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This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Lactoferrin for COVID-19
prevention, treatment, and
recovery

Ecem Bolat1, Furkan Eker1, Merve Kaplan1, Hatice Duman1,
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Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), a unique

beta-coronavirus, has caused the most serious outbreak of the last century

at the global level. SARS-CoV-2 infections were firstly reported in the city of

Wuhan in China in 2019 and this new disease was named COVID-19 by World

Health Organization (WHO). As this novel disease can easily be transmitted

from one individual to another via respiratory droplets, many nations around

the world have taken several precautions regarding the reduction in social

activities and quarantine for the limitation of the COVID-19 transmission.

SARS-CoV-2 is known to cause complications that may include pneumonia,

acute respiratory distress syndrome (ARDS), multi-organ failure, septic shock,

and death. To prevent and treat COVID-19, some significant studies have

been conducted since the outbreak. One of the most noticeable therapeutic

approaches is related to a multifunctional protein, lactoferrin. Lactoferrin (Lf)

is an 80 kDa cationic glycoprotein that has a great range of benefits from

improving the immunity to antiviral e�ects due to its unique characteristics

such as the iron-binding ability. This review summarizes the characteristics of

SARS-CoV-2 and the potential applications of Lf for the prevention, treatment,

and recovery of COVID-19.

KEYWORDS
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Introduction

Severe Acute Respiratory Syndrome Coronavirus-2
(SARS-CoV-2) and COVID-19

Viruses, causing seasonal epidemics and sometimes pandemic outbreaks, have

circulated between humans and animals throughout history. In the past centuries,

various viruses adversely affected human health and evenly caused death. The Spanish

flu in 1918, for instance, killed 50 million people around the world. In addition, swine flu

in 2009 caused the death of around 4–5 million people. Nowadays, we have been waging

war with a pandemic that is arising from the coronavirus family (1). In December 2019,

Frontiers inNutrition 01 frontiersin.org

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://doi.org/10.3389/fnut.2022.992733
http://crossmark.crossref.org/dialog/?doi=10.3389/fnut.2022.992733&domain=pdf&date_stamp=2022-11-07
mailto:sercankarav@comu.edu.tr
https://doi.org/10.3389/fnut.2022.992733
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnut.2022.992733/full
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Bolat et al. 10.3389/fnut.2022.992733

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-

CoV-2) infections reported as a cluster of pneumonia cases

in city Wuhan in China. The newly discovered disease was

named COVID-19 by World Health Organization (WHO) in

2020 (2).

Coronaviruses come from a large family known as the

Coronaviridae. The name corona is derived from the Latin word

“corona” meaning “crown” and was given to the virus due to

having a crown-like appearance on its membrane called a spike

(3). Human and animal coronaviruses have been describe in

the literature before the COVID-19 outbreak (4). The virus

is known to be genetically similar to previous viruses that

emerged in China as SARS-CoV (79%) (in 2002) and in

Saudi Arabia as MERS-CoV (50%)—Middle East Respiratory

Syndrome Coronavirus (in 2012) (5, 6).

Coronaviruses are divided into four genera: α, β, δ, γ. While

both alpha-type and beta-type coronaviruses infect mammals,

gamma-type coronaviruses infect avian species, and delta-

type coronaviruses are known to infect both type of species

(7). SARS-CoV, MERS-CoV, and SARS-CoV-2 were result of

the beta-type coronavirus activity eventually caused global

pandemics (5).

Shortly after the emergence of COVID-19 in China, causing

a global health crisis on a scale that has not been evidence

in the last century (8). In the first days of January 2020, the

reported number of patients that were diagnosed with COVID-

19 infection was reported to be only 41 (9). Just within a few

weeks, on January 30th, 2020, WHO declared the outbreak

of COVID-19 as a Public Health Emergency of International

Concern (PHEIC) (10). On July 8th, 2020, the coronavirus

spread across 216 cities worldwide. Globally, as of 28th June

2022, there have been 542,188,789 confirmed cases of COVID-

19 including 6,239,275 deaths, reported to WHO.

According to an epidemiological update published by WHO

in February 2022, globally there are 422 million cases followed

with 5.8 million deaths (11). The current data shows even

higher numbers with the updated version in near end of

the August 2022, the COVID-19 pandemic that has extend

to Europe (246,729,836), Americas (174,625,662), Western

Pacific (81,762,210), South-East Asia (59,908,896), Eastern

Mediterranean (22,946,608), and Africa (8,777,310), has still

causing serious numbers of deaths (12). In England, between

October 2020 and April 2021, people that got COVID-19

positive were classified according to their conditions; Individuals

with conditions such as hypertension (15%), diabetes mellitus

(8.6%), chronic respiratory disease (21.2%) at greater risk to

exposed with coronavirus (12, 13).

