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In the present work, effects of reaction temperature, reactant concentration,

catalyst loading, and rotation speed on the kinetics of sesamin conversion in

a sesame oil system were studied by using citric acid loading on Hβ zeolite

(CA/Hβ) as a catalyst. A kinetic model was built for sesamin conversion. The

kinetic model fits correctly the experimental concentration of sesamin and

asarinin (R2
Sesamin = 0.93 and R2

Asarinin = 0.97). The sesamin conversion is an

endothermic reaction (4Hr Iso = 34.578 kJ/mol). The CA/Hβ catalyst could

be easily regenerated by calcination, and there was no obvious loss of catalytic

activity when reused. Knowledge of the sesamin conversion is of great

significance for guiding production and improving the value and nutrition of

sesame oil. In a word, this study lays the foundation for the scale-up of the

production of asarinin from sesame oil using CA/Hβ as the catalyst.
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Introduction

Lignans have been shown to possess a variety of physiological activities (1–3).
Asarinin is a furofuran lignan. According to reports, compared to sesamin, asarinin has
strong physiological activities such as anti-cancer, anti-proliferative (4), antioxidative
(5), and antibacterial. It was reported that asarinin was yielded when sesamin was
oxidized by potassium permanganate under acidic conditions. It was found that at the
same concentration, the inhibition rate of asarinin on DPPH free radical reached 43.3%,
while the inhibition rate of sesamin is 27.2% (5). Kim et al. (6) reported that asarinin
and sesamin showed cytotoxicity with IC50 values of 67.25 and 98.57 µM, respectively,
in MCF-7 cells. It was found that asarinin can increase the activity and gene expression
of fatty acid oxidation enzymes of rats more strongly than sesamin (3). Asarinin has
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the potential to be clinically applied to induce cancer cell
death and inhibit metastasis because of its antiangiogenic
properties (7).

Asarinin is a geometrical isomer of sesamin generated under
certain conditions of temperature and acidity (8). It is formed
from sesamin during refining processes (i.e., acid clay bleaching
and deodorization at high temperature) (9, 10). Compared
with homogeneous catalysts (e.g., hydrochloric acid and sulfuric
acid), heterogeneous catalysts such as phosphotungstic acid
(11), acid cation exchange resin (12), acid clay (13), and
Hβ zeolite (14) have the advantages of easier separation and
recycling. Owing to its surface acidity and special porous
structure, zeolite beta is a commonly used solid acid catalyst
(SACs). Zeolite beta is widely applied in refining and in the
chemical industry for various reactions such as isomerization,
esterification, and alkylation (15–17). The maximum conversion
rates for esterification of oleic acid and transesterification
of soybean oil by the use of modified Hβ zeolite were
86% and 95%, respectively. The catalyst can be recycled
up to four times without any loss during the conversion
process (18).

The mechanism of sesamin conversion in a sesame oil
system is illustrated in Figure 1 (8, 10). In a sesame oil
system, CA/Hβ attacks the O atom on the tetrahydrofuran
ring of sesamin and absorbs it into the active center of
CA/Hβ. An unstable intermediate transition state forms in
this process. Asarinin is produced through the desorption
of the intermediate transition state; at the same time,
CA/Hβ is regenerated.

For practical application, it is vital to be able to evaluate
and predict the changes of sesame lignans under process
conditions. Consequently, a reliable kinetic model is often
needed. While there have been studies of the kinetics of
the lipid peroxidation (19, 20) of vegetable oils and of
biodiesel fuel (21) production from vegetable oils, the
kinetics of sesamin conversion in a sesame oil system
have not been studies. One research group noticed that
the kinetics of sesamin conversion is of first-order in the
ethanol-sesamin system by using hydrochloric acid as a
catalyst (22). To the best of our knowledge, no kinetic
models have been developed for the sesamin conversion
in sesame oil system. The SACs studied here, which
was used in our previous work, showed good catalytic
performance (14, 23). In this study, the kinetics of the
sesamin conversion with CA/Hβ in cold-pressed sesame oil
(CSO) was investigated. Influences of reaction parameters
including temperature, reactant concentration, catalyst
loading, and rotation speed on the kinetics of sesamin
conversion were evaluated. Kinetic modeling was developed to
estimate the rate constants and activation energy of sesamin
conversion with the catalyst CA/Hβ under these reaction
conditions. This study provides a theoretical foundation for
controlling conditions promoting the sesamin conversion,

and the mass production of high-quality sesame oils
rich in asarinin.

