↑Cleavage caspase-3; ↑Bax; ↓Bcl-2

(94)

Broccoli seed Human Glioblastoma astrocytoma (U215) cells 28.5 µg ml−1 Inhibit cell growth (151)

Cauliflower Human colon tumor (Caco-2) cells 2,500 µg ml−1 Inhibit cell growth
Changing cell morphology

(152)

Ziyang green tea Human breast cancer (MCF-7) cells 172.2 µg ml−1 Cycle arrest at G0/G1-phase
↑p53; ↑ Bax/Bcl-2 ratio; ↑caspase-3, -9;
↑ROS

(153)

↑, increase or upregulate; ↓, decrease or downregulate; Akt, protein kinase B; BAX, B-cell lymphoma 2 associated X; Blc-2, B-cell lymphoma 2; CAT, catalase; GPx, glutathione peroxidase;
H2O2 , hydrogen peroxide; MDA, malondialdehyde; mTOR, mammalian target of rapamycin; NOXA, phorbol-12-myristate-13-acetate-induced protein 1; Nrf2, nuclear factor erythroid
2–related factor 2; PARP, Poly (ADP-ribose) polymerase; PI3K, phosphoinositide 3-kinase; PUMA, p53 upregulated modulator of apoptosis; p53, tumor protein 53; ROS, reactive oxygen
species; SOD; superoxide dismutase.

livers (97). The bioactivity of Se-enriched yeast could be due
to the presence of SeMet as the main Se compound, where
its biological properties have been widely studied. Compared
to Se-enriched yeast, the bioactivity of Se-enriched plants is
harder to explain and conclude. Not only because of the
uniqueness of Se concentration and chemical forms in different
plants, but the complexity of the food matrix also plays a

significant role when studying the biological properties of Se-
containing plant foods (4, 98). Food matrices, including protein
and carbohydrates, can incorporate with Se via biosynthesis
metabolism to form complex Se structures such as selenoprotein
and selenopolysaccharide. The synthesized Se molecules can
play a key role in the biological activity and bioavailability
of Se-enriched food in humans (99). For instance, long-chain
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TABLE 3 In vivo studies of Se-enriched plants and other food materials using animal models.

Se-enriched food or
materials

Animal models Treatment Functional properties References

Olive leaves Growing rabbits Treated with 2.17 mg Se kg−1 per dry
leaves extract for 70 days

↑Serum antioxidant
↓Leukocyte DNA damage

(154)

Radish sprouts CCl4-induced liver injury mice Treated with Se-enriched radish sprout in
combination with inorganic Se
compounds for 6 weeks

↓Inflammatory reaction in liver tissue
↓MDA in liver tissue
↑GPx in liver tissue

(90)

Gallic and cabbage Broilers Fed with a mixture of Se-gallic and
cabbages

↑Se content in plasma
↑GPx in plasma

(155)

Garlic polysaccharide Mice Injected with 0.6 mg Se-polysaccharide ↑TNF-α; ↑IL-6; ↑IL-1 in
macrophages

(156)

Radish sprout Tumorigenesis induced rats Treated with 12.5 ppm per day for 3 weeks ↑GPx; ↑GST in liver and lung (157)

Kale spout Male broilers Treated with 2 mg Se kg−1 per day 42 days ↑Se content in animal tissue
↑GPx in plasma

(158)

Lotus leaf polysaccharide Gestational Diabetes rats Treated with 100 mg kg−1 per day for
7 weeks

↑GSH content, ↑GPx; ↑SOD; ↑CAT
↓FBG, ↓TG, triglyceride, LDL
content.

(159)

Ziyang green tea polysaccharide Chronic fatigue syndrome rats Treated with 200 mg kg−1 per day for
4 weeks

↑Corticosterone
↓Aldosterone serum hormones

(160)

Rice Diabetic mice Treated with 0.2 mg g−1 body weight of
250 g L−1 Se-rice for 4 weeks

↓ C-reactive protein; ↓TNF-α; ↓IL-6;
↓COX-2 and ↑NFκB in serum

(91)

Wheat Broilers Treated with 37-185 µg Se kg−1 per day
for 21 days

↑Se content in muscle and liver (161)

Soybean peptide Male Kunming mice Treated at 4 mg Se kg−1 per day for 7 days ↑SOD in liver tissue
↓MDA in liver tissue

(84)

Soybeans CCl4-induced liver injury rats Treated with 700 mg kg−1 twice a week
for 8 weeks

