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Nutritional deficits or excesses affect a huge proportion of pregnant women

worldwide. Maternal nutrition has a significant influence on the fetal

environment and can dramatically impact fetal brain development. This paper

reviews current nutritional supplements that can be used to optimise fetal

neurodevelopment and prevent neurodevelopmental morbidities, including

folate, iodine, vitamin B12, iron, and vitamin D. Interestingly, while correcting

nutritional deficits can prevent neurodevelopmental adversity, overcorrecting

them can in some cases be detrimental, so care needs to be taken when

recommending supplementation in pregnancy. The potential benefits of using

nutrition to prevent neurodiversity is shown by promising nutraceuticals,

sulforaphane and creatine, both currently under investigation. They have

the potential to promote improved neurodevelopmental outcomes through

mitigation of pathological processes, including hypoxia, inflammation, and

oxidative stress. Neurodevelopment is a complex process and whilst the role

of micronutrients and macronutrients on the developing fetal brain is not

completely understood, this review highlights the key findings thus far.
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Introduction

Neurodevelopment is, unsurprisingly, extremely complex and involves multiple
processes including neurulation, neuronal proliferation and migration, apoptosis,
synaptogenesis, and myelnation (1). It is a process that begins in the weeks following
conception and continues through to adulthood, with genetics, epigenetics, and
environment all influencing the outcome (1, 2). Normal human neurodevelopment also
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requires a tightly regulated balance of numerous reactive
oxygen species (3, 4). Defects in these processes can lead
to highly variable outcomes, ranging from mild to severe
neurobehavioural morbidities, to mortality that may occur in
fetal life, childhood, and beyond (5).

Optimal maternal nutrition is important not only for the
health of the mother but also the offspring. It has been
shown to have an impact not only on cognition, but also
development of non-communicable diseases including type 2
diabetes and atopic conditions, such as atopic dermatitis (6, 7).
Nutritional deficits affect a huge proportion of pregnant women
worldwide, with some regions of the world having up to 40% of
pregnant women underweight with a body mass index (BMI)
<18.5 kg/m2 and 42% of pregnant women worldwide having
iron deficiency anaemia (8). Maternal nutrition, before and
during pregnancy, dramatically influences the fetal environment
and can significantly impact fetal brain development (9). The
leading role nutrients play in neurodevelopment was first
highlighted in the 1960s, when folic acid (vitamin B9) was
shown to assist both cellular proliferation and the successful
closure of the neural tube, an essential structure for brain and
spinal column development (10). Subsequently, other nutrients
have been identified whose absence or deficit may also adversely
affect neurodevelopment.

This review will detail the role of nutrients in supporting
fetal neurodevelopment, exploring the importance of timing
the delivery of nutrients in pregnancy and the promising new
advances that, when used appropriately, might aid in preventing
neurodevelopmental adversity.

As we will outline in this paper, several antenatal
supplements/nutrients are used in pregnancy to correct
maternal nutritional deficiencies, while others are used to
promote improved neurodevelopmental outcomes through
mitigation of pathological processes, including hypoxia,
inflammation, and oxidative stress. The micronutrients explored
within this review have current global recommendations for
supplementation in pregnancy. While there is the potential
that additional micronutrients, such as copper, zinc, and
lutein, may afford benefits in neurodevelopment evidence is
currently lacking to inform clinical use and as such they are not
recommended as specific supplements in pregnancy. It should
be noted, however, that the 2020 WHO (11, 12) nutritional
interventions update on multiple micronutrient supplements
(MMS) during pregnancy has included both zinc and copper
in its recommendation, but only in the context of rigorous
research. Of note, the currently available MMS United Nations
International Multiple Micronutrient Antenatal Preparation
(UNIMMAP) pregnancy multivitamin formula does include
both copper (2 mg) and zinc (15 mg) formulated for use
in micronutrient poor settings such as low–middle income
countries (11). Lutein is still currently under investigation for its
use in pregnancy, but does have promising initial findings that
increased maternal intake improves childhood behaviour and

verbal intelligence (13). Unsurprisingly the story is complex,
and the role of micronutrients and macronutrients during
pregnancy, and their effect on the developing fetus, are still far
from fully understood.

Current nutritional supplements to
optimise fetal neurodevelopment

Folate

Neural cells divide rapidly in the embryo, especially in the
first trimester as the fetal brain forms (14). Primary neurulation,
the folding of the neural plate to form the neural tube, occurs
on days 21–28 of gestation. The successful closure of the
neural tube is essential for subsequent brain and spinal cord
development, with errors in this process leading to incomplete
plate fusion (15). If this occurs in the cranial region, it can
result in anencephaly, whereas caudal occurrence causes spina
bifida (15).

