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Coşier, Ahmad, Ali and Rusu. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which
does not comply with these terms.

Oxidative stress and metabolic
diseases: Relevance and
therapeutic strategies

Muhammad Faisal Manzoor1,2, Zaira Arif3, Asifa Kabir3,

Iqra Mehmood3, Danial Munir3, Aqsa Razzaq3, Anwar Ali4,5,

Gulden Goksen6, Viorica Coşier7, Nazir Ahmad3*,
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Metabolic syndrome (MS) is a prominent cause of death worldwide, posing

a threat to the global economy and public health. A mechanism that causes

the oxidation of low-density lipoproteins (LDL) is associated with metabolic

abnormalities. Various processes are involved in oxidative stress (OS) of

lipoprotein. Although the concept of the syndrome has been fiercely debated,

this confluence of risk factors is associated with a higher chance of acquiring

type 2 diabetes mellitus (T2DM) and atherosclerosis. Insulin resistance has

been found to play a significant role in the progression of these metabolism-

associated conditions. It causes lipid profile abnormalities, including greater

sensitivity to lipid peroxidation, contributing to the increased prevalence of

T2DM and atherosclerosis. This review aims to cover the most recent scientific

developments in dietary OS, the consequence ofmetabolic disorders, and their

most significant clinical manifestations (T2DM and atherosclerosis). It will also

emphasize the e�ects of dietary approaches in alleviating OS in MS.

KEYWORDS
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Introduction

Metabolism syndrome (MS) is an international public health concern. Obesity,

diabetes, dyslipidemia, elevated blood pressure, and hyperglycemia (1, 2). MS is highly

complicated and has unclear pathophysiology (3). Numerous research back up the

idea that oxidant/antioxidant imbalance may be crucial for its symptoms. Blood

samples from MS patients had higher levels of indicators for OS and lower levels

of antioxidant defenses, which may indicate an overproduction of oxidizing species

in-vivo (4). Minimally modified low-density lipoprotein (MM-LDL) and “(completely or
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extensively) oxidized” LDL are the two primary classifications

used to characterize oxidized LDL (ox-LDL) (5). The main

distinction between the two categories is that while MM-LDL

differs chemically from unmodified LDL, the LDL receptor still

recognizes it, unlike most known scavenger receptors. However,

none of the ox-LDL preparations are identified by the LDL

receptor, only a variety of scavenger receptors (5). The content

and the biological consequences of the many preparations that

make up each of the two categories of ox-LDL vary greatly (5).

A drop in blood vitamin C and -tocopherol concentrations, a

decline in superoxide dismutase (SOD) activity, and an increase

in protein and lipid oxidation have all been linked to poor

antioxidant defense in MS patients (4). On stopping OS in MS,

several research is being conducted. According to recent studies,

diets high in whole grain cereals, fruits, and vegetables and low

in animal fat can improve one’s overall health (6).

During the previous two decades, T2DM and atherosclerosis

have become the world’s leading causes of death in the

last 20 years (7, 8). The prevalence of these diseases varies

from region to region (9). Diabetes is linked to many

other conditions and consequences leading to tissue and

organ damage. The prevalence of heart diseases, including

peripheral vascular disorders, high blood pressure, ischemic

heart diseases, and atherosclerosis, is especially high (80%) in

North American diabetic patients (9). It is also one of the

leading causes of neuropathy, retinopathy, and nephropathy

(10, 11).

According to the international diabetes federation (IDF),

about 415 million people with diabetes live worldwide.

The prevalence rate is 8.8 and 75% of people live in

developing countries. By 2040, approximately 642 million

people will be affected by T2DM (12). According to this survey,

prediabetes and T2DM prevalence rates are 10.91% and 26.3%,

respectively. Overall, 27.4 million people older than 20 years

have diabetes.

On the other hand, atherosclerotic cardiovascular diseases

(ASCVD) are a leading cause of global morbidity and mortality

(13, 14). According to the World Health Organization (WHO),

17.9 million individuals died from cardiovascular diseases

(CVDs) in 2019, 32% of all global deaths. Of this 32%, 85% were

due to heart attack and stroke. The ratio of deaths due to CVDs

was three quarters more in low and middle-income countries.

Under the age of seventy, 17 million premature deaths occurred

in 2019 due to non-communicable diseases. Of the 17 million

deceases, 38% were caused by CVDs.