The genetic and physical structure of
SARS-CoV-2

Since December 2019, many studies have been carried out

to better understand SARS-CoV-2 genomic background. Several

scientists tried to identify the source of this virus to analyze

its genes and family tree. The fact that the virus has a unique

RNAmakes it possible to identify the virus and at the same time

the properties of the SARS-CoV-2 could be come out thanks to

this genome information. It was discovered that coronaviruses

contain a single positive-stranded RNA as genetic material (5).

They can jump from animals to humans (called a “spillover”)

due to their high tendency of mutation (5). Therefore, it can be

said that coronaviruses are “zoonotic” viruses (14). Furthermore,

the genome sequence of SARS-CoV-2 is very similar to the type

of coronavirus found in bats, which brings the idea that this

virus’s ancestors are bat viruses that eventually end up with its

encountering with human species.

Coronaviruses’ genome consist of the largest amount, 26.4–

31.7 kb, between the RNA viruses (6). The genome is designed

into six or seven regions, and each region contains at least

one open reading frame (ORFs). These regions are separated

by the presence of some sequences that have a signal(s) for

transcription of multiple subgenomic mRNAs (7). SARS-CoV-

2 has 6 ORFs and can encode 4 structural proteins which are

nucleocapsid (N) protein, membrane (M) protein, spike (S)

protein, and envelope (E) glycoprotein together with 16 non-

structural proteins (1, 15, 16). Nucleocapsid, membrane and

spike proteins are encoded by the peerless regions of the mRNAs

(7). Among these structural proteins, the spike protein illustrates

large protrusions from the virus surface, creating the crown

appearance of coronaviruses with its two subunits, S1 and S2

(17). Apart from mediating virus entry into the host cell, spike

protein is a crucial determinant of viral host spacing and tissue

tropism, and the major stimulator of host immune responses

(18). The spike proteins situate on the virus’s membrane and

bind to angiotensin-converting enzyme 2 (ACE2) which was

found to be a receptor for the SARS-CoV-2 that is utilized

by a virus-infected host cell, allowing the viral entry of the

virus through endocytosis (16, 19). The ACE2’s binding site

is found in the S1 part of the spike protein, in the receptor

binding domain (RBD) (17). ACE2 is mainly present in the

lung, heart, kidney, liver, intestine, and other tissues (16, 19, 20).

ACE2 does not only act as a virus receptor it also regulates

and controls blood pressure, the functions of the heart and

kidney (19).

The major e�ects of COVID-19 on human
health

COVID-19 can adversely affect human health by infecting

the respiratory tract. The most common symptoms observed are

headache, smell and taste dysfunctions, dizziness, and impaired

consciousness (21). Also, that is stated, these symptoms are not

specific to SARS-CoV-2 infection. On the contrary, they are

similar to symptoms observed in many other viral infections.

SARS-CoV-2 can primarily be transmitted from person to

person through respiratory droplets directly or by contacting
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contaminated surfaces that include droplets of someone who is

infected with the virus (1). An infected person can release these

droplets by coughing, talking, sneezing, or breathing (22). On

contrary, others experience acute respiratory distress syndrome

(ARDS) which the lungs cannot provide the body with enough

oxygen because of injury to the alveoli in the lungs (23, 24). At

the same time, the symptoms are appeared to be more severe

in people with additional risk factors such as old age, obesity,

diabetes, high blood pressure, heart disease, cancer, and chronic

respiratory diseases (8). Moreover, COVID-19 patients were

analyzed by their neurological symptoms with their frequency

(25). The study showed that SARS-CoV-2 was detected in the

cerebrospinal fluid due to the passage of the virus through the

blood-brain barrier.

Diagnostic and therapeutic studies against
COVID-19

Several types of tests are used to diagnose this infection

such as reverse transcriptase-polymerase chain reaction (PCR)

recognizes the virus based on its genetic fingerprint. An

antibody test can also be applied to check the presence of

antibodies produced by the host’s immune system to identify

foreign molecules such as viral spike proteins (26). Several

types of vaccines have been asserted during the COVID-19

pandemic, such as messenger RNA-based, DNA-based, protein-

based, viral-vectored, live-attenuated, and inactivated vaccines

(27). Each type has some advantages and disadvantages in its

production or action way.