↓α-SMA in the liver
↑mRNA expression of MMP9
↑GSH; ↑GPx in liver tissue

(162)

Yellow pea and oat
polysaccharides

Male weanling Sprague-Dawley
rats

Treated with 40 µg Se kg−1 per day for
50 days

↑GPx in blood and liver
↑TrxR1 in liver

(163)

Soy protein isolate Male weanling Sprague–Dawley
rats

Treated with 30 µg Se kg−1 per day for
50 days

↑GPx in blood and liver
↑TrxR1 in liver

(164)

Auricularia auricular mushroom High-Fat Diet
Streptozotocin-induced diabetic
mice

Treated at 500-1,000 mg kg−1 for 8 weeks ↓Diabetes-induced disorders of lipid
metabolisms; ↓Liver damage
↑GPx; ↑CAT; ↓MDA in liver tissue

(89)

Grifola frondosa mushroom
polysaccharide

Cyclophosphamide induced mice Treated with 120 mg kg−1 per day for
7 days

↑GPx; ↑SOD; ↑CAT in serum, liver
and kidney

(165)

Astragalus mushroom
polysaccharide

CCl4-induced liver injury rats Treated with 40 mg per day for 7 weeks ↓TNF-α; ↓IL-6; ↓COX-2; ↓NFκB in
liver tissue
↑Bcl-2/Bax ratio in liver tissue

(92)

Sweet potato polysaccharide Hepatoma (H22) cells xenograft
mice

Injected with 100 mg kg−1
↑IL-2; ↑TNF-α; ↑VEGF in serum
↓Tumor growth∼58%

(93)

Hypsizigus marmoreus
polysaccharide

CCl4-induced liver injury mice Treated with 800 mg kg−1 per day for
10 days

↓MDA; ↓Lipid oxidation in serum
and liver
↑GPx; ↑SOD in serum and liver

(166)

Pyracantha fortuneana
polysaccharide

Human ovarian carcinoma
(HEY) cells xenograft mice

Treated with 400 mg Se day−1 for 28 days ↓Cancer cell proliferation; ↑apoptosis
↓Cytoplasmic β-catenin

(94)

Pyracantha fortuneana
polysaccharide

CCl4-induced liver injury
Kunming mice

Treated with 400 mg kg−1 per day for
5 weeks

↑GPx; ↑CAT in liver
↓TBAR; ↓H2O2 in liver

(167)

Catathelasma ventricosum
mycelia.

Streptozocin-induced diabetic
mice

Treated with 500 mg kg−1 per day for
30 days

↑GPx; ↑SOD; ↑CAT; ↓MDA in liver
tissue

(168)

Agaricus bisporus mushroom Hyperthermal induced oxidative
stress rats

Treated with 1 µg Se g−1 per day for
5 weeks

↑GPx in ex vivo ileum (169)

(Continued)
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TABLE 3 (Continued)

Se-enriched food or
materials

Animal models Treatment Functional properties References

Pleurotus ostreatus mushrooms Wistar male rats Treated with 0.15 mg Se kg−1 per day
for 21 days

↑Se content in plasma (170)

Microalgae Yearling common barbel fishes Treated with 1 mg Se kg−1 per day for
6 weeks

↑GR in muscle and liver
↑Alanine aminotransferase;
↑Creatine kinase in blood plasma

(171)

Candida utilis Sprague-Dawley rats Treated with 3 mg Se kg−1 per day for
6 weeks

↑GPx; ↑SOD; ↑CAT; ↑GSH in serum
and liver

(172)

Lactobacillus acidophilus High-fat diet mice Treated with 0.3 µg Se per day for
4 weeks

↑GPx; ↑SOD in serum
↓MDA; ↓TC; ↓TG; ↓LDL in serum

(173)

Lactobacillus
acidophilus and Se-yeast

Crossbred weanling piglets Treated with 0.46 mg Se kg−1 per day
for 42 days

↑GPx in blood
↑TrxR mRNA in tissue

(174)

Lactobacillus
acidophilus and Se-yeast

CCl4-induced liver injury rats Treated with 0.05 mg kg−1 Se per day
for 7 weeks

↑GPx; ↑GSH; ↑SOD; ↓MDA in liver
tissue
↓ TNF-α; ↓IL-6; ↓MCP-1 in liver
tissue

(175)

