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Allogeneic Hematopoietic Stem Cell Transplantation (allo-HSCT) represents a
potentially curative strategy for many oncological, hematological, metabolic, and
immunological diseases in children. The continuous effort in ameliorating supportive
care represents one of the cornerstones in the improvement of outcome in
these patients. Nowadays, more than ever nutritional support can be considered
a key feature. Oral feeding in the early post-transplant period is severely impaired
because of mucositis due to conditioning regimen, characterized by, mainly by
vomiting, anorexia, and diarrhea. Gastrointestinal acute graft-versus-host-disease
(GvHD), infections and associated treatments, and other medications, such as
opioids and calcineurin inhibitors, have also been correlated with decreased oral
intake. The consequent reduction in caloric intake combined with the catabolic
effect of therapies and transplantation-related complications with consequent
extended immobilization, results in a rapid deterioration of nutritional status, which
is associated with decreased overall survival and higher complication rates during
treatment. Thus, nutritional support during the early post-transplantation period
becomes an essential and challenging issue for allo-HSCT recipients. In this context,
the role of nutrition in the modulation of the intestinal flora is also emerging as a
key player in the pathophysiology of the main complications of HSCT. The pediatric
setting is characterized by less evidence, considering the challenge of addressing
nutritional needs in this specific population, and many questions are still unanswered.
Thus, we perform a narrative review regarding all aspects of nutritional support in
pediatric allo-HSCT recipients, addressing the assessment of nutritional status, the
relationship between nutritional status and clinical outcomes and the evaluation of
the nutritional support, ranging from specific diets to artificial feeding.

HSCT, nutritional support, pediatric oncology, gut microbiome, supportive care
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Introduction

Hematopoietic stem cell transplantation (HSCT) is a mainstay
in the treatment of a variety of hematological, oncological, and
immunological diseases of childhood (1). Despite often representing
the only curative treatment, it is hampered by high mortality and
morbidity rate due to infective and immune-mediated complications

2, 3). Intensive supportive care is provided to patients undergoing
HSCT to guarantee broader applicability of the procedure. In recent
years, nutritional support has been a subject of growing interest
within this field.

Indeed, pediatric patients undergoing HSCT receive a
conditioning regimen including high doses of chemotherapy and/or
total body radiation in a short time frame, which produce detrimental
effects on the gastrointestinal (GI) system (4). Moreover, graft-versus-
host disease (GvHD), an immune-mediated complication caused by
the activation of donor T lymphocytes, can directly involve the GI
system resulting in profuse diarrhea and malabsorption (2). These
complications impair patients’ nutritional status, characterized by
severe weight loss and malnutrition (5).

The importance of nutritional status in pediatric patients
undergoing HSCT has been well established, both in terms of
HSCT-related outcomes and for the long-term consequences on
development (6). Moreover, nutrition has been shown to be a
strong modulator of the gut microbiota (GM), the ecosystem
composed of bacteria, viruses, and fungi that primarily live in our GI
system. Notably, recent evidences have associated GM diversity and
composition with HSCT clinical outcomes, suggesting the possibility
to use diet as a GM modulator (7, 8). Nutritional support during
HSCT includes the type of diet administered during the conditioning
chemotherapy, the nutritional support during the neutropenic phase,
and the diet after the re-alimentation and after the discharge. Each
period is characterized by different nutritional needs and challenges
to face. Although nutritional support is being increasingly considered
anon-secondary element in supportive therapy, only a little evidence
is available, particularly for pediatric patients. Recommendations for
the management of nutritional needs in pediatric cancer patients
have recently been published (9); however, recommendations with a
specific focus on pediatric HSCT recipients are lacking.

In this article, we aim to comprehensively review the available
evidence on nutritional support for pediatric patients undergoing
HSCT. We will discuss the two-sided relationship between HSCT
and nutritional status and the evidence available on the type of
nutrition in the different phases of transplant. In particular, we
will address the assessment of nutritional status, the relationship
between nutritional status and clinical outcomes and the evaluation
of nutritional support, ranging from specific diets to artificial feeding.

Impact of HSCT on nutrition and
nutritional status

Malnutrition affects 10-50% of children undergoing HSCT
and it has a complex and multifactorial nature (10). As briefly
mentioned, pediatric allo-HSCT recipients receive a conditioning
regimen, which includes high-dose chemotherapy and/or total body
irradiation. Common side effects of this treatment include oral
and/or enteral mucositis and other gastrointestinal sequelae, such as
vomiting, anorexia, and diarrhea (11, 12). As a result, oral intake is

Frontiers in Nutrition

10.3389/fnut.2023.1075778

significantly impaired and it declines rapidly in the first few days
after treatment: Data shows that during the first eight days after
treatment most patients introduce less than 60% of their estimated
energy requirements (12, 13).