For instance, nucleic acid vaccines are genetically considered

a safer approach, thus, it provides a non-infectious approach

for stimulating a stronger immune response compared to other

traditional vaccines (28). Multiple parameters go around during

the vaccination process such as continual production of safe

and effective vaccines or being able to supply and deploy these

vaccines worldwide (29). Viruses have a tendency to mutate

frequently, which results in different variants (30) that disturb

vaccine production. Therefore, vaccine’s effectiveness might

loss its influence against new variants. In this perspective, the

development of mRNA vaccines that focus on spike proteins

could be considered a more stabilized approach. However, the

potential mutation on the spike protein puts these vaccines in

the danger zone as well. Therefore, whenever a new persistent

variant spreads through the population, each vaccine must be

specifically put into test to confirm its efficiency has remained

against the new variant.

For instance, after its detection in India, the delta variant

started a huge concern amongst authorities due to its 60% higher

transmissibility (31). Recently, the cases in the United States

were dominated by the delta variant, followed by the cases in The

United Kingdom, so on (32–35). Similarly, the alpha variant has

been reported to have a 56% increased spreading rate (36). Even

though it is stated that this variant has low or no effect on the

vaccine’s effectiveness, the increase in their spreading rate still

causes some problems.

As a result, new alternatives or supportive approaches for

diagnosis and treatment are always consider in high demand.

Several distinct methods were applied to find alternative

approaches to control the COVID-19 pandemic throughout

its course. For instance, the spreading of COVID-19 was

simulated with mathematical modeling for creating a decent

foresight about the duration of the pandemic (31). Thus, it

is of the utmost importance to consult some other potential

methods and integrate them for assisting our current case in

the pandemic.

Lactoferrin—a multifunctional
glycoprotein

Lactoferrin (Lf), which also called lactotransferrin, is a

cationic glycoprotein with a molecular weight of about 80 kDa

(37, 38). Lf is a multifunctional protein that has numerous

biological functions include its antiviral and antibacterial

effects as well as immunity booster tendencies owing to its

characteristics (39, 40). Lf is a part of the transferrin family and

has a 60% sequence identity with serum transferrin protein. The

protein has a high binding affinity (Kd ∼ 10−20 M) for Fe+3 ions

(37, 41). In addition, it has three different isoforms; these are

lactoferrin-α, lactoferrin-β, and lactoferrin-γ. While lactoferrin-

α acts as an iron-binding agent but has no ribonuclease activity,

both lactoferrin-β and lactoferrin-γ have ribonuclease activities

but are unable to bind iron ions (38, 42). Lf includes 692 amino

acids and composed of two α-helixes that connect globular lobes

(37, 38, 42). Each N-lobe and C-lobe have a metal ion binding

site where the metal ions, such as Cu2+, Zn2+, Mn3+, Al3+,

and most importantly, Fe3+ can bind (43).

Lf bears noticeable importance due to several characteristic

properties (Table 1), especially iron-binding ability, among other

members of the transferrin family (66). Lf has a high resistance to

releasing the iron ions at low pH values. As a result, the iron ions

binding capability and keeping them inside the infected tissues

with low pH is secured (42).

Thus, the protein has a crucial role in infected and inflamed

areas where it binds the iron ions, inhibits bacterial growth

(bacteriostatic), and reduces their proliferation by taking the

iron used in the bacterial growth from the environmental

matrixes (67–69). This ability of Lf also known as its anti-

microbial activity affects the growth and proliferation of a sort

of infectious microorganisms from viruses to fungi (38, 67).

During the antiviral activity, Lf also acts as an obstacle that binds

to the viral cell surfaces with either receptors or co-receptors.

Consequently, an act of viral attachment to the cell’s surface

is prevented (70), which enables Lf to have several positive

influences on the immune system and the ability to fighting with

viral infections (42).
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TABLE 1 Biological e�ects of lactoferrin.