A substantial breakthrough occurred in the 1960s with the
identification that folate supplementation could reduce the risk
of neural tube defects (NTD) (10). Folate is found in green leafy
vegetables and yeast extract, while its more stable synthetic form,
folic acid, can be found in breads, cereals, and supplements (16).
Folate is involved in neural cell proliferation and differentiation,
reducing apoptosis, and maintaining DNA synthesis (14).
Folate’s importance in supporting fetal development is further
highlighted, by the multiple mechanisms that exist to support
folate transport across the placenta, including the folate
receptor, the reduced folate carrier and the proton-coupled
folate transporter (17). Consequently, folate requirements are
5–10 times higher in pregnant women compared with the non-
pregnant population (18). As humans cannot synthesise folate
de novo, this increased requirement must be achieved through
increasing dietary intake or via supplementation (18).

Women planning a pregnancy should take 0.4–0.8 mg of
folate at least 1 month preconception until the end of the first
trimester (19, 20). Given its impact on early neural development,
these recommendations highlight the importance of timing
folate supplementation to optimise embryonic development.
Practical delivery of this benefit is complicated because
approximately 50% of pregnancies are unplanned (16), and
one in three people globally are estimated to suffer some form
of malnutrition (19). Consequently, many countries worldwide
have fortified cereal grain products with folic acid, resulting
in a 40–80% reduction in the prevalence of spina bifida and
anencephaly, which now complicates approximately 11.7–21.9
per 10,000 births (5, 14, 16, 21).

While folate’s periconceptional and first trimester benefits
have been well established, its role in the second and third
trimesters is less well known. Studies have shown that
continuing folic acid supplementation in the second and third
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trimester has resulted in changes in DNA methylation in the
cord blood of genes related to brain development, with lower
levels of methylation in LINE-1, IFG2, and BDNF genes (22).
A randomised controlled trial is currently underway examining
the effect of folate supplementation beyond the first trimester
on maternal plasma unmetabolised folic acid (23). However,
the long-term real-world implications of these findings are
unknown, and further epigenome-wide studies are necessary
to explore the potential impact of folate use beyond the
first trimester. Interestingly, a study involving 45,300 children
showed an association between folic acid and multivitamin
supplements and a reduced risk of autism spectrum disorders
in the offspring (24). These findings were consistent for both
maternal exposure to folic acid or multivitamins either before
pregnancy (RR 0.39; 95% CI 0.30–0.50; P < 0.001) or during
pregnancy (RR 0.27, 95% CI 0.22–0.33; P < 0.001), however, this
is an area that requires further research (24). Further research
is demonstrating that folic acid use and levels in the second
trimester positively correlate with fetal growth (25, 26). The
ongoing research into the benefit of folate beyond the first
trimester will be an area to watch in the future.

Furthermore, patients at higher risk for NTD are
recommended to use high dose folate, 5 mg per day from
2 months pre-pregnancy until the end of the first trimester
(27). This recommendation applies to patients with a previous
pregnancy affected by NTDs, malabsorption disorders, obesity,
diabetes, or on specific medications, such as anti-epileptics or
folate antagonists (27).

However, there are concerns surrounding the potential risks
of high-dose folate use. As folate supports rapidly dividing cells,
there is a theoretical concern that it may promote cancer growth
in susceptible women. Research shows that folate may have a
disparate impact on different types of cancer, increasing the
risk of breast cancer, but not colon cancer (28, 29). As folate
is a cofactor for one-carbon transfers and involved in complex
biological processes, it was postulated that it might play a role
in epigenetic modifications resulting in increased rates of atopic
disease in the offspring (30). This concern may be relevant given
rising allergy rates (31). But the evidence on whether maternal
supplementation with folic acid is associated with atopy, reactive
airway diseases, and increased risk of wheeze in early childhood
is conflicted and of variable quality (31, 32). There does
however appear to be a “U-shaped” relationship between the
development of autism spectrum disorders and increasing folic
acid supplementation, with a study of 1,257 mother-infant
pairs suggesting that both inadequate and excessive folic acid
is detrimental to the fetus. This same study found a 2.5-times
increased risk of autism spectrum disorders with high maternal
plasma folate levels (>60.3 nmol/L) (33). A recent systematic
review has highlighted the conflicting evidence of folic acid
supplementation pre-pregnancy and perinatally with autism
development, highlighting challenges of comparing studies
with variable methylene tetrahydrofolate reductase (MTHFR)

genotype reporting and limited length of follow-up periods for
neurodevelopmental assessments (34).