On top of these common conditioning regimen side effects, some
complications of allo-HSCT, such as gut aGvHD and infections, can
contribute to furtherly reduce oral intake.

Moreover, certain medications that may be administered to
these patients as supportive treatments, such as opioids, or
immunosuppressive treatments, such as calcineurin inhibitors, can
cause anorexia, nausea, vomiting, decelerated bowel movements and
dysgeusia, which is particularly associated to cyclosporin. All these
side effects have a negative impact on these children’s nutritional
status and contribute to reduce their tolerance to oral feeding (14).

At the same time, due to their therapy regimen, allo-HSCT
patients experience relevant metabolic changes: most of the data
claims that their basal metabolic rate is increased by an estimated
30-50% (15) and a systemic inflammatory syndrome is frequently
activated. This inflammation has variable intensity, but it has impacts
on several metabolic pathways: Protein metabolism, with altered
protein turnover, loss of muscle mass and increased production
of acute phase proteins; carbohydrate metabolism, with insulin
resistance and impaired glucose tolerance; and lipid metabolism, with
loss of fat mass (11). In addition, long cycles of therapies imply
prolonged bed-confinement times, which contributes to furtherly
shrink muscle mass. Furthermore, it must be considered that by
the time that pediatric oncological patients begin HSCT treatment
protocols, they most likely have already undergone multiple
cycles of chemotherapy and thus already have a compromised
nutritional status.

The global reduction in caloric intake combined with the
metabolism-accelerating (or catabolic) effect of chemotherapies and
with the transplantation-related complications may result in a severe
deterioration of nutritional status. Moreover, electrolyte disturbances
often happen due to conditioning regimen, antimicrobial drugs,
GVHD prophylaxis, impaired renal function and altered nutrition,
and need frequent observation and corrections by nutritional
support (16).

Over the past years, reduced intensity and non-myeloablative
conditioning regimens have been developed in order to reduce
their toxicity on allo-HSCT recipients. Nonetheless, considering the
complex and multifactorial nature of malnutrition and the on-going
controversy over the methods of nutritional interventions, many
patients continue to experience malnutrition, hence an improvement
in supportive care modalities is becoming essential (17).

Assessment of nutritional status in
pediatric transplanted patients

Even if malnutrition in children with cancer can significantly
affect outcomes, it continues to be largely unrecognized and
unmonitored, and very few studies have examined nutritional
assessment in children undergoing HSCT (18, 19). As the ESPEN
guidelines underline, it is important to screen patients evaluating
nutritional intake, weight change and body mass index (BMI) at
diagnosis and repeated depending on the stability of the clinical
situation, and then, in patients with abnormal screening, perform an
objective and quantitative assessment of nutritional intake, nutrition
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impact symptoms, muscle mass, physical performance and the degree
of systemic inflammation (11). In adults, the gold standard for
the evaluation of the nutritional status in oncology is the PS-
SGA (Patient-Oriented Subjective Global Assessment) score (20),
which is divided into two parts: One filled in by the patient about
subjective sensations on food intake, weight loss perception, nausea,
vomiting, dysgeusia, performance status, and one filled in by the
dietitian with anthropometric and clinical data. Lacking validated
instruments for nutritional assessment in patients undergoing HSCT,
this tool could reasonably be applied to transplanted patients too,
and possibly validate by a specific research (20). In children screening
tools such as SCAN (nutrition screening tool for childhood cancer),
which considers information like the type of cancer, the intensity of
treatment, the presence of GI symptoms, the food intake over the past
week, the weight loss over the past month, and the presence of signs
of undernutrition, have been developed over time (18, 19). These
screening tools use different anthropometric parameters. Indeed,
BMI has conventionally been used to determine body habitus, but
it doesn’t discriminate between adipose tissue and muscle, and can
be influenced by the hydration status, thus other anthropometric
measures can more accurately determine nutritional status (19, 21).
Mid-upper arm circumference (MUAC) is a sensitive parameter
to detect the risk of malnutrition in children undergoing HSCT,
as it provides a good projection of whole-body muscle and fat
mass (19). It is important to plot both these parameters on growth
charts according to age and gender to determine the Z-score (22).
DEXA (Dual Energy X-ray Absorptiometry), based on the different
absorption of two peaks of x-rays by the soft tissue and the bone,
represents the current clinical gold standard for bone and body
composition, as it gives accurate measures of whole-body fat mass,
lean body mass and bone mineral content, even if it does not discern
visceral from subcutaneous fat (20). BIA (Bioelectrical Impedance
Analysis), which evaluates cellular electrical properties, being based
on the principle that all membrane electrical properties are influenced
by changes in cell mass which is in turn dependent on metabolic
rates and diet, measures total body water, fat mass and fat-free mass
and has demonstrated to be useful in children undergoing HSCT as
well (23).