This paper aims to give a broad overview of OS’s

contribution to the pathophysiology of MS and other

associated risk factors. In particular, it is focused on (i)

the relationship between ox-LDL and metabolic disorders, (ii)

dietary management for a reduction in oxidation and glycation

of LDL, and (iii) dietary approaches to inhibit LDL oxidation

and glycation. In addition, the global health burden of MS has

also been discussed.

Burden on health system

According to research in 2015, an estimated direct or

indirect cost for CVDs was $555. An estimation is that annual

costs will be increased to above $1 trillion by 2035 (15). In

2015, the Center for Medicare and Medicaid Services spent

nearly $32,000 per capita on stroke and heart failure, almost

$29,000 (16).

Diseases that occur after metabolic disturbance are linked

to a process that causes LDL oxidation. Typically, 60–70% of

LDL moves back to the liver after circulation, and peripheral

tissues take the remaining 30–40% take the remaining 30–40%.

North America, Europe, and Asia have hosted the majority

of the studies on MS (17). Because of this, little is known

about the prevalence and risk factors of MS in the population

of sub-Saharan Africa. According to the limited studies that

have been done in sub-Saharan Africa, the incidence of MS is

quickly catching up to that in affluent countries (18). It could

result from harmfulWestern food and lifestyle changes, cigarette

use, and anti-HIV medication usage in those regions (19). The

prevalence of non-communicable diseases (NCDs) has recently

grown in sub-Saharan nations like Ethiopia due to fast economic

expansion, an aging population, and sedentary lifestyles (20).

Relationship between ox-LDL and
metabolic disorders

Diabetes

T2DM is the most common type of diabetes mellitus.

It is typically characterized by chronic hyperglycemia,

hyperinsulinemia, dyslipidemia, and lipotoxicity, resulting

in progressive deterioration of insulin secretion and insulin

action (21). Hyperglycemia results from the overproduction of

free radicals, which are linked to the development of diabetes

(22). It has been found that insulin resistance plays a key

role in the occurrence of T2DM. Risk factors often include

hyperinsulinemia, decreased high-density lipoprotein (HDL)

cholesterol, elevated triglyceride, and hypertension with insulin

resistance (23). Adipocyte insulin resistance and inflammation

have been identified as essential factors in the occurrence

of T2DM (24). It is undeniable that insulin resistance is

characterized by decreased peripheral glucose uptake (primarily

in the muscles) and increased endogenous glucose production.

In addition, it decreased peripheral glucose utilization and

impaired beta-cell function (25).

Typically, in a way mentioned in Figure 1, glucose uptake,

glucose moves inside the cells. But in insulin resistance,

insulin receptors become resistant to insulin which ceases

this mechanism, and insulin and glucose levels elevate in the

bloodstream. Insulin resistance can disrupt glucose metabolism

(26), resulting in chronic hyperglycemia, which causes OS and
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FIGURE 1

During high hyperglycemia, reactive oxygen species (ROS) is excessively increased in mitochondria. Three main pathway is responsible for
hyperglycemia damage an activation of the polyols pathway, PKC pathway, and accumulation of AGES will prevent diabetic complications
altogether.

inflammatory responses that cause cellular damage. LDL is

exposed to high circulating glucose levels due to the high glucose

concentration in the blood. This exposure changes the LDL to

glycated LDL.

Diabetes is also caused by excessive reactive oxygen species

(ROS) produced in obese people, which causes the proliferative

arrest of pancreatic beta β-cells (27). Most -cells do not have

the potential to re-enter the cell cycle or have a short cell cycle

length. ROS plays a significant part in the dysregulation of

pancreatic cell proliferation by changing the cell cycle regulators,

contributing to the onset and progression of diabetes (27).

Numerous studies have also shown a direct link between

elevated OS in MS and nicotinamide adenine dinucleotide

phosphate oxidase (NOX) activity (28, 29) (Figure 2).

Changing dietary intake from organic healthy foods to

highly processed foods may lead to increased exposure to

advanced glycated end products aged garlic extracts (AGEs)

by a non-enzymatic chemical reaction called glycation (30).

In industries, AGEs are used to improve flavor and color

and increase the shelf life of food (30). On the other hand,

increased exposure to these AGEs may lead to severe health

disorders. There are two types of AGE: Serum endogenous

advance glycated end products (sAGE) that form within the

body during digestion, absorption, and metabolism (30). Foods

are the exogenous AGEs also called dietary AGEs (dAGE’s). Both

endogenous and exogenous AGE’s significantly contributed to

the total body AGE pool (31).