Given these potential adverse effects of folic acid
supplementation, women should ensure they are on the
minimal dose possible to reduce the risk of NTDs while
avoiding the potential risks. Existing guidelines should be
followed; however, several areas would benefit from further
research. These include determining the benefit of ongoing folic
acid supplementation beyond the first trimester, whether folic
acid and widespread food fortification may be associated with
harm, and whether serum folate levels should be assessed pre-
conception to guide the need for additional supplementation
particularly those patients with complex genetic, medical,
or surgical co-morbidities who currently would receive high
dose folic acid supplementation (35). Finally, further research
would be beneficial in determining the lowest effective dose in
many subsets, such as if there can be a tapered dose of folate
depending on a patient’s BMI.

Iodine

Iodine is a trace element found in iodised salt, fish,
and grains and is essential for the production of thyroid
hormones, thyroxine (T4) and triiodothyronine (T3), and these
hormones are critical for neurodevelopment (36, 37). During
the first half of pregnancy, the fetus relies on the transplacental
passage of thyroxine from the mother, which is essential for
supporting the development of the fetal brain through neuronal
migration and myelination (37). During pregnancy, maternal
iodine requirements increase to support the production of
maternal thyroid hormone needed to support maternal and fetal
needs (38). If the mother is nutritionally unable to meet this
increased demand, this can cause irreversible damage to the fetal
brain (39).

Iodine deficiency is the leading global cause of preventable
impaired mental function (38). It can cause neurodevelopmental
issues, including motor function deficits, cognitive impairment,
and behavioural disorders (37, 39). Resultantly, iodine
supplementation in pregnancy is supported and it is
recommended that women take 250 micrograms (mcg)
daily throughout pregnancy (40).

A recent randomised control trial (RCT) demonstrated
that iodine supplementation in pregnancy improved mild
maternal iodine deficiency to adequate levels with a positive
impact on maternal thyroglobulin (41). An extension
of this study will explore the effect of maternal iodine
supplementation on the offspring’s neuropsychological
development; findings likely to inform the future use of iodine
supplementation in areas of mild to moderate deficiency to
optimise neurodevelopmental outcomes in children (Trial
registration number: NCT02378246) (42).
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While the benefit of iodine supplementation in areas
of severe deficiency is well established, a systematic review
and meta-analysis found that recommendations for iodine
supplementation in areas with only mild to moderate deficiency
are not supported by quality evidence (43, 44). This is
important to consider, as evidence suggests maternal intake
of 150 µg/day, in pregnancy can detrimentally affect the
psychomotor achievements of infants (45).

Choline

Choline is a methyl donor nutrient that can be produced
by the human liver or obtained from either animal products or
plant foods, such as nuts, legumes, and cruciferous vegetables
(14). It is a precursor for phospholipids, acetylcholine, and the
methyl donor betaine (46). Choline is transferred across the
placenta and choline concentrations in umbilical cord plasma
were approximately three times those in maternal plasma (47).
Choline plays a role in several aspects of fetal brain development
including neural tube closure in humans, and hippocampal
development in animals, however further study is needed to
determine if this extends to humans (48, 49).

It is estimated that 90% of pregnant women in the USA do
not meet the recommended intake of choline (50). However,
studies of maternal supplementation with choline have had
varying results. An RCT of mothers taking 930 versus 480 mg
choline per day showed faster processing speeds in the infants
of the 930 mg group (51). A study with maternal and infant
choline supplementation from the second trimester through
to the third month postpartum showed that supplementation
may be associated with better sensory gating (52). Furthermore,
maternal choline concentrations and dietary intake have been
shown to have an inverse association with neural tube defects
independent of folate (48, 53). Conversely, choline levels in
the cord blood has been found to have no impact on IQ
scores in children at 5 years or age (54). An RCT of women
that took 750 mg/day of choline or a placebo from 18 weeks
gestation to 90 days postpartum found no benefit on infant
brain function (55). While further research is needed to
determine prenatal choline’s long term impact on the brain,
the current recommendation is that pregnant woman should
aim for a choline intake of 450 mg/day (6). Importantly, many
multivitamins do not contain choline and so it may need to be
taken as an extra supplement (6).