To better measure malnutrition, several biomarkers have been
investigated, which should be used in conjunction with these
tools. The best indices have to be cheap, easy to evaluate and
independent from parameters of inflammation like acute phase
proteins (24, 25). In a recent review conducted on studies on adults,
no reliable biomarker has been identified as the gold standard
for the assessment of nutritional status in patients undergoing
HSCT, even if these biomarkers, together with other exams such
as glycemia, electrolytes, lipid profile, vitamins and trace elements,
are normally used in the clinical practice to monitor nutritional
therapy and correct any nutritional deficiency (20). The biomarkers
that have been considered include anabolic proteins such as albumin
and prealbumin, retinol-binding protein (RBP), and transferrin
(TRF). Albumin and prealbumin, also named transthyretin, have
traditionally been used as markers of the nutritional status of patients.
Prealbumin is preferred because of its shorter half-life (2-3 days)
and thus can be applied to assess the short-time effectiveness of
nutritional support (26). Indeed, albumin has a half-life of 20 days
so a decrease in its concentration is related to long periods of
nutritional deficit, while prealbumin reflects more acute changes of
the nutritional state (24). However, they both are negative acute-
phase proteins, thus they decrease in inflammatory conditions like
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cancer. Transferrin seems to be a useful malnutrition biomarker too,
with a half-life of approximately 10 days, but it also is a negative
acute-phase protein and, in addition, it is not reliable in HSCT,
because patients often receiving several blood transfusions and
present an iron overload (20, 26). Retinol-binding-protein represents
the anabolic protein with the shortest half-life (12 h), but it is
more difficult to measure and it is influenced by the vitamin A
status (26). Even if some studies suggest that these biochemical
indices are not sufficiently reliable because inflammation leads to
depression of all protein synthesis, thus when acute-phase protein
levels are high these proteins lose their function as parameters
detecting malnutrition, Rzepecki et al. showed that these biomarkers
could be helpful in adults in specific patients treated with HSCT
for nutritional assessment (25). Other parameters proposed as
biomarkers in transplanted patients include total urinary nitrogen,
total plasma proteins, citrulline and IGF-1, but more studies are
needed in order to validate them (20). In Figure 1, we summarized
the different methods of nutritional assessment, highlighting the
main advantages and disadvantages of each method.

The relationship between nutritional
status and clinical outcomes

Several factors are known to influence HSCT recipients’ outcome.
Firstly, the type of the underlying disease and its stage, the presence
of other comorbidities, the type of stem cell transplantation and
HLA mismatch, the stem cell source, and the patient’s age. In
contrast to these factors, that are disease-specific and non-modifiable,
nutritional status can potentially be improved through adequate
nutritional support (14). In adult transplant recipients, several studies
highlighted how nutritional status can influence allo-HSCT outcome.
Serum albumin deficiency prior to transplant is associated with
increased non-relapse mortality (15), whereas malnutrition, defined
by both low BMI and weight loss before and during transplantation, is
considered a risk factor for severe aGvHD (27) and overall mortality
(28). On the other side, conflicting results are reported regarding the
relationship between obesity and clinical outcome, but the majority of
studies point toward a net negative effect (29). In pediatric population
the data is still scarce, possibly because of the lack of a homogeneous
way to assess malnutrition (BMI, serum albumin, serum proteins,
arm muscle area, arm fat area. . .), and considering the challenge of
addressing nutritional needs in the different phases of childhood (18).
White et al. conducted a single-center retrospective study, dividing
patients into three different categories based on pre-transplant
weight: underweight, ideal weight and overweight. These categories
were determined by identifying the patient’s height percentile and
selecting the ideal body weight based on the corresponding weight
percentile. A child was defined as underweight if the ratio between
his body weight and the ideal body weight was lower than 0.9 and
overweight if the ratio was higher than 1.1. Children who were
overweight before allo or auto HSCT have a reduced probability of
survival compared with ideal-weight children (hazard ratio 1.91; 95%
confidence interval, 1.10-3.31). No significant increase in mortality
was observed in underweight patients (30). On the other side, in
children and young adults diagnosed with acute leukemia who
underwent umbilical cord blood transplantation, a BMI less than
the fifth percentile at the time of transplantation was associated with
higher incidence of acute grade II to IV aGvHD (31, 32). In the auto
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Non-invasive, easy to measure