Different Researches explain that older individuals have been

exposed to both endogenous and exogenous AGE (32). It leads

to the development and progression of severe health disorders

(32). These age-related problems are mediated and associated

with OS and inflammation (33). Increased daily intake of

processed foods, deep-fried foods, and high fructose items may

cause inflammation and disturbance of the immune system. The

primary physiological effect of insulin on nutrient utilization

and intermediary metabolism occurs in the postprandial state

when variable increases in plasma glucose cause insulin

secretion (34). It results in glucose clearance from plasma by

stimulating its uptake, using skeletal muscle and adipose tissue,

and attenuating hepatic glucose production by inhibiting hepatic

gluconeogenesis and glycogenolysis (Figure 3).

Insulin resistance may affect lipid metabolism as much

as glucose (38). Ox-LDL was significantly linked to insulin

resistance in children, young adults, and the elderly. Diabetes

patients had substantially higher ox-LDL levels than non-

diabetics (38). Insulin’s main effects also preserve skeletal muscle

mass by inhibiting protein breakdown, translating specific

protein groups, and inducing lipid accumulation in adipose

tissue (39). However, insulin resistance can be any impairment

of insulin action on target tissues (40).
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FIGURE 2

Insulin binds to insulin receptors α units which cause phosphorylation of insulin β units. After activating the insulin receptor substrate subunit,
P13-K is attached to domain hands on both sides. This procedure activates Akt protein kinase B, which plays an important role in transferring
glucose inside the cells.

FIGURE 3

In normal conditions, after taking food, the glucose level of the blood increases. High glucose levels stimulate pancreatic β cells responsible for
insulin production. After the activation of β cells, insulin level increases in the blood, which lowers glucose level to the normal range. When this
insulin production is not enough for glucose utilization, glucose remains constant in the blood (35–37).
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OS in metabolic disorder leading to
obesity

OS is a double-edged sword since it can cause and

result in obesity. Numerous epidemiological, animal, and

clinical investigations have shown that obesity and redox

change are related (41). Increased OS can result from

several variables, such as high-fat, high-carbohydrate diets, and

persistent undernutrition, by activating intracellular pathways

such as NOX, oxidative phosphorylation in mitochondria,

glycoxidation, protein kinase C (PKC), and the polyol pathway

(41). OS and obesity are related through mutual support

pathways (42). In addition to causing a persistent chronic

inflammatory state by excessive ROS formation due to a

high-fat, high-carbohydrate diet and inhibited antioxidant

system, obesity can also produce systemic OS through NOX

activation (27). Even though it is difficult to pinpoint which

comes first, inflammation and OS coexist in obesity (27).

The overproduction of ROS may be further exacerbated by

the redox-sensitive transcription factors, including NF-kB and

activator protein (AP)-1, which are activated by ROS and

producemany pro-inflammatory cytokines (27). It causes a cycle

that breeds a variety of illnesses, including insulin resistance,

T2DM, atherosclerosis, and cancer, all referred to as MS (27, 43).

Atherosclerosis

Several genetic and environmental factors lead to CVDs.

Oxidation of LDL is the main factor that leads to subclinical

CVDs by initiating atherogenic events. These events cause the

formation of mature atherosclerotic plaque. Atherosclerosis is a

disease in which blood delivery and flow reduce all across the

body due to the hardening and thickening of blood vessels (44).

The oxidation of LDL also aids the formation of

atherosclerotic plaques. Atherosclerosis is a condition

of developing complicated atherosclerotic plaques and

causes the hardening and narrowing of the arterial wall

(45). The Greek term atherosclerosis consists of two parts,

the first one is Atherosis and the second one is sclerosis.

Atherosis means fat accumulation goes along with several

macrophages, and sclerosis is defined as a fibrosis layer

consisting of smooth muscle cells, connective tissues, and

leukocytes (46).

LDL does not directly promote atherosclerosis, but its

oxidative modification in intima can increase foam cell

formation at the lesion site and atherosclerotic plaque formation

(47). For a clear understanding of how ox-LDL leads to

atherosclerosis, there is a need to explain the whole mechanism

of atherosclerosis. The atherosclerosis process includes three

main steps: 1. Formation of fatty streaks, 2. Formation of

atheroma, and 3. Formation of atherosclerotic plaque.