Vitamin B12

Vitamin B12, like vitamin B9 (folate), belongs to the
B vitamin class of compounds; eight different chemically
distinct, water soluble compounds, which sequester naturally
together in meat, eggs and dairy products, despite being

synthesised predominantly by plants (56). They are essential
for normal cellular processes, particularly acting as cofactors
for enzymatic reactions and in the synthesis and regulation
of dopaminergic and serotonergic neurotransmitters (57).
However, little clinical trial evidence currently exists for the
other vitamin B compounds. Supplementation may be required
in those with a vegetarian or vegan diet, or those suffering
from gastrointestinal malabsorption (37, 58, 59). It is a cofactor
for enzymes, methionine synthase, and L-methyl-malonyl-
coenzyme A (59). These have a role in mitochondrial succinyl-
CoA formation, cytosol methionine synthesis, and fat and
protein metabolism. It is essential for neuronal structure and
myelination (37, 60). Fetal levels of vitamin B12 are thought to
be closely related to maternal levels, and transport across the
placenta occurs bound to transcobalamin or haptocorrin (59).
Infants born to mothers with adequate vitamin B12 levels have
approximately 25 mcg stored at birth, but endogenous vitamin
B12 stores in infants may be much lower in vitamin B12 deficient
mothers (58).

There is evidence that low B12 levels are detrimental to
fetal development but the data is inconsistent and confounded
by comorbidities. A pooled analysis of case reports of infant
vitamin B12 deficiency, all resulting from maternal deficiency
(18 cases of pernicious anaemia, 28 cases of strict veganism,
and 2 cases of “very low” maternal animal source food
intake) where the infants were exclusively breastfed, found that
58% reported developmental delay and 32.5% had cerebral
atrophy (58). Reassuringly, symptoms such as apathy, muscle
hypotonia, anorexia, and involuntary movements of limbs and
tongue can improve rapidly with infant supplementation (58).
This was evident with approximately a third of infants with
developmental delay born to B12 deficient mothers showing
symptom resolution with treatment. However, 38% of offspring
to mothers with pernicious anaemia and 50%, of those born
to vegan mothers had persisting long-term developmental
impairment, but it was noted that there was variability in the
assessment of recovery, age, assays for plasma B12, and time
after treatment (58). A randomised control trial in India found
that healthy mothers supplemented with vitamin B12 had no
significant impact on cognitive development in the offspring
compared to placebo (61). However, multiple regression
analysis showed that elevated maternal total homocysteine
levels, adjusted for the treatment group, birthweight, parity,
income, and home environment, were associated with poorer
performance in the expressive language and fine motor domains
of the Bayley Scales of Infant Development-III (61). As the
amino acid, homocysteine, is metabolised by vitamin B12, raised
levels may indicate vitamin B12 deficiency. However, high levels
can also be due to other vitamin deficiencies, including folate,
impacting the interpretation of these results.

In comparison, high maternal dietary intake of vitamin
B12 in the second trimester of pregnancy shows a weak
association with poor language development, as demonstrated
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by lower scores on the Peabody Picture Vocabulary Test III
in 3-year-olds (62). Very high maternal plasma B12 levels
(≥536.8 pmol/L) have also been associated with a 2.5-fold higher
rate of autism spectrum disorder in offspring, suggesting that
B12 supplementation should be carefully assessed rather than
a blanket wide recommendation for treatment in pregnancy
(33). Given these inconsistent findings, this area requires further
long-term research to determine the impact that vitamin B12
deficiency can have on the cognitive outcome of offspring.
Encouragingly there is an upcoming double blinded RCT
that aims to assess the effect of vitamin B12 supplementation
during pregnancy on infant neurodevelopmental outcomes
(Trial Registration Number NCT04083560) (63).

Iron

Iron is an essential element that both directly, through
promoting neurogenesis and myelination, and indirectly,
through the formation of haemoglobin and delivery of
oxygen to developing tissues, has critical impacts on fetal
neurodevelopment (64). It is the most common nutrient
deficiency in the world (64). Fetal iron levels are dependent
on the mothers’ iron stores, thereby increasing maternal iron
requirements in pregnancy and increasing the risk of deficiency
(37). After birth, infants cannot regulate the absorption of iron
from the gut for the first 6–9 months, so good iron stores at birth
are essential (64).

Iron deficiency can affect brain development. Deficiency
alters gene expression affecting hippocampal development and
function, including learning, memory, and cognition, and
undergoes rapid neurogenesis in the late prenatal and the
early postnatal period (64). Iron deficiency can also indirectly
impact neurodevelopment by increasing the risk of low birth
weight, which has been associated with delayed neurocognitive
development (64).