Non-invasive , easy to measure,
provides a good projection of
whole-body muscle and fat mass

Non-invasive, time and cost-effective,

Does not discriminate adipose
tissue and muscle

Specific cut-offs for this subgroup
of patients don’t exist

The results of BIA are based onregression

BIA estimates body fat and muscle mass equations for healthy individuals
DEXA Non-invasive, gives accurate measures of Not easily available in routine clinical
whole-body fat mass, lean body mass and practice, does not discern visceral
. bone mineral content from subcutaneous fat
Biomarkers
) Long half-life (20 days), negative acute-phase

Albumin Easy to measure protein (decreases in inflammatory
conditions), posture-related changes

Prealbumin Shorter half-life compared to albumin Negative acute-phase protein (decreases

Transferrin Easy to measure

Retinol-binding protein Short half-life (12h)

FIGURE 1

in inflammatory conditions)

Negative acute-phase protein (decreases
in inflammatory conditions), not reliable
in HSCT because of iron overload

More difficult to measure, influenced
by the vitamin A status

Advantages and disadvantages of anthropometric and biochemical parameter used to assess the nutritional status in pediatric HSCT recipients.

HSCT setting, a BMI <5th percentile at the time of transplantation
was significantly associated with increased incidence of electrolyte
). Other
conflicting data are reported by Aplenc et al. who retrospectively

disorders, mainly hypokalemia, and severe mucositis (

analyzed 3,687 children from the Center for International Blood and
Bone Marrow Transplant Research (CIBMTR) database receiving
cyclophosphamide-based conditioning regimens for leukemias. They
found that BMI pre transplant was not significantly associated with
different survival after allo HSCT. Obese children experienced less
relapse compared with patients with normal BMI but this benefit
was offset by increased transplant related mortality (34). Considering
the aforementioned limits of weight and BMI as indicators of
nutritional status, other anthropometric measures could be assessed
to evaluate the relationship between nutritional status and clinical
outcomes. Hoffmeister et al. evaluated mid-upper arm circumference
and triceps skin fold thickness pre transplant and observed that
arm muscle area <5th percentile was associated with lower event
free-survival, higher non-relapse mortality and relapse rate at day
100 and 3 years post allo-HSCT, while BMI 5-24th percentile and
arm fat area <25th percentile were associated only with short term
outcomes and were not predictor of 3 years outcomes (35). Among
several biomarkers, albumin is the only one that has been studied in
the pediatric HSCT setting. Children with hypoalbuminemia prior
to transplant had increased need for critical care intervention, with
higher rates of non-invasive and invasive ventilation and vasoactive
therapy. Moreover, these patients had a higher 6-months mortality

Frontiers in

04

(36). In another study, serum albumin level >3 mg/dL on day 5
after the start of steroid therapy for gut aGvHD and response to
steroids were significantly associated with a reduced non-relapse-
mortality and an increased overall survival (37). Considering that
single nutritional parameters present several limits in predicting
outcome, composite nutritional risk scores has been created in order
to better unravel the clinical impact of nutritional status. Kerby
et al. addressed this issue by composing two variables called NUT25
and NUTS5, defined as any of the following: albumin <2.8 g/dl,
weight loss >10% from baseline, and BMI <25th or <5th percentile,
respectively. These markers were assessed pre transplant and every
30 days in the first three months after allo-HSCT. Both low BMI
and NUT25 and NUTS5 at any time point predicted an increased risk
of developing grade III-IV aGvHD in the subsequent 30 days even
after adjusting for other risk factors. Moreover, NUT25 at baseline
). Additional
evaluation of nutritional status can be performed through the analysis

was associated with increased 100-day mortality (

of micronutrients, among which the best studied is Vitamin D.
Interestingly, hypovitaminosis D pre HSCT was associated with
reduced overall survival and increased relapse rate in children with
malignancies, and with slower recovery of neutrophil granulocyte
counts (38) (
on a key predictor of outcomes in the allo-HSCT setting: the
). Nutritional status and GM have a
bidirectional relationship. Disturbances in the microbiome affect the

)- Nutritional status also has a profound impact

gut microbiome (GM) (

risk for undernutrition and obesity through the alteration of bacterial
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metabolites production, and malnutrition alters GM function and
composition (44-46). To date, no study in the pediatric setting has
been completed, but promising data on preclinical and clinical adult
models shows a complex interplay between obesity, sarcopenia, the
GM and its metabolome, that could have key repercussions on clinical

endpoints (29, 47).