Fatty strips formation

For a clear understanding of how ox-LDL leads to

atherosclerosis, there is a need to explain the whole mechanism

of atherosclerosis (48). The atherosclerosis process includes: (a):

In the first step, due to elevated level of plasma LDL cholesterol,

LPL-C entered endothelial cells by endocytosis. Because of

the high level of plasma LDL, extracellular proteoglycans

increase (49). LDL has a great affinity with this extracellular

component, so it gets trapped at the lesion side in the intima

wall of arteries. So, the Concentration and period of stay

in intima increased (50). These factors result in spontaneous

oxidative modification of trapped LDL. (b) In a second step,

ox-LDL functions as an antigen for T-cells and activates T-

cells, so accordingly secrete cytokines that initiate endothelial,

smooth muscle cells and macrophages SMS in further steps.

(c): In the third step, activated or altered endothelial cells

generate adhesion molecules on leukocytes (51). Adhesion

molecules have specific receptors expressing smooth muscle

cells and vascular endothelial cells on specific leukocytes.

In the expression of adhesion receptors, transcription factor

NF-αβ is activated by pro-inflammatory binding cytokines

to their receptors on the endothelial surface and performed

transcription (52). These adhesion molecules play a vital role in

chemokines/cytokine production and release, which is critical in

the activation and release of leukocytes. Furthermore, migration

of endothelial and smooth muscle cells (SMC) accurse due

to specific chemokines. From various studies, it has been

demonstrated that adhesion molecules are unregulated by ox-

LDL. (d): In the fourth step, phagocytes differentiate into

macrophages after insertion into the intima. Macrophages carry

out uptake and acquisition of ox-LDL with the action of their

scavenger receptors. They will convert to yellowish foam cells—

cytokines and ox-LDL increase the expression of these receptors

when monocytes differentiate into macrophages (51). Ox-LDL

ligand surface is phospholipids that start their absorption to

receptors which will be oxidized at no two locations and result

in the formation of aldehydes that have the power to attack

Apo lysine residues. These yellow foam cells accumulated on the

walls of arteries, and lipid strips formed. Monocytes can also

produce cytotoxic substances, leading to more LDL oxidation

and damage (51).

Formation of atheroma

Endothelial cells secret small peptides such as cytokines

and growth factors like interleukin 1 (IL-1) and TNF causing

smooth muscle cell migration and synthesized extracellular

matrix. It forms the fibrous cap of collagen-rich fiber tissues,

SMC, macrophages, and T-lymphocytes (46).
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FIGURE 4

LDL is not directly promoting atherosclerosis, but its oxidative modification in intima can lead to increases in foam cell formation at the lesion
site and atherosclerotic plaque formation (53).

FIGURE 5

Attachment of sugar with protein strand (Apo B) is called LDL glycation, modification of Apo B by Free radicals known as LDL oxidation.

Formation of atherosclerosis plaque

All the above factors formed mature atherosclerotic plaque

that further obstructs arteries’ blood flow. So, ox-LDL can be

diligently involved in the atherosclerotic process by different

mechanisms, including the activation of t-cells. Endothelial

cell (EC) activation and dysfunction, activation of macrophage

(Figure 4). By up-regulated adhesion molecules, foam cell

formation by increasing the expression of scavenger receptors

of macrophages and by proliferation and migration of vascular

smooth muscle cells (VSMC) (46, 54, 55).

Dietary management for a reduction
in oxidation and glycation of LDL

Taking foods containing complex carbohydrates like

vegetables, fruits, cereals, and dairy products has a low

concentration of AGEs (56). Avoid snacks, biscuits, and other

processed foods as they contain high levels of AGEs. The

cooking method and heating duration played an essential role in

the increased production of AGEs (56). Deep frying increased

the concentration of glycated products. Take adequate vitamin

C, B, and phytonutrients (56) (Figure 5).

Dietary approaches to inhibit LDL
oxidation and glycation

Mono-unsaturated fatty acid

A study was established to compare the effect of high

monounsaturated fatty acid and a high carbohydrate diet on

LDL oxidation (57). To reach the result, twenty men and women

were taken with diabetes mellitus and a mean age of 61. They

were given an isocaloric diet with carbohydrates (28% energy)

and monounsaturated fatty acid (MUFA) (40% energy) for 6

weeks. After 6 weeks, LDL susceptibility to oxidation, body

weight, glycemic control, and lipid profile were measured. It

was concluded that both high carbohydrate and high MUFA

natural food-based diets have a similar effect on LDL oxidative

resistance and overall metabolic control in patients with diabetes

mellitus (58). Body weight, total cholesterol and triglycerides
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were also the same after the two diets. Still, the only difference

was that the high monounsaturated fatty acid diet lowered the

very-low-density lipoprotein (VLDL) by 35% compared to a

high carbohydrate diet. MUFA was also a good alternative to a

high carbohydrate diet for T2DM (Figure 6).