Experimental section

Materials and chemicals

Chromatographic-grade methanol was obtained from
VBS Biologic INC, United States. Hydrogen type of zeolite
beta with a Si/Al ratio of 25 (Hβ) was purchased from
the Nankai University catalyst plant, Tianjin, China.
Sesamin was obtained from Macklin Biochemical Co.,
Ltd., Shanghai, China. Asarinin was purchased from
Purechem-standard Co., Ltd., Chengdu, China. Citric acid
(CA) was obtained from Shanghai Yuanye Biotechnology
Co., Ltd., Shanghai, China. The standard substances
were stored at 4◦C in darkness. CSO was made in a
hydraulic press (Bafang Ltd., model XL-600, Suzhou, China)
in our laboratory.

Preparation of sesame oil samples

Considering the content and the solubility of sesamin in
sesame oil, a certain amount of sesamin (30 and 60 mg) was
added to 70 g sesame oil, and then the mixture was treated
with ultrasound for 30 min, subsequently, the mixture was
placed in a thermostatic magnetic water bath stirred for 4 h
at 37◦C (24). Sesamin and asarinin contents in all sesame
oil samples were analyzed using HPLC-UV (high-performance
liquid chromatography combined with ultraviolet detector)
methods based on the pervious literature (25, 26). The sesamin
conversion (%) was calculated using the following equation:

sesamin conversion % =
(
1−

CA

CA0

)
× 100

where, CA0 (mg/100 g) is the initial concentration
of sesamin in the sesame oil, and CA (mg/100 g) is
the sesamin concentration at a particular time in the
reaction process.

Preparation of catalyst

Citric acid loading on Hβ was prepared on the
basis of the reported literature (17, 23, 27). Briefly, a
20 g sample of Hβ was added to 200 ml of critic acid
aqueous solution, and the resulting suspension was stirred
at room temperature for 16 h. And then washed, dried
and calcined. The catalyst has been proven to promote
the conversion of sesamin into asarinin and shows well
activity (14).
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FIGURE 1

Simplified mechanism of sesamin conversion in sesame oil (dotted boxes enclose tetrahydrofuran rings).

FIGURE 2

Schematic of reaction setup.

Apparatus and experimental
procedures

The reaction apparatus is shown in Figure 2. Experiments
were performed in a 250 ml glass-jacket reactor equipped with a
magnetic stirrer, vacuum pump and temperature control system.

Kinetic study of sesamin conversion

In total, 50 g of CSO was added to the 250 ml glass-jacket
reactor at a certain stirring speed (see Table 1). When the oil

TABLE 1 Experimental matrix for the sesamin conversion.

Run Initial reactant CA T Catalyst loading Rotation speed
mmol/L ◦C wt.% rpm

1 21.47 80 1.6 300

2 23.83 80 1.6 300

3 22.91 80 1.6 300

4 21.47 70 1.6 300

5 21.47 90 1.6 300

6 21.47 80 1.0 300

7 21.47 80 3.0 300

8 21.47 80 1.6 200

9 21.47 80 1.6 400

temperature reached the set temperature, a specific amount of
catalyst was added into the reactor vessel. Agitation was started.
2.0 ml sesame oil samples were collected at specific time points.
The sesame oil sample was immediately placed in an ice water
bath to quench the reaction and then centrifuged. The sesame
oil samples were stored at−20◦C for analysis within 2 days.

Table 1 displays the experimental matrix for each run
with the detailed reaction conditions. The parameters
affecting sesamin conversion of sesame oil were reaction
temperature (70–90◦C), initial concentration of sesamin
(21.47–23.83 mmol/L), catalyst loading (1.0–3.0%) and rotation
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speed (200–400 rpm). These parameters were selected according
to the results of previous tests (14). CA (mg/100 g) and CB

(mg/100 g) represent the concentrations of sesamin and
asarinin, respectively, in the oil samples during the whole
reaction process. At the beginning of all kinetic experiments,
there was no asarinin; consequently, the concentration of
asarinin was zero at time zero.

Recycling of the catalyst

After execution of the conversion reaction, the reaction
mixture was centrifuged at 4,500 rpm for 20 min. The CA/Hβ

catalyst was separated, washed with n-hexane and dried in
an oven at 60◦C, and then, the recycled catalyst was calcined
in a muffle furnace (500◦C) for 4 h. The reused catalyst
was characterized by N2 adsorption and desorption isotherm
analysis (Micromeritics, 3-Flex, United States). The surface
areas of catalysts were calculated by BET method using
adsorption data (28).