As previously mentioned, the severe impairment of oral intake
in the early post-transplantation period due to the conditioning
regimens, intestinal aGvHD, infections and other medications, such
as opioids, affect dramatically the nutritional status. Thus, nutritional
support is essential in these patients. As previously mentioned,
pediatric HSCT recipients should be screened and assessed for
impending or overt malnutrition at admission and after that
frequently monitored with a comprehensive nutritional assessment.
If deficits are observed, nutritional support, including nutritional
counseling, oral nutritional supplements, parenteral (PN) and enteral
nutrition (EN) should be initiated early to avoid or minimize
). The first form of
nutritional support should be nutrition counseling to help manage

further weight and muscle mass loss (9, 16,

symptoms and encourage the oral intake of protein- and energy-
rich foods and fluids that are well tolerated. The additional use of
oral nutritional supplements is advised when diet is not effective in
reaching nutritional goals (9, 16). If oral nutrition is not tolerated, as
in most pediatric patients in the neutropenic phase, artificial nutrition
is usually necessary and is generally indicated when oral caloric intake
is below 60-70% of requirements for 3 days. PN and EN are the
two main strategies adopted in the transplantation setting in order
). PN

has been historically considered the method of choice and is still

to provide nutrition when oral nutrition is insufficient (11,

frequently adopted in transplantation centers as the first choice for
nutritional support in the early post-transplant period (50). However,
PN is associated with several complications, particularly infective and
). EN is
currently recommended as first-line nutritional support in transplant

metabolic, with increased direct and indirect costs (51—

recipients when oral intake is not possible, as highlighted in recent
). PN could still be preferred
only in case of intractable vomiting, ileus, severe malabsorption

international guidelines (11, 49,

or symptomatic gut GvHD (16). A report from pediatric disease
working party of EBMT also specifically recommends early enteral
). The
benefits of EN include the maintenance of mucosal gut integrity

feeding as the first option in children undergoing HSCT (

and barrier, the stimulus to mucosal repair with decreased risk
of infections and hyperglycemia and lower costs compared to PN
(56, 57). Even though, these recommendations are based on weak
evidence with a lack of randomized clinical trials (14). This is one
of the reasons for the variability in nutritional approaches among
transplant centers (50, 58). Other barriers to EN implementation
include gastrointestinal and oral distress, possible hematological
and electrolytic complications and institutional practices (56).
Furthermore, specific considerations in the pediatric population
include the importance of growth and development with more
pronounced consequences of inadequate nutrition and the lack
of patient autonomy (59-61). A systematic review published in
2019 compared EN vs. PN in pediatric HSCT reporting conflicting

results about nutritional and clinical outcomes; a favorable effect was
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provided by EN over PN regarding aGvHD, with a lower incidence
of grade III-IV aGvHD in EN groups in two studies (62, 63). Meta-
analysis was not performed due to the heterogeneity of the four
included studies regarding populations, interventions and outcomes
analyzed (64). Faster platelet engraftment was found in the EN group
in two studies, possibly secondary to the lower incidence of aGvHD-
related thrombocytopenia (62, 63). Interestingly, one study found
better early outcome in the EN group compared to the PN group, with
). This finding

was consistent with other reports in adult HSCT, but further studies

lower mortality rate and non-relapse mortality rate (
are surely necessary in the pediatric population (62). It is important
to underline that EN was generally well tolerated, confirming the
feasibility of this approach in the pediatric population (51, 62, 63, 65,

). A recent meta-analysis analyzed both pediatric and adult HSCT
recipients comparing EN to PN and confirmed lower incidence rates
of aGvHD, grade III-IV aGvHD and intestinal aGVHD in EN groups,
including patients who received EN as primary nutritional support
with or without the addition of PN; no differences were demonstrated
regarding the incidence of oral mucositis and overall survival. Data
regarding infectious complications and hematological recovery were
inconclusive (67). Therefore, the relationship between nutritional
support and aGvHD has largely been demonstrated in several reports
(62, 63). Increased mucosal atrophy due to conditioning regimen
toxicity together with the complete resting of the gut due to PN affects
GM homeostasis (68). On the other hand, EN acts with a trophic
effect on the mucosa, ensuring gut barrier function and reducing
bacterial translocation with a beneficial effect on gut bacterial
composition (57, 69, 70). Two studies specifically investigate the
effect of EN and PN on microbiota, suggesting a possible modulation
of gut bacterial populations by nutritional interventions (58, 68).
A recent report found interesting results comparing EN to total
PN confirming the protective effect of EN on aGvHD risk and also
reporting a significant lower rate of sinusoidal obstruction syndrome
in the EN group, possibly due to the impairment of liver and biliary
function from PN (71). The possible are use of gastrostomy to give
EN in children undergoing HSCT was also assessed, founding this
approach feasible with lower rate of PN requirement (72). In a
recent survey, authors highlighted the importance to weigh potential
benefits against risks of gastrostomy placement in these high-risk
population and future studies about safety and long-term outcomes
are certainly needed in order to make final recommendations, also
considering family preferences and perceptions (73).