Milk casein isolate Human epithelial breast cancer
(MCF-7) cells xenograft mice

Treated with 1.15 µg Se g−1 per day
for 70 days

↓Tumor volume
↑Apoptotic cells

(176)

Se-milk protein and yeast Mice Treated with 1 µg Se g−1 per day of
either Se-milk protein or Se-yeast for
4 weeks

↑selenoprotein P; ↑GPx-2 in colon
Only Se-yeast ↑GPx1

(177)

Se-yeast Hepatotoxicity chickens Treated at 50 µg kg−1 per day for
21 days

↓ALT; ↓AST; ↓MDA in serum
↑GPx; ↑SOD in serum

(178)

Se-yeast Ochratoxin A-induced small
intestinal injury chickens

Treated at 0.4 mg kg−1 per day for
21 days

↓Intestinal injury from ochratoxin
A-induction via Nrf2 pathway
↓NF-κB activation

(179)

Se-yeast 5-fluorouracil induced mice Treated with Se-yeast at 108 CFU per
day

↓Eosinophil peroxidase activity;
↓CXCL1 levels;
↓Histopathological tissue damage
↓Oxidative stress.

(180)

Se-yeast Aluminum exposed mice Treated with 0.1 mg kg−1 per day for
28 days

↓Oxidative stress; ↓Inflammatory
induction from Al-induction
↓mRNA inflammatory genes in liver
tissue

(97)

Se-yeast Mouse mammary tumor (EMT6)
cells xenograft mice

Treated with 912 ng Se per day for
14 days

↓MDA in lung, brain, liver, thymus,
spleen and kidney.
↑ Bcl-2; ↑p53; ↓IL-4 in tumor cells

(95)

Se-yeast Yellow broilers Treated with 0.15 mg Se kg−1 per day
for 8 weeks

↑TrxR1; ↑GPx1 in kidney tissue (96)

↑, increase or upregulate; ↓, decrease or downregulate; α-SMA, alpha-smooth muscle actin; ALT, glutamic pyruvic transaminase; AST, glutamic oxaloacetic transaminase; CAT, catalase;
CCl4 , carbon tetrachloride; COX-2, cyclooxygenase-2; CXCL1, chemokine ligan-1; FBG, fast blood glucose, GSH, glutathione content; GST, glutathione S-transferases activity; GR,
glutathione reductase; GPx, glutathione peroxidase activity; IFN-γ, interferon-gamma; IL-1, interleukein-1; IL-2, interleukein-2; IL-4, interleukein-4; IL-6, interleukein-6; LDL, low-
density lipoproteins; MDA, malondialdehyde; MMP9, matrix metallopeptidase 9; MPC-1, monocyte chemoattractant protein-1; NF-κB, nuclear factor kappa B; Nrf2, nuclear factor
erythroid 2–related factor 2; SOD, superoxide dismutase; TBAR, thiobarbituric acid reactive substances; TC, total cholesterol; TG, total triglyceride; TNF-α, tumor necrosis factor alpha;
TrxR, thioredoxin reductase activity.

selenopeptide synthesized in soybean showed higher resistance
in gastrointestinal digestion and lower toxicity risk compared
with short-chain selenopeptide (100).

Clinical trials of selenium-enriched
plant foods

Some beneficial properties of Se-enriched plant foods have
been confirmed in in vitro cell models and in vivo animal

studies. According to this evidence, there have been some
human clinical trials performed to gain a robust understanding
of the bioactivity of Se-enriched plant foods through the
human metabolic system. Table 4 presents a compilation of
biological properties of Se-enriched plant foods and yeast
as reported in human clinical trials. Improving the activity
of antioxidant enzymes in human blood systems has been
discovered as the primary biological activity of Se-containing
plant materials. For example, Se-containing Brazil nuts have
been found to enhance GPx activities and selenoprotein P
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TABLE 4 Selenium-enriched plant foods and yeast human clinical trials.

