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Diet dictates nutrient availability in the tumor microenvironment, thus affecting 
tumor metabolic activity and growth. Intrinsically, tumors develop unique metabolic 
features and are sensitive to environmental nutrient concentrations. Tumor-driven 
nutrient dependencies provide opportunities to control tumor growth by nutritional 
restriction or supplementation. This review summarized the existing data on nutrition 
and pediatric cancers after systematically searching articles up to 2023 from four 
databases (PubMed, Web of Science, Scopus, and Ovid MEDLINE). Epidemiological 
studies linked malnutrition with advanced disease stages and poor clinical outcomes 
in pediatric cancer patients. Experimental studies identified several nutrient 
dependencies (i.e., amino acids, lipids, vitamins, etc.) in major pediatric cancer 
types. Dietary modifications such as calorie restriction, ketogenic diet, and nutrient 
restriction/supplementation supported pediatric cancer treatment, but studies 
remain limited. Future research should expand epidemiological studies through data 
sharing and multi-institutional collaborations and continue to discover critical and 
novel nutrient dependencies to find optimal nutritional approaches for pediatric 
cancer patients.
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Introduction

Childhood cancers represent the leading cause of disease-related mortality in childhood (1). 
Major childhood cancer types include leukemias (i.e., acute lymphoblastic leukemia ALL, acute 
myeloid leukemia AML), lymphomas (i.e., Hodgkin lymphoma HL, non-Hodgkin lymphoma NHL), 
brain and spinal cord tumors (i.e., glioblastoma GBM, medulloblastoma MB), peripheral nervous 
system tumors (i.e., neuroblastoma NB), renal cancers (i.e., Wilms tumor WT), liver cancers (i.e., 
hepatoblastoma HB), eye cancers (i.e., retinoblastoma RB), bone cancers (i.e., osteosarcoma OS and 
Ewing sarcoma ES), and soft tissue sarcomas (i.e., rhabdomyosarcoma RMS). The mutational burden 
in most childhood cancers is substantially lower than that in adult cancers (2, 3). Instead, fusion 
oncoproteins and epigenetic dysregulations frequently occur in childhood cancers (1, 4). For 
example, the EWS-FLI1 fusion protein plays a central role in the pathogenesis of ES (4). Oncohistones 
and aberrant DNA methylations have been identified in pediatric brain tumors (5–7). In addition, 
copy number alterations such as MYCN amplification occurs in many pediatric cancer types, such 
as NB (8), MB (9), WT (10), RB (11), and RMS (12).

Malnutrition (undernutrition and overnutrition) problems are increasing worldwide (13), 
raising concerns about the relationship between nutrition and childhood cancers (Table  1). 
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TABLE 1 Dietary associations and tumor-driven nutrient dependencies in pediatric cancers.

Pediatric cancer 
type

Pediatric cancer 
name

Associations between nutrient/
diets and pediatric cancers

Tumor-driven nutrient dependencies

Leukemias Acute lymphoblastic 

leukemia (ALL)

Protein-energy malnutrition (+) (14, 15) Magnesium 

and zinc deficiency (+) (16) Maternal obesity and 

diabetes (+) (17, 18) Maternal diet during pregnancy 

(vegetables, fruits, protein sources, and folate 

supplementation) (19–21)

Amino acids: glutamine (22), arginine (23), asparagine (24)

Glycolysis and oxidative phosphorylation: glucose uptake (25)

Lipids: mevalonate pathway (26)

Vitamins: vitamin D (27)

Acute myeloid leukemia 

(AML)

Maternal intake of dietary DNA topoisomerase II 

inhibitors (+) (28)

Amino acids: glutamine (29), arginine (23, 30)

Glycolysis and oxidative phosphorylation: PDK1 pathway (31)

Lipids: phosphatidylinositol, sphingolipids, free cholesterol, 

monounsaturated fatty acids (32, 33)

Lymphomas Hodgkin lymphoma 

(HL)

Undernutrition (+) (34)

Zinc deficiency (+) (16)

Not available

Non-Hodgkin 

lymphoma (NHL)

Undernutrition (+) (34)

Zinc deficiency (+) (16)

Glycolysis and oxidative phosphorylation: HK (35)

Vitamins: vitamin D (36)

Brain and spinal cord 

cancers

Glioblastoma (GBM) Not available Amino acids: glutamine (37)

Glycolysis and oxidative phosphorylation: PDK1 (38)

Lipids: ketone bodies (39)

Medulloblastoma (MB) Maternal diets during pregnancy (candy, chili 

peppers, and oil products +; fruits, −; yellow-orange 

vegetables, −) (40, 41)