The type of diet to administer after HSCT, both during the
hospitalization and after discharge, represents a long-lasting debate
among pediatric oncologists. Starting from the early 1960s, patients
were used to receive autoclaved sterile food to keep them in a
bacterial-free environment. Moreover, patients also received gut
decontamination with neomycin, polymyxin B, cephaloridin and
). This was
ideated following the concept that aliments contain bacteria and thus

amphotericin B to completely sterilize the intestine (74,

represent a risk for food-borne infections in immunocompromised
patients. In addition, gut decontamination was historically correlated,
in preclinical model to a reduced risk of developing GvHD. However,
the very low palatability of the food advocated for a change, thus
the so-called neutropenic diet (ND) was developed. It consists of a


https://doi.org/10.3389/fnut.2023.1075778
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/

Muratore et al.

10.3389/fnut.2023.1075778

TABLE 1 Main studies on the relationship between nutritional status and clinical outcomes in children.

References

White et al. (30)

Auto- and Allo-HSCT

Clinical setting Nutritional status Clinical finding
measurement

Pre-transplant weight

Overweight have reduced probability of survival compared with ideal-weight.
Underweight no increase in mortality.

Aplenc et al. (34)

Allo-HSCT with
cyclophosphamide-based

BMI pre-transplant

Not significantly associated with different survival after allo-HSCT. Obese less
relapse but increased transplant related mortality

conditioning for acute
leukemia
Paviglianiti et al. (31) Umbilical Cord Blood BMI at the time of BMI <5th percentile associated with higher incidence of severe aGvHD
HSCT in Children and transplantation
Young Adults with Acute
Leukemia
Kranjéec et al. (33) Auto-HSCT BMI at the time of BMI <5th percentile associated with increased incidence of electrolyte disorders,
transplantation and severe mucositis

Hoffmeister et al. (35)

Allo-HSCT for hematologic
malignancies

BMI, arm muscle area, and
arm fat area pre-transplant

Arm muscle area <5th percentile associated with lower event free-survival,
higher non-relapse mortality and relapse rate at day 100 and 3 years
BMI 5-24th percentile and arm fat area <25th percentile associated only with
short term outcomes and were not predictor of 3 years outcomes

pre-transplant

Teagarden et al. (36) Allo-HSCT Albumin levels pre-transplant Hypoalbuminemia associated with higher 6-months mortality, increased need for
critical care intervention, non-invasive and invasive ventilation and vasoactive
therapy

Goussetis et al. (37) Gut aGvHD Albumin levels on day 5 after Serum albumin level >3 mg/dL significantly associated with reduced non-relapse

the start of steroid therapy mortality and increased overall survival

Kerby et al. (27) Allo-HSCT NUT25 and NUT5: albumin Low BMI and NUT25 and NUTS5 at any time point predicted an increased

<2.8 g/dl, weight loss >10% risk of developing grade III-IV aGVHD in the subsequent 30 days.
from baseline, and BMI <25th | NUT25 at baseline associated with increased 100-day mortality
or <5th percentile,
respectively. Pre-transplant
and every 30 days in the first
three months
Hansson et al. (38) Allo-HSCT Vitamin D levels Hypovitaminosis D associated with reduced overall survival and increased relapse

rate in children with malignancies, and with slower recovery of neutrophil counts