High fat diet

A study showed the effect of a high-fat diet in lowering

plasma triglycerides and VLDL concentration in patients with

diabetes mellitus (59). This effect was due to increased lipolysis

activity or increased clearance of triglyceride-rich lipoprotein

(60). It was seen that HDL concentration also increased after the

consumption of a high monounsaturated diet as compared to

a high carbohydrate diet (61). The net increase was 0.05 mmol

and reduced the susceptibility of LDL oxidation (61). According

to the study, the subjects fed a diet rich in oleic acid were

less susceptible to oxidation (62). Diet rich in monounsaturated

acid has 27% more α-tocopherol than compared to a diet rich

in carbohydrates (62). It has a protective role against LDL

oxidation due to its antioxidant properties.

Vitamin E

Diabetes lowers antioxidant vitamin levels, making lipids

more vulnerable to oxidative assault. Lipid-soluble antioxidants

carry LDL like vitamin E and carotenoids (including b-

carotene and lycopene) that shield it from oxidation (63). A

significant water-soluble chain-breaking antioxidant, vitamin C

(ascorbate), works by rebuilding a-tocopherol from its oxidized

radical state (64). Diabetes patients have been shown to have

lower vitamin E and ascorbate (65).

It may be due to the antioxidant property of Vitamin E,

which reduces the number of oxidants and free radicals and

have a protective role in lipid oxidation (66). With the admission

of vitamin E, paraoxonase 1 protein has expanded in the

blood, showing a decline in OS and protecting the lipids from

oxidation (67).

Polyphenols

Polyphenols are the primary antioxidants in the human

diet (68–70). They have antioxidant and anti-inflammatory

properties and have a protective role against chronic health

problems that involve inflammation (71–73). Culinary herbs

and spices have a higher concentration of phenolic compounds

and low caloric content, which is advantageous in diabetes

mellitus (74, 75). One of the results of raised blood glucose is an

expansion in the nonenzymatic glycation of proteins. Evidence

showed that the extract of these herbs and spices might block

the formation of advanced glycated end products (AGEs) (76).

In vitro experiment showed that 50% ethanolic extracts of these

herbs and spices inhibit fructose-mediated protein glycation.

Extracts of cinnamon and ground Jamaican allspice are the most

effective inhibitors of glycation (77, 78).

Histidine and carnosine

Histidine and carnosine are synthesized in the liver, skeletal

muscle, and brain. These compounds are known for their

antioxidant properties, such as scavenging free radicals binding

the metal ions and inhibiting glycation (79). LDL oxidation

and glycation result from high blood glucose (80). That

cause vascular damage and further complication. Research

suggests that histidine and carnosine might protect against LDL

oxidation and glycation (81). Because they are amino acid-base

compounds with a higher affinity for water-soluble molecules,

they may compete for glucose with the apo-B part of the

LDL molecule, allowing them to postpone the glycation process

between glucose and the LDL protein part (82).

After the estimated time, ingestion of histidine and

carnosine at a ratio of 1 g/L in diabetic mice significantly

reduced blood glucose and fibronectin levels (81, 83).

These agents showed a dose-dependent effect in suppressing

malondialdehyde formation and glycation (81). Treatments with

1 g/l histidine and carnosine significantly enhanced glutathione

peroxidase activity (81). In diabetic mice, consumption of

histidine or carnosine greatly reduced the activity of interleukin

(IL) 6 and tumor necrosis factor (TNF) alpha (84).

Garlic extract

In different studies, aged garlic extract inhibited LDL

oxidation and reduced oxidized-induced cell injury (85, 86).

The antioxidant effects of AGE were investigated further

using bovine pulmonary artery endothelial cells (PAEC) and

murinemacrophages (86). Lactate dehydrogenase (LDH) release

and intracellular glutathione (GSH) levels were measured

as indicators of membrane injury. Ox-LDL increased LDH

release while depleting GSH. These changes were prevented by

pretreatment with AGE (86).