Modeling

Athena Visual Studio software was used for parameter
estimation (29, 30). During the kinetic modeling stage,
the concentrations of sesamin and asarinin were used as
observables. DDAPLUS solver, included in Athena Visual
Studio, integrates ordinary differential equations (ODEs) (10,
11). This solver is a modified Newton algorithm used in
conjunction with a fixed leading coefficient backward difference
formula for the approximation of first-order derivatives (31). In
this study, the modeling dealt with a multi-response parameter
estimation. The GREGPLUS subroutine package included in
Athena Visual Studio was applied to minimize the objective
function S(θ), and calculate the maximum posterior probability
density of the various estimated parameters and the values of the
posterior distribution of the tested models (30). The objective
function was defined as

S (θ) = (n+m+ 1) · ln |υ (θ)| (1)

where, m is the number of responses, n is the number of events
in response and |υ (θ)| is the determinant of the covariance
matrix of the responses. Each element of this matrix is denoted
as:

υij (θ) =

n∑
u = 1

[Yiu − Yiu (θ)] ·
[
Yju − Yju (θ)

]
(2)

with Yiu the experimental concentration and Yiu (θ) the
estimated value for the response i, and event u; Yjuis the
experimental concentration, via the estimated parameters θ,
Yju (θ) is the estimated value for the response j, and event u. The
precision of the estimated parameters was evaluated by the 95%

marginal highest posterior density (HPD). The 95% HPD was
calculated by the GREGPLUS package.

Statistical analysis

All measurements were carried out in triplicate and the data
were expressed as mean values.

Results and discussion

Kinetic study

In this section, the effect of reaction temperature (70–90◦C),
catalyst loading (1.0–3.0%), rotation speed (200–400 rpm)
and initial concentrations of reactant (21.47, 22.91, and
23.38 mmol/L) on the kinetics of sesamin conversion were
investigated. The sesamin conversion was selected as a response
value, and its kinetic curves are plotted in Figures 3A–D.

Effect of rotation speed

Three levels of rotation speeds (200, 300, and 400 rpm)
were applied to reveal the influence of external mass transfer
on the reaction kinetics. Experiments were performed under
the following conditions: sesame oil temperature, 80◦C, catalyst
(CA/Hβ) loading, 1.6% and initial concentration of reactant,
21.47 mmol/L (Figure 3A). As the reaction proceed, the
conversion of sesamin became lower. Experiments conducted at
200, 300, or 400 rpm displayed similar kinetics. There was no
significant difference in sesamin conversion at 200 and 300 rpm.
The conversion of sesamin decreased slightly when the rotation
speed was 400 rpm. The stirring speed was found to have
minor effects on the kinetics of sesamin conversion. The reason
might be related to contact between the reactants and the active
surface of the catalyst. This phenomenon is similar to the results
reported previously (32).

Effect of reaction temperature

The effect of reaction temperature (70, 80, and 90◦C)
on the sesamin conversion in sesame oil was investigated.
The reaction parameters were as follows: catalyst (CA/Hβ)
loading, 1.6%; rotation speed, 300 rpm; initial concentration
of reactant, 21.47 mmol/L. As illustrated in Figure 3B,
as the reaction temperature increased from 70 to 90◦C,
the conversion rate of sesamin also significantly increased.
This phenomenon has been observed in previous studies
when inorganic acid was used as catalyst for the sesamin
conversion in an ethanol system (22). In general, high
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FIGURE 3

Effect of reaction conditions on the kinetics of the sesamin conversion under the following conditions: (A) catalyst loading, 1.6%; sesame oil
temperature, 80◦C; reactant concentration, 21.47 mmol/L; (B) catalyst loading, 1.6%; rotation speed, 300 rpm; reactant concentration,
21.47 mmol/L; (C) sesame oil temperature, 80◦C; rotation speed, 300 rpm; reactant concentration, 21.47 mmol/L. (D) Catalyst loading, 1.6%;
sesame oil temperature, 80◦C; rotation speed, 300 rpm. Bars represent standard deviation (n = 3). (E) Variation in absorbance intensity of
sesamin and asarinin in sesame oil samples at different reaction times under the following conditions: catalyst loading, 3.0%; sesame oil
temperature, 80◦C; rotation speed, 300 rpm; reactant concentration, 21.47 mmol/L (a, 3 min; b, 5 min; c, 10 min; d, 20 min; e, 30 min; f, 1.0 h;
g, 2.0 h; h, 3.0 h).

temperature reduces the viscosity of the oil and thus increases
the mass transfer rate (33, 34). At the reaction time of
240 min, the sesamin conversion increased with temperature,
as follows: 23.72% (70◦C) < 35.78% (80◦C) < 40.09%
(90◦C).