particular diet in which all the contaminated foods were excluded
(76). In particular, fresh fruits and vegetables were excluded and
dairy and meat products were strongly limited (77). Notably, no
randomized trials ever demonstrated a proven reduction in the risk
of infectious complications for ND. Moreover, often these diets are
difficult to follow, not homogenously performed and carry the risk
of nutritional deficiencies and inadequate food intake, especially in
pediatric patients with selective eating. Despite these difficulties, ND
has been largely administrated to pediatric and adult patients on a
precautional basis, as demonstrated by several surveys (50, 78, 79).
Only recently, some evidence has questioned the usefulness of this
kind of diet also pointing to a detrimental effect on the GM (80).
As a matter of fact, diet is a strong modulator of the GM and a rich
and diverse GM has been associated with better clinical outcomes in
both pediatric and adult patients (39-41). A recent meta-analysis on
adult and pediatric non-HSCT cancer patients showed no differences
in terms of infection and mortality rate between ND and a control
diet (80). In the HSCT setting, observational studies, at first, and
then randomized controlled trial in adult patients confirmed that the
ND does not confer a clinical benefit (81). In 2009 the CIBMTR,
on the basis of this evidence, reduced the list of food to be avoided,
also introducing the possibility to eat fast food (82). Food deemed
difficult to clean, such as some kind of fruits and vegetables, was still
recommended to be avoided (82). Studies directly addressing the role
of ND in pediatric patients receiving HSCT are only a few. Taggart
et al. reported a controlled trial on pediatric patients receiving HSCT
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comparing clinical outcomes before and after the shift from ND to
a food safety-based diet. The latter policy allowed the patients to
assume all fresh raw fruits and vegetables, previously washed under
running water and free from visible damage. Authors showed no
differences in the two groups in terms of systemic infections, GVHD,
and death in the first 100 days (83). In view of the abovementioned
evidence, the Pediatric Diseases Working Party of the European
Society for Blood and Marrow Transplantation (EBMT) suggests
replacing the ND with safe food handling guidelines (84). These
recommendations are based on four mainstays: Clean, separate, cook,
and chill and consist of several precautions in food handling to reduce
pathogens overgrowth in the food. Even if recommendations are
growing, no clear evidence is available and is thus highly awaited.
One reason that might explain the lack of benefit for ND is that
bacteria found on fresh fruits are part of the normal GI flora and
do not carry pathogenic potential (77, 85). Probably, more in-
depth studies will help to uncover the role of food bacteria in the
context of GM homeostasis and to define the proper food choice and
handling. Diet post-transplant should also be studied considering the
changes of body composition that usually occurs. In details, several
evidence has shown that pediatric and young adults receiving HSCT
experience a remodeling of adipose tissue earlier than peers toward
lipodystrophy and a reduction in muscle mass (86). Evidence of the
effect of specific diets on these alterations are missing and should be
investigated in the future.
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Interestingly, several cases of newly onset food allergy after HSCT,
particularly cord blood transplantation, have been reported (87,
), with symptoms ranging from urticaria, angioedema, diarrhea
and vomiting to eosinophilic gastrointestinal disorders or even
anaphylaxis (87, 89, 90). This may be partially explained by immune
reconstitution toward a Th2 response in this setting, probably
favored by calcineurin inhibitors (87). Symptoms compatible with
food allergies should therefore be taken into account in dietary
management after HSCT.

The importance of EN in the setting of pediatric allo-HSCT
has been increasingly recognized in order to preserve a condition
of GM eubiosis, thus reducing the risk of GVHD and infections
(70,

compounds have been widely restricted to reduce the risk of

). Traditionally, moreover, traditionally certain dietary

food contamination for the HSCT recipient following ND, which
is increasingly questioned (84) as explained above. However, less
is known about the impact of specific dietary compounds on
HSCT outcomes. Emerging evidence about the complex interaction
between dietary compounds and GM may guide the choice of
the optimal enteral supplementation strategy. In adults, strong
evidence of the negative impact of lactose during allo-HSCT has been
reported by Stein-Thoeringer et al. (91). Lactose in the gut lumen
drives fecal Enterococcus spp. domination, which was associated
with a significant reduction in overall survival and an increased
risk of moderate-to-severe aGvHD. This finding assumes a great
relevance because epithelial damage of the gut mucosa induced by
chemotherapy or intestinal GVHD are common findings during allo-
HSCT. This leads to a secondary lactase deficiency and ultimately
to increased levels of lactase in the gut lumen. Since this data
are gathered from a cohort of adult patients from adults, we have
to consider the difference in lactase activity in children before
translating them in the pediatric setting. In fact, lactase activity
is high in all fully mature human babies, then the persistence of
lactase activity is determined by a genetic polymorphism of the
gene encoding for the lactase enzyme located on chromosome 2
(MCMS6) (92, 93). Three main genotypes are recognized: lactase
persistent (LP, allelic variant T/T 13910), lactase non-persistent (LNP,
allelic variant C/C 13910) and heterozygotes (allelic variant C/T
13910). Being LNP is the most widespread allelic variant (65-70%

TABLE 2 Main studies on gut microbiota modulation in allo-HSCT.

10.3389/fnut.2023.1075778

of the population), lactase activity is assumed to be lower in
adults (92).