There is evidence that the effects of fetal iron deficiency
persist even with postnatal supplementation and correction.
Children who were iron deficient at birth were studied at 5 years
of age and scored lower than their iron sufficient counterparts
on language, fine motor skills, and tractability (65). Therefore, it
is essential to identify and correct iron deficiency in the prenatal
period where possible (66).

Interestingly, high iron levels could potentially adversely
impact neurodevelopment, with those in the highest quartile of
iron levels having a lower full-scale intelligence quotient (65).
Furthermore, daily oral iron supplementation (50 mg) in non-
anaemic women could potentially be harmful with increased
rates of small for gestational age neonates and hypertensive
disorders (67). Therefore, while iron deficiency should be
identified and corrected, it is important not to recommend
routine iron supplements for every mother. This is supported
by a study of 2,479 mother-child pairs assessed for maternal iron

stores (serum ferritin) during early pregnancy, which found that
those with the highest serum ferritin (mean = 170.3 microg/L)
had children with lower child intelligence quotient scores and
smaller brain volumes after exclusion of those with elevated
C-reactive protein (CRP) levels (68). There are currently
multiple trials evaluating iron replacement in pregnancy, and it
will be beneficial to ensure follow-up of the neurodevelopmental
outcomes in the offspring from these studies (69, 70).

Vitamin D

Vitamin D, otherwise known as 25-hydroxyvitamin D,
is a hormone that is endogenously produced in the skin by
ultraviolet light exposure and activated through hydroxylation
by the liver and kidneys or exogenously acquired through
diet (71, 72). Fetal levels are dependent on maternal supply
being actively transported across the placenta before being
activated through hydroxylation by the fetal kidneys to
1,25-dihydroxyvitamin D, the active form of vitamin D (71,
73). Vitamin D contributes to neurodevelopment through
multiple mechanisms, including neuronal differentiation,
axonal connectivity, dopamine ontogeny, and transcription
control of genes (71).

Studies have shown the varied impact of maternal vitamin
D deficiency on fetal brain development. Tylavsky et al. (72)
completed a study on 1,020 participants that found maternal
vitamin D levels positively correlated with receptive language
development, but not cognitive or expressive language, in
offspring at 2 years of age. A Vietnamese prospective cohort
study further demonstrated that low maternal vitamin D
levels in late pregnancy were associated with reduced language
development in offspring at 6-months of age (74). Both trials
are consistent with a systematic review and meta-analysis of
observational studies that showed lower scores on mental and
language developmental tests in offspring born to mothers with
vitamin D deficiency (75). While a contrasting study from
Greece showed no association between maternal vitamin D
concentrations and offspring cognitive function, it did suggest
that normal vitamin D levels, in this case >50.7 nmol/l, may be
protective in preschool children against behavioural difficulties
such as attention deficit hyperactivity disorder (76). The impact
of excessive maternal vitamin D supplementation remains
unknown. While it has been linked to the development of
fetal hypercalcaemia, no adverse neurodevelopmental outcomes
have been reported (71). Current recommendations are for all
pregnant women to take 400 IU of vitamin D daily throughout
pregnancy (6, 77).

Polyunsaturated fatty acids

Lipids, particularly phospholipids, are essential for the
human brain, which is approximately 50% lipid content (78).
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Phospholipids are a diverse group of molecules with vital roles
in most cell types within the brain, where they form membrane
lipid bilayers, providing a functional barrier between the
subcellular and surrounding environment (79). Polyunsaturated
fatty acids (PUFAs) represent up to 35% of the total lipid
content in the brain. The fetus is unable to manufacture
PUFAs de novo in utero, which continues in early neonatal life,
therefore normal neurodevelopment is dependent on adequate
maternal dietary intake (80). The INCA2 survey found French
pregnant and lactating women had inadequate PUFA intake of
Omega-3 PUFAs ALA (four times lower than recommended
daily intake) and docosahexaenoic acid (DHA) (10 times lower
than recommended); however, the study did not report on
neurodevelopmental outcomes (81). The Japan Environment
and Children’s Study (JECS) assayed maternal fish and omega-3
PUFA intake and found lower dietary intakes were associated
with reduced infant sleep duration at 1 year of age (82),
which may be associated with adverse neurodevelopmental and
neurobehavioural outcomes (83, 84). A large study of 1,553
Danish mother-child pairs found an association between lower
mid-trimester plasma omega-3 PUFA levels and smaller brain
volumes in children at ages 9–11 years (85).