Effect type Form of

lactoferrin

Action mechanism References

Antiviral Intact and/or peptides Direct interaction with virus surface,

DNA, or cell surfaces

(44–55)

Antibacterial Intact and/or peptides Iron binding, direct interaction with

surface of bacteria

(44, 52–57)

Antifungal Intact and/or peptides Iron binding, direct interaction with

surface of fungi

(53, 55, 58)

Enhancing

immunity

Intact Enhancement of natural killer cell

activity and T-cell responses

(53, 55, 59–61)

Anti-inflammatory Intact and/or peptides Suppressing extracellular traps from

neutrophils, polarization of

macrophages to M2 type, inhibition

angiotensin II pro-inflammatory activity

(62–64)

Iron homeostasis Intact and/or large

fragments

Iron binding, restoring levels of

iron-binding proteins

(53, 55, 65)

Antiparasitic Intact and/or peptides Reducing the infectivity of parasites (54)

The therapeutic potential of lactoferrin to
COVID-19

A variety of Lf effects in microbial and viral infections led

to a suggestion that the iron-binding affinity of Lf gives the

protein critical importance and role in inflammatory processes.

The iron balance between the blood and tissues has a crucial

significance, besides, Lf can create or protect this iron balance

for patients that are infected by COVID-19 (41). At the same

time, Lf has an immunomodulatory role and plays critical role by

stimulating the cells involved in innate and acquired immunity,

while increasing human and animal immunity against viral

and bacterial diseases (71). Furthermore, Lf is known to have

effects on plasminogen which is a system that is essential for the

degradation of fibrin clots, activation of growth factors, removal

of protein aggregates, and cell migration. Lf has anti-thrombin

activity by binding directly to human plasminogen activation

that may occur on the cell surface. As a result, some virulent

bacterial species cannot bind to the human plasminogen and not

penetrate the host cell membrane due to the competition with

human lactoferrin (hLf) (72). Thus, hLf is known to reduce the

frequent coagulation problem in patients exposed to COVID-

19 (73).

Iron is also crucial for oxygen transport and helps in most

biological functions by acting as an electron acceptor and donor

for energy production (74). The optimum iron balance between

tissues and blood is referred to as iron homeostasis, in which Lf

possesses an important role on it (41). Iron homeostasis of Lf

disrupted in the situation of a viral infection and inflammation.

As a result, the intercellular iron concentration has increased

cause a positive effect on viral replication (75). The chelation

ability of Lf can be used to decrease the disease severity. The

ability of stimulation, and remodeling iron proteins, can be used

to reduce pro-inflammatory cytokine levels (75).

Bovine lactoferrin (bLf) is known to have the same functions

and sequence homogeneity as hLf that is found in human milk

and secretions (76, 77). It has confirmed that bLf can stop

the infection in the early phase by decreasing serum ferritin,

D-dimers, and IL-6 levels (73).

Due to those specialties of Lf, several clinical trials and

treatment applications were developed for COVID-19 disease

during the last couple of years (78, 79).

In Tables 1, 2, the type of viruses and effects of Lf against

them were mentioned. During the search for treatment agents

against COVID-19, these studies might point to the potential

usage of Lf as a treatment agent due to its wide range of

effects. Against SARS-CoV-2, there are lack of evidence and

study that demonstrates these effects on the table will be also

appear in COVID-19 treatment. The Lf ’s mechanisms that

observed in other viruses involves a wide-spectrum, which is

making Lf valuable choice of study. The studies that were

performed with these backing informations are still limited and

under investigation.

A better understanding of the effect of Lf on the immune

system is crucial for developing certain treatments, especially

during the pandemic. A variety of Lf has been observed in

recent studies (4, 98). With the knowledge of the known effects

of Lf, it is possible to acknowledge the beneficial effects of

the Lf treatment on COVID-19 patients. Still, the possibility

of these effects is under examination. For the movement of

wider treatment steps, a variety of studies and evidence are still

required for Lf ’s influence on COVID-19 treatment. Particular
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TABLE 2 Studies of di�erent e�ects of lactoferrin on di�erent viruses.

Effect of lactoferrin Target virus Study type References

Inhibition of viral entry Herpes simplex virus 1 and 2 (HSV-1

and HSV-2)

In-vitro (55, 80)

SARS-CoV

Reducing severity and

duration of infection

SARS-CoV-2 Clinical (81)

Inhibition of cytopathic effect Adenovirus In-vitro (82, 83)

Antiviral activity Avian flu—H5N1 In-vitro (82–86)

Human papillomavirus (HPV)

Hepatitis B virus (HBV)

Mayarovirus (MAYV)

Inhibition of binding and

replication

Echovirus 5 In-vitro (18, 46, 82, 83, 87)

Hepatitis B virus (HBV)

Japanese encephalitis virus (JEV)