Amino acids: glutamine (42)

Glycolysis and oxidative phosphorylation: HK (43)

Lipids: Smoothened-activating sterol lipids (i.e., cholesterol and 

7-keto-cholesterol) (44)

Peripheral nervous 

system cancers

Neuroblastoma (NB) Undernutrition (+) (45)

Maternal folate fortification (−) (46)

Amino acids: glutamine (47, 48), SGOC metabolism (49, 50), 

polyamines (51–53)

Glycolysis and oxidative phosphorylation: HK (54), LDHA (55), 

GLUT1 (56), mitochondrial activity (57, 58)

Lipids: fatty acid metabolism [SLC27A2 (59), FASN and SCD (60, 

61), CPT1 (58)]

Vitamins and Minerals: vitamin B12 (62), iron (63, 64)

Eye cancers Retinoblastoma (RB) Vitamin D (−) (36) Glycolysis and oxidative phosphorylation: PDK1 pathway (65)

Vitamins: vitamin D (36)

Renal cancers Wilms tumor (WT) Folate fortification (−) (66) Glycolysis and oxidative phosphorylation: GLUT1 (67), 

mitochondrial activity (68)

Liver cancers Hepatoblastoma (HB) Vitamin D deficiency (+) (36) Glycolysis and oxidative phosphorylation: LDHB (69), GLUT3 

(69)

Lipids: fatty acid metabolism (SREBP-1c (70))

Vitamins: vitamin D (36)

Bone cancers Osteosarcoma (OS) Vitamin D deficiency (+) (36) Amino acids: SGOC metabolism

Glycolysis and oxidative phosphorylation: HK (71)

Lipids: lipid catabolism and hydroxylation (72)

Vitamins: vitamin D (36)

Ewing sarcoma (ES) Zinc deficiency (+) (73) Amino acids: SGOC metabolism (74)

Glycolysis and oxidative phosphorylation: LDHA (75)

Soft tissue sarcomas Rhabdomyosarcoma 

(RMS)

Not available Lipids: fatty acid oxidation (76)

(+) positive association; (−) negative association.

Abbreviations: ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; CPT1, carnitine palmitoyltransferase 1; DHA, docosahexaenoic acid; EPA, eicosapentaenoic 

acid; ES, Ewing sarcoma; FASN, fatty acid synthase; GBM, glioblastoma; GLUT, glucose transporter; HB, hepatoblastoma; HK, hexokinase; HL, Hodgkin lymphoma; LDHA, 

lactate dehydrogenase; MB, medulloblastoma; MTHFD, methylenetetrahydrofolate dehydrogenase; NB, neuroblastoma; NHL, non-Hodgkin lymphoma; ODC1, ornithine 

decarboxylase; OS, osteosarcoma; PDK, pyruvate dehydrogenase kinase; RB, retinoblastoma; RMS, rhabdomyosarcoma; SCD, stearoyl-CoA desaturase; SGOC, serine-

glycine-one-carbon; SLC27A2, fatty acid transporter; SLC3A2, Polyamine transporter; SREBP-1c, sterol regulatory element-binding protein-1c; WT, Wilms tumor.
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Nutrient deficiency and obesity at diagnosis are associated with poor 
clinical outcomes in childhood cancers (34, 45, 77–79). Maternal 
nutritional status also links to the risk of developing hematopoietic and 
solid childhood tumors (17–21). Overall, the current epidemiological 
studies are limited. This is partly due to a lower incidence of childhood 
cancers and little nutritional evaluation at diagnosis (80). On the other 
side of the coin, multi-omics technology corroborating with basic and 
translational cancer research sheds light on discovering new metabolic 
dependencies of pediatric cancers. Like adult cancers, aggressive 
pediatric tumors require specific lipids, amino acids, carbohydrates, 
vitamins, and minerals for survival (63, 81, 82). The most vulnerable 
metabolite is determined under a particular context of cancer and is 
associated with the tumor microenvironment (83). Finding critical 
nutrient dependencies for each cancer type will aid in developing 
optimal treatment regimens.

Here, we summarize recent findings on the associations between 
nutrition and pediatric cancers, nutritional dependencies under 
different tumor contexts, and dietary approaches during pediatric 
cancer treatment. Much remains to be uncovered in pediatric cancers 
compared to adult cancers. Thus, we also discuss the current challenges 
and research gaps in the field and point to interesting future directions. 
The ultimate goal is finding optimal and precise nutritional strategies to 
improve patient survival and quality of life.