Neurotoxicants, such as the highly lipophilic insecticide
DDT (1,1,1-trichloro-2,2,-bis(p-chlorphenyl)ethane), have been
shown to have detrimental effects on fetal neurodevelopment
in retrospective cohort studies; an effect which was mitigated
by increasing maternal intake of n-3 docosapentaenoic
(DPA) fatty acid (80). This might in part be explained by the
important role DPA serves as a precursor to resolvins and
neuroprotections, with recent evidence of DPA both mitigating
lipopolysaccharide (LPS) induced neuroinflammation and
promoting M2 anti-inflammatory polarization of microglia
(86). There is significant heterogeneity in outcomes of the
previous studies investigating PUFAs in pregnancy, including
DPA, eicosapentaenoic acid (EPA), and DHA, partially due to
significant gene polymorphisms and the non-standardised
testing of neurodevelopmental and neurobehavioural
outcomes (87). For a comprehensive overview of PUFAs
in brain development and neurodevelopmental disorders we
recommend the review by Marinat et al. (87). A systematic
review from 2013 including 11 randomised clinical trials
with 5,272 participants found maternal supplementation
with omega-3 PUFAs did not alter neurodevelopmental
outcomes apart from two trials with a high risk of bias (88).
Ultimately, maintaining the optimal level of PUFAs and
aiming to optimise the omega-6: omega-3 ratio of PUFAs
with selective omega-3 EPA monotherapy supplementation
and limiting excess vegetable oils (reducing omega-6 PUFAs)
typical in Western diets may result in improved neonatal
neurodevelopmental outcomes (89), lower childhood body
and abdominal fat (90), and improved maternal long-term
cardiovascular outcomes (91). The International Federation
of Gynecology and Obstetrics (FIGO) currently recommends
increased requirements for PUFAs in pregnancy with Omega-6

PUFAs (13 g) and Omega-3 PUFAs (1.4 g) representing the
two parent long-chain fatty acids linoleic acid (LA) and alpha-
linolenic acid (ALA) vital for normal membrane lipid bilayer
formation and hence fetal neurodevelopment (6).

Promising nutraceuticals to
protect fetal neurodevelopment

Normal fetal neurodevelopment requires adequate levels
of many key nutrients as outlined. However, even with
achieving optimal levels of these nutrients in pregnancy,
pathological disorders of pregnancy can occur, such as
preeclampsia, gestational diabetes, and fetal growth restriction.
When pregnancy becomes complicated by these various
pathological processes, the impact on placental functioning can
consequently lead to reduced nutrient supply and fetal exposure
to higher levels of pro-inflammatory mediators, oxidative
stress, and hypoxia with resultant adverse neurodevelopmental
outcomes (3, 92–95). A prime example of the impact of
placental functioning on nutrient delivery and fetal exposure
to pro-inflammatory mediators and reactive oxygen species is
preeclampsia. Many preeclamptic animal models result from
surgical manipulation of uterine blood supply, such as the
Reduced Uterine Perfusion Pressure (RUPP) model commonly
seen in rats (96). Whilst imperfect, this model does partly
replicate the “Two Stage Model” of preeclampsia whereby
reduced placental perfusion results in the clinical syndrome
with fetal growth restriction, hypertension, and proteinuria (97).
Placental morphology is altered in preeclamptic pregnancies
with more oblong, thicker, and smaller surface area placentas
compared to non-preeclamptic ones thought to contribute
to impaired fetal nutrient delivery (98). These placental
morphological changes in combination with maternal vascular
malperfusion leading to reduced placental perfusion are the
likely drivers behind impaired nutrient supply to the fetus
(99). Reduced nutrient supply, oxidative stress, hypoxia, and
inflammation are likely the key drivers in both the maternal
and fetal injury seen in placental disorders and likely the major
contributors to subsequent neurodevelopmental adversity (100,
101). These challenges can occur acutely, such as in birth
asphyxia, or chronically, as in placental insufficiency, however
with both having the potential for significant brain injury and
adverse neurodevelopmental outcomes. There are a number of
nutraceuticals currently under investigation that offer hope as
potential therapies to minimise potential harm to the developing
fetus and particularly to the developing brain (94, 102, 103).