Se-enriched
food

Participants Age group Treatment Functional properties References

Onion 18 participants 50-64 50 µg Se daily for 12 weeks ↑T-cell proliferation after flu vaccination
↑IFN-γ; ↑IL-8; ↑Enzyme and perforin content
in CD8 cells
↓TNF-α in CD8 cells

(105)

Broccoli 18 participants 24-65 200 µg Se per day for 3 days ↑Total Se level in plasma
↑Interleukin products in peripheral blood
mononuclear cell

(106)

Rice 10 women participants 25± 2 80 g of Se-enriched rice (1.64 mg
Se kg-1) per day for 20 days

↑Total Se level in plasma
↑GPx in plasma

(104)

Brazil nut 91 hypertensive and
dyslipidaemia patients

62.1↑ ± ↑9.3 13 g of granulated Brazil nut
(∼227.5 µg Se) per day for
12 weeks

↑Total Se level in plasma
↑GPx3; ↓oxidized LDL level in plasma

(102)

Brazil nut 89 dyslipidaemia and
hypertensive patients

40-80 Brazil nuts 227.5 µg Se per day
for 90 days

↓Total cholesterol; ↓non-HDL in serum
Non-significantly different blood pressure and
lipid content in serum

(181)

Brazil nut 81 hemodialysis patients 52± 15.2 5g Brazil nut (290.5 µg Se) per
day for 3 months

↑Total Se level in plasma and erythrocyte
↑GPx in plasma

(103)

Brazil nut 61 participants 52-75 50 µg Se daily for 6 weeks ↑selenoprotein P; ↑β-catenin mRNA in blood
Non-significantly decrease C-reactive protein
in plasma

(101)

Se-yeast 36 polycystic ovary syndrome
women

18-40 200 µg Se daily for 8 weeks ↓Cytokines IL-1; ↓TNF- α in serum
↑VEGF in serum

(182)

Se-yeast 491 participants 60-74 300 µg Se daily for 6 months and
2 years

↓Blood glucose marker hemoglobin at
6 months
Non-significantly different at 2 years treatment

(107)

Se-yeast 400 participants 40-80 200 µg Se daily for 6 months Non-significantly different in β-cell function
or insulin sensitivity

(111)

Se-yeast 53 congestive heart failure
patients

45-85 200 µg Se daily for 12 weeks ↑Insulin sensitivity index in serum
↓LDL; ↑HDL in serum

(108)

Se-yeast 80 lymphocytic thyroiditis
patients

20-71 2 µg Se daily for 2 months, in
combination with levothyroxine
combined therapy

↑Therapeutic effect of levothyroxine
↓Thyroid-stimulating hormone; ↓Thyroid
peroxidase antibody; ↓Thyroglobulin
antibodies

(183)

Se-yeast 15 men 65-72.3 300 µg Se daily for 5 weeks ↓Epithelial-to-mesenchymal transition gene in
Prostate biopsies

(184)

Se-yeast 76 participants 34.8 200 µg Se daily for 6 weeks ↓HbA1c gene refer to glycated hemoglobin in
plasma
Non-significantly fasten plasma glucose level

(185)

Se-yeast 60 diabetic patients 40-85 200 µg Se daily for 12 weeks ↓C-reactive protein; ↓matrix
metalloproteinase-2; ↓MDA in plasma
↑Total plasma antioxidant capacity

(186)

Se-yeast 58 women with lipid profiles,
plasma nitric oxide, or
total antioxidant capacity
conditions

18-55 200 µg Se daily for 6 weeks ↓Fasten plasma glucose level; ↓Serum insulin
level; ↓Homeostasis model of
assessment-insulin resistance
↓Triacylglycerol; ↑HDL level; ↑Total
antioxidant capacity; ↑GSH in serum

(109)

Se-yeast 468 participants 60-74 300 µg Se daily for 5 years ↑Total Se level in plasma
Non-significant different total cholesterol and
HDL level in plasma

(112)

Se-enriched milk and
Se-enriched yeast

20 participants 18-24 300 µg per day as Se-enriched
yeast, and about 480 µg per day
for Se-enriched milk for 8 weeks

Non-significantly different the plasma
antioxidant enzyme

(113)

↑, increase or upregulate; ↓, decrease or downregulate; β-cell, beta-cells; CD8, cluster of differentiation-8; GPx, glutathione peroxidase activity; HbA1c, hemoglobin A1C; HDL, high-
density lipoproteins; IFN-γ, interferon-gamma; IL-1, interlukein-1; IL-8, interlukein-8; LDL, low-density lipoproteins; MDA, malondialdehyde; T-cell, T-lymphocyte; TNF- α, tumor
necrosis factor-alpha; VEGF, vascular endothelial growth factor.
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and lowering total cholesterol and LDL in older adults (101–
103). Similarly, Se-enriched rice has been found to improve the
total Se content and GPx activity in serum (104). Moreover,
Se-enriched green onion and broccoli also showed beneficial
effects in human clinical trials (105, 106). On the other hand,
Se-enriched yeast has been applied as an effective and less
toxic Se supplement to provide significant health properties.
Se-enriched yeast could lower blood glucose, enhance insulin
sensitivity, and lower the total cholesterol and LDL (107–
109).