Effect of catalyst loading

The influence of catalyst loading on sesamin conversion
in sesame oil samples is illustrated in Figure 3C. The
catalyst loading at three levels (1.0, 1.6, and 3.0% of
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sesame oil) were studied, using the following reaction
conditions: sesame oil temperature, 80◦C; initial concentration
of reactant, 21.47 mmol/L; rotation speed, 300 rpm.
From the data shown in Figure 3C, as catalyst loading
increased, the conversion rate of sesamin increased,
indicating that there was no mass-transfer limitation
in this test. The reason might be that the more active
sites provided by the catalyst, the faster the conversion
rate (35). At the reaction time of 240 min, the sesamin
conversion was 16.38% at 1.0% catalyst loading,
35.78% at 1.6% catalyst loading, and 54.78% at 3.0%
catalyst loading.

Effect of initial concentration of
reactant

Figure 3D shows the effect of initial reactant concentration
on the sesamin conversion under the following conditions:
reaction temperature, 80◦C; rotation speed, 300 rpm;
catalyst loading, 1.6%. The results showed that the kinetic
rate decreased slightly with the increase of the initial
concentration of reactant. At the reaction time of 240 min,
the sesamin conversion reached 35.78% at the reactant
concentration of 21.47 mmol/L. The sesamin conversion
was 33.34 and 32.27% at the reactant concentrations
of 22.91 and 23.38 mmol/L, respectively. There was no
significant difference among different initial concentrations
of reactant. Sesamin was found to have poor solubility
when it was added back to sesame oil (26). In this test,
it was assumed that sesamin was dissolved in the sesame
oil when no crystallization of sesamin in the sesame oil
was observed with the naked eye. As for the phenomenon
that the conversion rate was relatively lower when the
concentration of reactant was slightly higher, it is possible that
there were crystals blocking the active sites on the catalyst
surface (35).

Variation of peak areas in liquid
chromatograms

In order to monitor the evolution of sesamin and asarinin,
samples withdrawn at different times during the reaction were
analyzed by HPLC-UV. The peak at 17 min corresponds to
the substance sesamin, and the peak at 19 min is asarinin. It
was observed intuitively from Figure 3E that the peak area of
sesamin was decreased gradually and asarinin increased with
the reaction time going on. This was interpreted to mean that,
as the reaction proceeded, sesamin was partially converted to
asarinin. These results are consistent with previous studies
(8, 9).

Reusability and characterization of
citric acid loaded on Hβ

Easy recycle and reusability are the main advantage of
heterogenous catalysts (36). The reusability of the CA/Hβ

catalyst was evaluated by the sesamin conversion reaction at
a temperature of 80◦C and rotation speed of 300 rpm, with a
catalyst loading of 3.0%. As shown in Figure 4A, the CA/Hβ

catalyst exhibited good recyclability in the sesamin conversion,
the sesamin conversion decreased insignificantly, from 59.21 to
57.49% at 240 min.

The textural characteristics of catalyst was assessed by
N2 adsorption and desorption isotherm analysis (Figures 4B–
D) (28, 37). According to the classification of international
union of pure and applied chemistry (IUPAC), the isotherm
of the catalysts displayed a combination of type I and type IV
isotherms. It is clear that, at lower relative pressures (P/P0 = 0.0–
0.1), the catalysts showed isotherm type I, which corresponds
to microporous material. A hysteresis loop was observed at
the upper section of isotherm over the relative pressure range
from 0.7 to 1.0, indicating that there were mesopores in the
solid. This is further demonstrated in the BET analysis results
in Table 2.

The structural properties including surface area, pore
volume and pore size of reused catalysts were summarized in
Table 2) (38). After the catalyst was calcined at 500◦C for 4 h,
the specific surface area, pore size and pore volume renew
to that of the fresh catalyst, and the seamin conversion was
almost the same as that of the fresh catalyst (Table 2 and
Figure 4A). It shows that calcination could remove the most
of the organic substance adsorbed on the catalyst. A slight
descend of pore size was observed in each recycle of the catalyst,
which was consistent with the reduction of sesamin conversion.
It may be that the effect of separation and n-hexane washing
on the catalyst, and part of the active site of the catalyst
is blocked by organic substance (35). In brief, these results
revealed that the catalytic activity of the regenerated catalyst
was almost the same as that of the fresh catalyst used for
the first time (1st). The catalytic of catalyst could be reversed
easily by calcination.