Sulforaphane

Sulforaphane is an isothiocyanate phytonutrient first
discovered in the 1980s. It is found in cruciferous vegetables,
such as broccoli, and has anti-inflammatory, anti-malignant,
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and antioxidant properties (104). Sulforaphane is a potent
phase II detoxification enzyme inducer that works by activating
nuclear factor erythroid 2-related factor 2 (Nrf2), which
influences gene transcription through antioxidant response
elements (AREs) (105). Unlike directly acting antioxidants, such
as Vitamin C (ascorbic acid), which are consumed through their
oxidative scavenging processes, sulforaphane can upregulate
many different antioxidants through activating AREs situated
in the promoter region of target genes (106). Nrf2 has been
identified as a master regulator of cellular defenses to various
stressors, including metabolic and oxidative stress, by regulating
the expression of enzymes including heme oxygenase-1 (HO-
1), thioredoxin (TXN), glucose 6-phosphate dehydrogenase
(G6PD), and NAD(P)H:quinone oxidoreductase (NQO1) (106).

Many animal-based studies have shown potential benefits
of sulforaphane in neurodevelopment due to its antioxidant
and anti-inflammatory properties. Normal neurodevelopment
of the fetus requires a tightly regulated balance of free radical
formation and cellular antioxidant activity (3). However,
when free radical formation and accumulation outstrips the
ability of endogenous cellular antioxidant processes, oxidative
stress occurs resulting in mitochondrial injury, impaired
energy production, apoptotic cell death, and disordered
neurodevelopmental pathways (3, 92, 107). A commonly
encountered aromatic teratogen created from cooking
meat at high heat, 2-amino-1-methyl-6-phenylimidazo[4.5-
b]pyrimidine (PhIP) can cause embryonic death and neural
tube defects, both of which were mitigated in chicken embryo
culture containing sulforaphane (108).

Oxidative stress following acute brain inflammation, such
as occurs with intrauterine fetal stroke, can result in the
prolonged opening of the mitochondrial inner membrane
permeability transition pore (PTP) leading to dysfunction of
the electron transport chain and hence bioenergetic failure
of neural cells (109). When bioenergetic failure occurs due
to resultant ischaemia and hypoxia, this induces apoptosis
and cell death dysregulating typical neurodevelopment (92).
From this perspective, rat brain mitochondria when treated
with sulforaphane under conditions of oxidative stress were
able to resist PTP redox-regulated opening which may
provide neuroprotective effects to the developing brain when
exposed to oxidative stress (110). Similarly, cultured cortical
neurons exposed to sulforaphane were shown to be protected
from exposure to hydrogen peroxide and non-excitotoxic
glutamate toxicity modelling oxidative stress (111). Finally,
an in vitro study of cultured cortical astrocytes exposed to
hypoxia and glucose deprivation as experienced following
ischaemia/reperfusion injury, showed sulforaphane improved
astrocyte cell viability (112).

Nguyen et al. (113) exposed rats to lipopolysaccharide
(LPS) inducing maternal and fetal inflammation with
consequent growth restriction and developmental delays,
which was mitigated following maternal broccoli sprout

administration with improvement in birthweight and offspring
neurodevelopmental outcomes. A recent large animal model of
hypoxic brain injury using piglets was able to show systemic
administration of sulforaphane 15-min after hypoxic brain
injury was able to improve neuronal survival in the putamen
and sensorimotor cortex further highlighting a potential role
in preventing neurodevelopmental disorders in the perinatal
stroke setting (114).

The therapeutic potential of sulforaphane has been or is
currently being investigated in several clinical trials, including
for prostate cancer (115), children with autism spectrum
disorder (116), subarachnoid haemorrhage (117), preeclampsia
(103), and depression (118). Ultimately, sulforaphane is a potent
antioxidant regulating phase II detoxification enzyme, which
may help to mitigate the pathological processes underpinning
disorders of neurodevelopment due to oxidative stress and
inflammation. With an excellent safety profile based on
animal studies and numerous potentially beneficial effects,
sulforaphane represents a potentially powerful fetal therapeutic
in pregnancies complicated by impaired placental function, such
as preeclampsia and fetal growth restriction (FGR).

Creatine

Creatine (N-[aminoiminomethyl]-N-methyl glycine) is a
nitrogenous amino acid derivative important for cellular
energetics as the substrate for the creatine kinase circuit (119,
120). This phosphagen shuttle is integrated into oxidation
phosphorylation via the mitochondria, as well as glycolysis,
with the primary functions of the circuit being immediate
temporal energy buffering, i.e., maintaining ATP turnover
and the intracellular ATP/ADP ratio; and as a spatial energy
buffer to transport high energy phosphagens from sites of
ATP production to sites of ATP utilisation (119). The creatine
phosphagen system produces ATP more rapidly than any other
metabolic system, with the interplay between the different
components of the creatine kinase circuit being essential to
sustain the bioenergetic demand of a cell (120, 121).