Mouse norovirus (MNV)

Inhibition of viral replication Cytomegalovirus In-vitro (83, 88)

Echovirus type 6

Inhibition of viral adsorption

and increase survival

Enterovirus 71—EV71 Bovine viral

diarrhea virus (BVDV)

In-vitro, in-vivo,

clinical

(82, 83, 89–91)

Herpes simplex virus type-1 (HSV-1)

Epstein-Barr virus (EBV)

Neutralizing virus, blocking

invasion

Hepatitis C virus In-vitro and clinical (83, 92, 93)

Inhibition of cytopathic effect Human papillomavirus In-vitro (82, 94)

Inhibition of cytotoxicity,

reduction in gastroenteritis

incidence and symptom

Norovirus In-vitro and clinical (82)

Inhibition of cytopathic effect,

decreasing the prevalence and

severity

Rotavirus In-vitro and clinical (82, 95)

Blocking viral entry and

inhibition of replication

Human immunodeficiency virus (HIV) In-vitro (83, 96, 97)

Human parainfluenza virus type 2

(hPIV-2)

research and investigations on Lf might lead to changing the

patterns of possibilities into realities, so the accurate explanation

of the potential mechanisms lie underneath.

Antiviral mechanism and potential clinical uses
of lactoferrin against COVID-19

Several studies have been performed to understand the

potential antiviral mechanisms of Lf against SARS-CoV-2

(Figure 1) (43, 99). A recent study suggested potential antiviral

mechanisms of Lf against viruses including SARS-CoV-2 (99).

One of these includes heparan sulfate proteoglycans (HSPGs)

which increase the virus aggregation at the cell surface and

enhance their specific receptor binding abilities. Several similar

studies also suggested that Lf binds to HSPGs and prevents

viral entry to the host cell (80, 99, 100). The other possible

mechanism that indicates, Lf can link to SARS-CoV-2 directly

thus, Lf prevents the binding of the virus to its receptor ACE2.

Furthermore, Lf can also induce α and β interferon (IFN) via

intracellular cell signals, via Lf receptors which inhibit the viral

replication after the virus entry to the cell. This mechanism

is considered a significant factor in the early stages of viral

infection (82).

Several in-vitro and in-vivo studies related to the impact of

Lf on a broad range of viruses from HIV to SARS-CoV-2 were

conducted as shown in Table 2 (99). These studies have shown Lf
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FIGURE 1

Potential mechanisms of lactoferrin antiviral mechanism against SARS-CoV-2; (1) Inhibition of viral replication via the induced α and β IFN by
direct binding of lactoferrin to its cell receptor, (2) Direct interaction of lactoferrin with SARS-CoV-2 prevents the binding of the virus to ACE2
receptor, (3) Binding of lactoferrin to HSPGs on the host cell surface which prevents the viral entry through the host cell (43, 99).

can inhibit various viruses by using distinct mechanisms such as

inhibition of viral entry, cytopathic effect, binding, replication,

reduction of the severity, and antiviral effect.

Regarding Lf ’s antiviral effect against SARS-CoV-2, some

significant studies have been conducted based on the analysis

of different parameters (73, 81, 101, 102). In one of these in-

vivo studies, 75 patients with a positive result at IgM/IgG rapid

test have participated. Each patient took liposomal bLf syrup

(32mg of Lf/10ml) with four to six doses, each dose containing

10 mg/10ml syrup, every day for 10 days. The patients who were

given syrup were observed for 10 days at least twice a day then

they were investigated again after 30 days. As a result of the

investigation, Lf treatment had shown a positive effect and all

patients had a faster recovery when compared with the control

group (81).

In another in-vitro study examining the Lf ’s protective effect

against SARS-CoV-2, the gene responsible for the antiviral

immune response was detected by qRT-PCR in uninfected Caco-

2 intestinal cells with Lf. Both Lf treated and non-treated Caco-2

cells were infected by SARS-CoV-2. With the results of qRT-

PCR, expression of some specific genes was observed, which

are pattern recognition receptors gene—toll-like receptor (TLR3

and TLR7), inform regulatory factor gene (IRF3 and IRF7)

with helicase C domain 1 and mitochondrial anti-viral signaling

factor (MAVS). All genes are critical for sensing RNA viruses,

and results indicated that Lf partially managed to inhibit SARS-

CoV-2 infection (101).