Kinetics

According to the published literature (8, 9, 22), the sesamin
conversion is reversible under certain conditions. The overall
reaction can be represented as follows:

A
catalyst
−−−−⇀↽−−−− B (3)

Based on the mechanism in Figure 1, the conversion
reaction can be described in three steps. The first step is
the opening of sesamin’s furan ring with catalyst, forming
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FIGURE 4

(A) The sesamin conversion with recycled catalyst. Reaction conditions: catalyst loading, 3.0%; sesame oil temperature, 80◦C; rotation speed,
300 rpm; (B–D) N2 adsorption and desorption isotherms of recycled catalyst.

TABLE 2 Surface properties of catalysts.

BET surface
area/m2/g

External surface
area m2/g

Pore size
(nm)

Pore volume
(cm3/g)

Micropore
volume (cm3/g)

Mesopore
volume (cm3/g)

1st CA/Hβ 552.48 140.79 4.39 0.61 0.20 0.40

2st CA/Hβ 579.38 147.27 4.39 0.64 0.21 0.42

3st CA/Hβ 560.62 143.46 4.35 0.61 0.20 0.41

intermediate I1. The second step is the intermediate I1 turning
into an intermediate of asarinin and catalyst; the third step is the
desorption of the intermediate of asarinin and catalyst to release
asarinin and catalyst.

A
K1
−−⇀↽−−
k−1

I1 (4)

I1
K2
−−⇀↽−−
k−2

B−∗ (5)

B−∗
K3
−⇀↽− B+∗ (6)

where A is sesamin, B is asarinin, K1, K2, and K3 are the
equilibrium constants; [I1] is the concentrations of intermediate

I2, mol/L; [∗] is the concentration of the catalytic active sites
at time t, mol/L, [B− ∗] represents the product of asarinin
coupling with the active sites of catalyst at time t, mol/L.
Assuming that the second step is the rate-determining step,
the kinetics of the conversion reaction can be expressed as:

RIso = R2 = (k2 [I1]− k−2 [B] )wcat (7)

When the quasi-equilibrium approximation is applied to the
intermediates,

K1 =
[I1]

[A] [∗]
,K2 =

[B− ∗]
[I1]

and K3 =
[B] [∗]
[B− ∗]

(8)
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FIGURE 5

(A) Van’t Hoff curve for Henry’s constants. (B) Parity plot of experimental versus simulation of the sesamin concentration. (C) Parity plot of
experimental versus simulation of the asarinin concentration.

TABLE 3 Estimated and statistical data at Tref = 353.15K for
sesamin conversion.

Estimated
value

95%marginal
HPD intervals

HPD in %

LnkIso(Tref) (L mol−1 s−1) 9.74E+00 6.97E−02 0.72

Ea/(RTref) 2.14E+01 3.91E+00 18.23

K1 4029.99 Indeterminate –

KIso (Tref ) 0.536 – –

HIso (J mol−1) 34578 – –

The concentration of intermediate I1 can be expressed as

[I1] = K1 [A] [∗] (9)

By combining Eqs 6, 7, the conversion kinetics become

RIso = (k2K1 [A] [∗]− k−2 [B])wcat (10)

where wCat is the catalyst loading in g/L.

Mass balance

Experiments were carried out in a vacuum. We assumed
K1 = K2, and that the mass balance applied to the surface

TABLE 4 Correlation matrix of kinetics modeling.

LnkIso(Tref ) Ea/R(Tref ) K1

LnkIso(Tref) 1

Ea/RTref −0.157 1

K1 0 0 0

species leads to

[∗]0 = [∗] + [I1] + [B−∗] (11)

where, [∗]0 is the total concentration of the catalytic
active sites, mol/L. The concentration of active sites
at time t is

[∗] =
[∗]0

1+ K1 [A]+ K2[B]
(12)

When the following notations are introduced: kIso = K1k2,
KIso = k2/k-2, Eq. 6 becomes

RIso = kIso ×
wcat

1+ K1 [A]+ K2[B]
×

(
[A]−

1
KIso

[B]
)
(13)

All the associated parameters were estimated during the
kinetic modeling stage (39, 40). The following ODEs describe
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FIGURE 6