Glutamine is an essential amino acid that is an essential
nutrient for some cells, such as enterocytes and lymphocytes, and
might minimize the intestinal damage associated with conditioning
regimens of allo-HSCT. Several studies evaluated the impact of

glutamine on allogeneic HSCT outcome ( ), and glutamine
was also associated with beneficial effects in meta-analysis (97).
Oral glutamine might reduce mucositis and GvHD, whereas
intravenous glutamine might reduce the risk of infections. Recent
large randomized controlled trials suggested a detrimental effect of
). Although

the precise mechanism of action remains unclear, glutamine may

glutamine administration in critically ill patients (98,

lead to amino acid overload in patients with renal impairment
(98). Gjaerde et al. reported that high vitamin E levels prior to
transplantation were associated with less grade II-IV acute GVvHD
after myeloablative allogeneic HSCT (100). This may be due to
the immunomodulatory properties of the vitamin E which might
inhibit the release of reactive oxygen species and pro-inflammatory
cytokines by innate immune cells (
phase of acute GVHD in the gut (

the adhesion of immune cells to the endothelium (

) which drives the early
). Vitamin E also prevents
). Lactoferrin
has been recently tested in pediatric patients receiving induction
chemotherapy with a positive effect of the GM and future studies
are warranted to confirm its role also in the HSCT context
(104). An interesting case was reported of the successful treatment
with oral lactoferrin of gut aGvHD refractory to conventional
immunosuppressive therapy, highlighting its potential in this setting
(105). The immunomodulatory activity of Omega-3 and other PUFA
(Poly Unsaturated Fatty Acids) has been increasingly recognized
in children in various settings such as autoimmune diseases,
). PUFA have the potential
), with
specific mechanisms of action. Eicosapentaenoic acid (EPA) and

inflammation and food allergies (
to modulate both innate and adaptive immunity (109,

Docosahexaenoic acid (DHA) derived mediators, namely resolvins,
protectins, and maresins, appear involved in inflammation resolution
(111,
DHA seem to possess a more powerful immunomodulatory activity
than linolenic acid (ALA) (106). In the setting of allogeneic HSCT,
Omega-3 might mitigate the cytokine storm, possible contributing to

), but data in children remains scarce. Furthermore, EPA and

reducing complications. Takatsuka et al. reported that oral Omega-3
administration could help mitigate GVHD severity in a small cohort
of young adults (113).

Stein-Thoeringer Lactose Adults, allo-HSCT

etal. (91)

Iyama et al. (114) Glutamine, fiber and Adults, allo-HSCT

oligosaccharides

Yoshifuji et al. (115) Adults,

allo-HSCT

Resistant starch and prebiotics
containing glutamine,

polydextrose, and lactosucrose

Ladas etal. (116) Children and adolescent,

allo-HSCT

Lactobacillus plantarum

Gorshein et al. (117) L. rhamnosus GG Adults, allo-HSCT
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Reduction of overall survival and increase of
aGvHD

Enterococcus spp. domination

Enterococcus species Increased overall survival and decreased

translocation reduction severity of intestinal mucositis

No difference in GM
composition and diversity.

Shortened duration of oral mucositis and
diarrhea. Reduction of cumulative incidence
of grade II-IV aGvHD

No
bacteremia.

GM colonization with cases of Lactobacillus  plantarum
administration of

Lactobacillus plantarum

GM composition wasn’t No difference in the incidence of GvHD.

affected by supplementation.
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The complex interplay between the GM and the implementation
of prebiotics (114, 115) and probiotic (116, 117), compounds in
the allogeneic HSCT recipients diet showed some potential benefit
on various outcomes in children and adult patients (Table 2).
Furthermore, preclinical evidence of the potential role of Synbiotic
(118) and postbiotic (119, 120) compounds are growing, but
more interventional clinical trials are needed to confirm this data.
Despite the evidence on specific dietary compounds in the pediatric
population remains scarce, the literature on adults indicates that
nutritional modulation of the GM is an expanding field of research
to improve outcomes for children undergoing allo-HSCT.

Conclusion

Malnutrition is a common feature of pediatric patients
undergoing HSCT with the detrimental effect of clinical outcomes
and GM. Nutritional support could be considered a risk- and cost-
effective way to improve allo-HSCT outcomes in children. However,
many questions remain to be answered and this is currently limiting
the diffusion of specific programs for nutritional support. First, while
evidence on adult patients is consistent, data on pediatric patients are
only few and more specific studies are warranted. Moreover, an in-
depth analysis of how nutritional assessment should be performed
could improve clinical evaluation and provide stronger data on
the correlation with clinical outcomes. Safety concerns are also
limiting the experimentation on new dietary compound representing
an important point of focus. We believe that a multidisciplinary
team composed of pediatric hematologists, gastroenterologists,
nurses, physiotherapists and dieticians should carry on a structured
nutritional evaluation during HSCT and should design the best
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