In another study considering the saliva analysis of COVID-

19 patients (102), three groups of participants were selected,

which were either non-infected or infected before 7 days or

recovered from the virus for at least 2 months. All saliva

samples of participants were analyzed by real-time PCR for

the detection of SARS-CoV-2. In addition, several parameters

including TNF-α, IL-6, IL-10 (Cytokines), Lf, lysozyme, IgG,

IgA, and IgMwere analyzed by the ELISAmethod. In the results,

the Lf amount was recorded lower in the infected patients when

compared with the non-infected group. This indicates that there

might be a relationship between the observed cytokine storm—

an aggressive inflammatory response—and a decrease of Lf in

the COVID-19 patients. The indication is also supported in

another review article about Lf ’s potential reducing effect on

SARS-CoV-2 induced cytokine storm (15). Lf ’s immune system

modulating function might control the excessive stimulation of

immune system that is led to creation of cytokine storm.

A study, oral and intranasal liposomal bLf were tested in 92

patients withmild, moderate severity, or asymptomatic COVID-

19 (73). The patients were divided into three groups in total with

32 patients in the first, 28 patients in the second, and 32 patients
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in the third group. The patients in the first group were given

the capsules and nasal sprays three times per day. In the first

group, 14 out of 32 patients were treated at the hospital. The

remaining 18 patients were treated with oral capsules (100mg)

and intranasal (8 mg/ml) bLf at home. The 28 patients in the

second group were kept under surveillance at home without

any anti-COVID-19 drug. During the monitoring, the condition

of four patients worsened and they were hospitalized. Finally,

the third group with 32 patients was treated in the hospital

with hydroxychloroquine and lopinavir (SOC). The third group

of patients took two capsules (200/50mg) of lopinavir twice

and hydroxychloroquine (200mg) capsules per day, respectively.

According to the results, in the group treated with liposomal

bLf, the COVID-19 PCR test of individuals was negative after

an average of 14.25± 6.0 days. In addition, the group of patients

treated with SOC was negative for the COVID-19 PCR test after

a mean of 27.13 ± 14.4 days. On the other hand, patients who

were not treated in any way were negative for COVID-19 PCR

tests at the end of 32.61 ± 12.2 days. Furthermore, symptoms

such as coughing, headache, inability to smell (anosmia), and

myalgia had developed in patients treated with SOC at the end of

the study, whereas patients treated with bLf had not. Normally,

COVID-19 patients have a high level of IL-6.When bLf was used

to treat COVID-19 patients, IL-6 levels had significantly reduced

until the end of the study, and similarly, the same reductions had

been observed in D-dimer serum and ferritin levels.

Conclusion

Apart from its intrinsic antiviral activity and immune system

boosting property, Lf has a great effect on the iron levels

of specific tissues and thus affects many iron-containing and

oxygen-dependent factors in the organism. Lf ’s multifunctional

property might be effectively implemented into the treatment

procedure for COVID-19. Its antiviral effects and influence

on iron homeostasis might be integrated into the infection of

SARS-CoV-2, just like in other viruses. Thus, Lf-based treatment

strategies have great untapped potential in many viral infections

including COVID-19.

Due to Lf ’s critical and clear influence on many infections,

the mechanisms behind this antiviral characteristic must be

investigated in detail. The potential mechanisms that Lf might

possess can point to evidence and explanation of Lf ’s prevention

effect on SARS-CoV-2. In addition, Lf not only carries potential

treatment agents against SARS-CoV-2 infection, but it also has

a specialty in recovery with its influence on the overall immune

system. In the future, Lf not only can be used as a therapeutic

agent, but also can be used as a recovery supplement for patients

infected with COVID-19.

Despite the sudden peak in the related studies in the

literature in the last 3 years due to the pandemic, Lf still

hasn’t gotten the attention it deserves in the COVID-19 studies.

Although the main focus of COVID-19 studies is on the

prevention with vaccines, the effect of Lf on the immune system

to prevent COVID-19 and the synergistic studies with vaccines

are almost non-existent. The previous studies on Lf mainly focus

on the treatment potential of Lf. On the other hand, despite

the early studies on Lf effects on COVID-19 studies not only

put forth promising results but also showed comparable or even

better results than traditional treatment strategies such as SOC,

there are still not enough studies on the treatment potential of

this multifunctional protein.

Due to the many successful studies and adopted strategies

with other similar and dissimilar viral infections, current

literature not only strongly suggests the great potential of Lf in

COVID-19 treatment but also implies the great potential of the

molecule in the prevention of the disease.
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