From these findings, Se-enriched plant foods at their non-
toxic concentration can deliver health benefits by increasing
antioxidant activity in human serum. Daily intake of Se for
humans is about 55-70 µg Se per day, with the toxic level at
400 µg Se per day. From the data in Table 4, the dose of
Se-enriched plant food and Se-enriched yeast in the range of
200-300 µg Se per day could provide health benefits without
showing toxic side effects (110). The information from this
review suggested that Se-enriched plant foods should be a
safer choice for increasing dietary Se consumption due to a
moderate concentration of Se in the plant investigated, and the
organic Se compounds are significantly identified in plant food
materials.

Overall, not many Se-enriched plants have successfully
demonstrated a significant beneficial effect in human clinical
trials (111–113) compared to the amount of investigations
conducted in cell-based and animal models. Many factors can
affect the results of clinical trials, including genetics, age, gender,
ethnicity, personal behaviors, medical conditions, etc. (114,
115), and they need to be taken into account when designing
a trial. It is essential to identify the bioactive compounds
present in the plant materials, study how they can influence
the bioactivity of the Se-enriched plant foods and verify the
bioactivity and toxicity effects of the Se-enriched plant foods
from the in vitro human cell lines and in vivo animal testing.
All of these will provide information on the samples’ biological
properties, the corrective consumption level, and the toxicity
dose of each Se-enriched plant food for human clinical trials.

Conclusion and future prospects

The biological properties of Se-containing plant foods are
closely associated with the chemical forms and concentrations
of Se content in the products. The studies on Se accumulation
and speciation of Se compounds could provide helpful insight
into the mechanism of Se-enriched plant foods’ bioactivities.
These beneficial bioactivities, including antioxidant, and
anticancer properties of Se-enriched plant foods, have
been positively demonstrated via in vitro human cell lines
and in vivo animal studies. There is still a need for more
human trials to relate the effect of Se-enriched foods
and their health effects. Human clinical trials are critical

to obtaining information regarding the consumption of
Se-enriched food plants, considering different factors,
including human genetic and age groups, and the effect of
the food matrix.

Humans in different age groups (e.g., children, adults,
elderly), gender, and health and physiological status (e.g.,
pregnancy and lactation) have different dietary requirements.
Therefore, supplementing dietary Se to different groups of the
population can be challenging as many factors need to be
considered to ensure the supplementation deliver its intended
health benefits. Due to the narrow gap between benefits
and toxicity, precautions must be taken when considering Se
enrichment in foods. The first thing to consider is the Se species
present in the plant used for producing Se-enrichment foods.
Since organic Se has far less toxicity, it is more suitable to
be incorporated into food products. For safety reasons, it is
essential to use Se-enriched plants that accumulate organic Se
than those that accumulate a high inorganic Se content. Se-
enriched plant foods with a moderate level of organic Se can
be a more decent choice as a Se-supplement for all groups of
people. Secondly, contamination from other metals, such as
Cd and As, during Se accumulation can cause toxic stress in
the plant and human health. Metal contamination in plants is
mainly associated with the quality of soil and fertilizer applied
during the enrichment stage. Soil quality and composition
of Se fertilizer should be carefully monitored to avoid metal
contamination of Se-enriched plants (116). Thirdly, limiting
the consumption dose of Se-enriched food to a non-toxic level
could prevent the harmful effect of Se toxicity. Regulations can
be set and enforced to limit the level or serving size of Se-
enriched foods to suit different groups of people. Furthermore,
there is a need to establish suitable analytical methods to study
Se speciation of various Se-enriched plant foods and perform
more research to gather clinical information on bioactivity and
toxicity when supplying Se-enriched plant food to different
groups of the population. All these efforts are essential to protect
from the negative effect of Se overdose, ensure safety and deliver
the optimum benefit of Se-enriched foods to humans.

Future studies should cover the full spectrum of the research
area, including identifying Se content and their chemical
forms, in particular putting more effort on Se speciation of
Se-enriched plant materials; screening their biological effects
via in vitro assays or in vivo animal studies; and validating
the findings in the human clinical trials. The evidence and
knowledge from the above research could serve as a powerful
motivation for the food industry to produce Se-enriched plant
foods to combat Se deficiency and enhance life quality for the
world population.
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