L-carnitine

L-carnitine protects against CVD by increasing HDL

cholesterol, inhibiting LDL cholesterol oxidation, and

neutralizing the atherogenic effects of ox-LDL cholesterol

(87). Reduced concentrations of TBARS (Thiobarbituric acid

reactive substances) and conjugated dienes, which are indices

of lipid peroxidation, in the blood of diabetic hyperlipidemia

patients (87). These lower concentrations could be attributed to

a decrease in or increase in the use of antioxidant mechanisms

(87). Changes in the composition of LDL cholesterol may result

in conformational changes, resulting in a different exposure of

fatty acids to oxygen-free radicals and changes in the rate of

lipid peroxidation (88).
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FIGURE 6

Vitamin E, Polyphenols, Terpenoids, Histidine, and carnosine
have antioxidant and anti-inflammatory properties and
protective roles against LDL oxidation and glycation. They
protect by scavenging free radicals by covering the glycation
sites of protein. And lowers the blood glucose levels.

Novel strategies

New combination approaches have been used to target

glycolysis (through targeting PKM2 or pyruvate dehydrogenase

kinase) and increasing oxidative phosphorylation, resulting in

increased OS in cancer cells (89, 90). Different studies found

that inhibiting de-novo lipogenesis in prostate cancer cells with

soraphen A (an inhibitor of acetyl Co- carboxylase) causes

an increase in polyunsaturated fatty acids, OS, and greater

sensitivity to chemotherapeutic treatments (91). Overall, OS

is integral to carcinogenesis and cancer cell metabolism and

presents novel treatment possibilities (91). Phytochemicals like

green tea component epigallocatechin-3 gallate and turmeric

component curcumin have been shown to reduce obesity-

associated polyp formation in animal models by inhibiting

PI3K/Akt and MAPK signal pathways and have been suggested

as a prevention strategy for obesity-associated colon cancer (92).

Combination therapies target glycolysis (by targeting PKM2

or pyruvate dehydrogenase kinase) and encourage oxidative

phosphorylation, leading to increased OS (93). Antioxidant and

anti-inflammatory effects of curcuminoid-piperine combination

in subjects with MS have also been studied in randomized

control trials (94).

Lifestyle modification

Lifestyle factors such as smoking, drinking alcohol, eating

a proper or improper diet, exercising, and being untrained

all contribute to OS (95). According to different studies, ROS

exists in muscles and controls muscle function (96). ROS

are continually produced at low levels by skeletal muscle

fibers, and these levels rise during muscular contraction. They

are implicated in skeletal muscle exhaustion during intense

exercise and have several direct and indirect impacts on muscle

function (contractility, excitability, metabolism, and calcium

homeostasis) (96).

Restoring the body’s redox equilibrium is one of the most

acceptable ways to eliminate harmful OS (97). The objective

may be to regain a healthy BMI through physical exercise

and a low-fat, low-carbohydrate diet rich in antioxidants

(98). A clinical investigation found that weight loss reduces

signs of OS and boosts the antioxidant system, lowering

the risk of CVDs linked with obesity (99). Natural fruits

(100), green vegetables (101), whole grains (102), legumes

(101), fish (103), olive oil (104), and probiotics (105), which

are high in MUFA and polyunsaturated fatty acids (PUFA),

vitamin C, vitamin E, and phytochemicals, aid in weight

management and reduce the risk of metabolic diseases via

a variety of mechanisms including cell signaling, altered

gene expression, and decreased OS (101). Physical activity

and exercise improve the body’s antioxidant system, which

aids in the management of OS by scavenging harmful

free radicals, and alters cell-signaling pathways, which

activate detoxification enzymes, reduce inflammation,

promote normal cell cycle, inhibit proliferation, induce

apoptosis, and prevent tumor invasion and angiogenesis

(101).

Conclusion

OS is linked to all modern diseases. Diabetes, CVDs,

and cancer are the top causes of death worldwide. These

disorders are brought on by OS, which causes inflammation.

LDL is oxidized, forming AGEs and ox-LDL end products,

damaging the cellular mechanism and disturbing function.

This damage results in the development of diseases. Dietary

oxidation is a significant cause of ox-LDL and AGEs, which

can be addressed through appropriate diet management

and consumption of suitable phytonutrients. Since OS

has become a major factor in chronic metabolic diseases,

it is crucial to: (i) further understand the mechanisms

that disturb the healthy balance between oxidative and

antioxidative processes; (ii) incorporate various nutritional

antioxidants into current therapies, including those that

can neutralize OS, such as flavonoids, arginine, vitamin C,

vitamin E, carotenoids, resveratrol, and selenium; and (iii)

prevent mitochondrial dysfunction from boosting defenses

against OS.
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