Creatine can be acquired from a diet of meat, fish, and
dairy products or synthesised by the body de novo (119). In
the 1970s, athletes first used dietary creatine supplements as a
potential ergogenic aid due to their capacity to maintain cellular
energy turnover in tissues with high and fluctuating energy
demands (122). Over the years, the pleiotropic effects of creatine
on cellular bioenergetics have seen dietary creatine supplements
gain attention as a protective therapeutic agent for disorders
associated with chronic or acute energy depletion (123–128).

The fetal brain appears to rely on creatine for normal
growth and development, with creatine metabolism integral to
energy homeostasis during central nervous system development
in the embryo, particularly in the growth of dendrites and
axons and migration of neuronal growth cones (129, 130).
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The importance of creatine for adequate brain maturation and
function in the neonatal period, and beyond, is highlighted by
those infants born with inherited creatine deficiency syndromes
(CDS) who often present with progressive neurological deficits,
including impaired psychomotor function and seizures (131,
132). Notably, the simple introduction of dietary creatine
supplements is often sufficient to restore cerebral creatine and
when diagnosed early and managed, those with CDS can live
relatively symptom-free. However, much still needs to be done
to improve awareness of CDS in the wider community and
promote early screening of at-risk infants (133).

In addition to the use of dietary creatine supplements
to correct deficiencies, the capacity of creatine to maintain
ATP turnover, acid-base balance, and mitochondrial function,
along with its antioxidant, vasodilator, and anti-excitotoxic
properties, make creatine a candidate for the treatment of
ischemic-reperfusion brain injuries (125). Indeed, a 2021
systematic review by Tran et al. (134) of pre-clinical (small
animal and rodent) studies assessing creatine supplementation
to protect the perinatal brain from hypoxic-ischemic
encephalopathy concluded that creatine supplementation
during pregnancy showed promise as a prophylactic therapy.
Further studies in a large translational sheep model of
fetal hypoxia-ischemia have detailed the benefits of high
creatine concentration in the fetal circulation before hypoxia
on reducing systemic hypoxaemia and interstitial cerebral
pyruvate, lactate and reactive oxygen species accumulation in
the 72 h after oxygen deprivation (135–137). Investigations
into the histopathological and functional consequences of
these improvements are underway. Still, based on these
studies, it appears a clinical trial of maternal dietary creatine
supplementation to reduce the incidence of hypoxic-ischemic
perinatal brain injury is imminent. Investigations into the
benefits of creatine supplementation during pregnancy and
in the early postnatal period following preterm birth are also
underway (138).

Conclusion

Maternal nutrients are essential to supporting a healthy
environment for fetal growth and development, particularly
neurodevelopment. The maternal diet can be insufficient
to provide the necessary micro- and macro-nutrients,
with dietary supplementation often recommended in
pregnancy. Here we have highlighted several essential
nutrients; folate, iodine, vitamin B12, iron, vitamin
D, PUFAs, and choline, that play a role in successful
fetal neurodevelopment. However, while many of these
nutrients require additional supplementation in pregnancy,
there is also evidence that excessive supplementation
may also be associated with adverse neurodevelopment.
Ongoing research to inform who most benefits from

supplementation, for how long they should receive additional
supplementation and to achieve what target level in the
mother for optimal pregnancy outcomes and offspring
neurodevelopment is needed.

Beyond supporting normal human development, nutritional
supplements in the form of nutraceuticals also hold promise
to protect fetal neurodevelopment in the face of pregnancy
complications. Sulforaphane, a potent anti-inflammatory and
antioxidant, may have the potential to mitigate some of the
pathological processes seen in disorders of pregnancy that are
associated with inflammation and oxidative stress. Similarly,
creatine is integral for cellular bioenergetics and central nervous
system development, offering promise of fetal neuroprotection
from perinatal asphyxia. Indeed, sulforaphane and creatine
have potential benefits to minimise adverse neurodevelopmental
outcomes and neuropsychiatric disorders later in life.

Maternal nutrition is essential to fetal neurodevelopment
and while this review has outlined what is currently known it
is an exciting area to watch, as the complete role of micro-
and macro-nutrients on the fetal brain are still far from
fully understood.
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