Fitting the model to the experiments and simulation of Csesamin and Casarinin for experiments 1–5. Run 1 [(CA) = 21.47 mmol/L with catalyst
loading, 1.6%; temperature, 80◦C; rotation speed, 300 rpm and (CB) = 0 mmol/L]; Run 2 [(CA) = 23.83 mmol/L with catalyst loading, 1.6%;
temperature, 80◦C; rotation speed, 300 rpm and (CB) = 0 mmol/L]; Run 3 [(CA) = 22.91 mmol/L with catalyst loading, 1.6%; temperature, 80◦C;
rotation speed, 300 rpm and (CB) = 0 mmol/L]; Run 4 [(CA) = 21.47 mmol/L with catalyst loading, 1.6%; temperature, 70◦C; rotation speed,
300 rpm and (CB) = 0 mmol/L]; Run 5 [(CA) = 21.47 mmol/L with catalyst loading, 1.6%; temperature, 90◦C; rotation speed, 300 rpm and
(CB) = 0 mmol/L].

the material balances of the different components in this
reaction system

d[A]
dt
= − RIso (14)

d[B]
dt
= RIso (15)

Modeling

To avoid correlation between the pre-exponential factor and
activation energy, a modified Arrhenius equation (19, 21) was

used to express the rate constants:

kIso (T) = exp
[
ln
(
kIso,ref

)
+

Ea

R · Tref
·

(
1−

Tref

T

)]
(16)

where, kIso is the rate constant and Ea is activation energy
(kJ/mol); the gas constant 8.314 J/(mol/K) and reaction
temperature (K) are represented by R and T, respectively. In
total, 353.15 K was selected as the reference temperature (Tref).
The equilibrium constant KIso(T) can be expressed by Van’t
Hoof law (41, 42).

KIso(T) = exp
[
lnK (Tref)+

4Hr Iso

R · Tref
·

(
1−

Tref

T

)]
(17)
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where, Tref represents the reference temperature (K) and
4Hr Iso is the enthalpy for the sesamin conversion in kJ/mol.
The kinetic constants (ln

(
kIso,ref

)
) and Ea

R Tref
were estimated.

Thereafter, by plotting ln
(

K(T)
K(Tref)

)
versus

(
1
R

(
1
T −

1
Tref

))
, it

was demonstrated that this hypothesis is correct within the
experimental temperature range. Figure 5A shows that the
sesamin conversion in the sesame oil solution was endothermic
(4HrIso = 34.578 kJ/mol).

The estimated kinetic parameters for sesamin conversion
and their HPD intervals are shown in Table 3. The
HPD intervals for the estimated values are less than
20%, indicating that the parameter estimation for this
model was accurate.

The correlation matrix for the kinetic parameters is
represented in Table 4. It was observed that the correlations
among different kinetic parameters are very low, indicating good
reliability of the developed model.

By plotting the experimental concentrations versus the
simulated values, one sees that the simulated values are
close to the experimental ones with high linear correlation
coefficients (R2

Sesamin = 0.93 and R2
Asarinin = 0.97), indicating

that it is in good agreement with experimental data and
calculated values (Figures 5B,C). Fits of the model to the
experimental observations are presented in Figure 6 (Run 1–
5). The kinetic model fits the experimental data well over the
entire reaction, and the explanation coefficient exceeds 90%.
Nevertheless, some deviations were observed (Run 1, 3, and
4). This deviation could be explained by the failure of the
model to accurately take into account temperature-dependent
density of the oil reaction medium and the formation of
intermediate products.

Conclusion

In this study, the effects of rotation speed, reaction
temperature, catalyst loading and reactant concentration on
the kinetics of sesamin conversion have been investigated. The
conversion of sesamin into asarinin in CSO was efficiently
achieved using CA/Hβ as a catalyst. The conversion kinetics
were enhanced significantly by increasing catalyst loading
and reaction temperature, while the effect of rotation speed
and initial concentration of reactant was found to be
negligible. A kinetic model was developed to simulate the
sesamin conversion process. This model was applied for a
reaction temperature range of 70–90◦C, catalyst loading range
of 1.0–3.0%, initial reactant concentration range of 21.47–
23.83 mmol/L. It was observed that the calculated data
were in agreement with experimental values by parity plot
(R2

Sesamin =0.93 and R2
Asarinin = 0.97), indicating the model fit

the experimental data quite well. The sesamin conversion was
found to be endothermic (4Hr Iso = 34.578 kJ/mol). The
CA/Hβ catalyst could be easily regenerated by calcination, and

there was no obvious loss of catalytic activity when reused.
In summary, this study lays the foundation for the scale-up
of the production of asarinin from sesame oil using CA/Hβ

as the catalyst.
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