The link between nutrition and 
childhood cancers

The State of Food Security and Nutrition in the World reported 
that 9.8 percent of the global population (768 million) were 
undernourished in 2021 (13). Infants and children are more 
susceptible populations due to the high demand for energy and 
essential nutrients, especially for cancer patients. In a prospective 
study of 1,787 newly diagnosed pediatric patients, 18% had moderate 
nutritional depletion, and 45–59% were severely depleted (34). 
Another study showed that 50% of children with stage IV NB (high-
risk patients) were undernourished at diagnosis (45). 
Undernourished children abandoned therapy more frequently, 
resulting in inferior event-free survival (34). Protein-energy 
malnutrition, a specific undernutrition defined as an energy deficit 
due to a lack of macronutrients, is commonly seen in leukemias and 
solid tumors (14, 15). Apart from the macronutrients, deficiencies of 
micronutrients such as magnesium, zinc, selenium, vitamin D, and 
vitamin B12 were reported in pediatric cancer patients (Table 1) (16, 
36, 73, 84). There is a lack of standard clinical practice guidelines for 
monitoring the nutritional status of children with cancer. Therefore, 
a systematic comparison of different evaluation methods and 
longitudinal nutritional assessment throughout diagnosis and 
treatment is urgently needed.

The number of overweight and obese individuals (85) and the 
cancer risk (16–18) have increased over the years. A recent study of 640 
pediatric ALL patients found that 27% were overweight/obese, and 79% 
exceeded the dietary reference amount (79). Obese pediatric acute 
leukemia patients had a higher mortality risk than non-obese patients 
(77, 78). In recent years, the consumption of food-added sugars has also 
increased dramatically. High sugar consumption was associated with 
increased incidences of multiple adult malignancies, such as pancreatic 
and endometrial cancers (86, 87). However, whether sugar contributes 
to pediatric cancers is poorly understood.

Maternal obesity and diabetes also increase the risk of childhood 
cancers. Children born to mothers with a body mass index of ≥40 had 
a 57% higher leukemia risk (18). Maternal diabetes was associated with 
an increased risk of childhood cancers, particularly ALL, and 
medications reduced the risk of offspring childhood cancers (17). 
Additionally, maternal diets correlate with the risk of childhood cancers. 
Maternal consumption of vegetables and fruits before or during 
pregnancy was inversely associated with offspring ALL and AML 
incidence (19, 20, 28). In contrast, consuming flavonoid-rich foods may 
interfere with DNA topoisomerase II and increase the risk of AML (28). 
Maternal folate fortification correlated with a reduced risk of ALL, NB, 
and WT (21, 46, 66). Additionally, a maternal diet rich in yellow-orange 
vegetables, fresh fish, and grains decreased the risk of childhood brain 
tumors, whereas a maternal diet rich in cured meats, eggs/dairy, oil 
products, non-chocolate candy, and chili increased the risk (41).

The current epidemiological studies remain limited, particularly for 
rare diseases. Future efforts should increase subjects through data 
sharing and multi-institutional collaborations.

Nutrient dependencies in childhood 
cancers

Metabolic reprogramming has emerged as an essential cancer 
hallmark (88). Mutation of tumor suppressors and activation of 
oncogenic signaling make tumor cells promote the synthesis and uptake 
of nutrients for survival (89), thus enhancing tumor dependency on 
certain nutrients (81) (Table 1).

Amino acids

Amino acids are the building blocks of proteins. They also regulate 
the redox state and contribute to epigenetic and immune responses 
linked to tumorigenesis and metastasis (90). Therefore, tumors present 
a heightened amino acid dependence.

Glutamine, the most abundant amino acid in serum, is surprisingly 
depleted in developing cancers (91). Glutamine supported childhood 
AML and ALL survival and contributed to adipocyte-induced cell 
resistance to asparaginase (22, 29). Inhibition of glucose metabolism or 
Akt signaling also activated glutamine metabolism in GBM (37). In NB, 
the oncogenic driver MYCN promoted glutamine uptake and catabolism 
(47, 48). Similarly, high MYC-expressing atypical teratoid/rhabdoid 
tumors demonstrated higher glutamine metabolism activity compared 
to low MYC-expressing tumors (92). TAp73, which is frequently 
overexpressed in human tumors, sustained a subset of MB growth and 
proliferation by upregulating glutamine metabolism (42).

Another critical amino acid pathway is the serine-glycine-one-
carbon (SGOC) metabolism. SGOC incorporates serine–glycine 
biosynthesis, one-carbon metabolism, and purine nucleotide 
biosynthesis in a positive feedback loop, generating diverse metabolites 
(93). In NB, high expression of an SGOC gene signature (49) or glycine 
decarboxylase (50), the enzyme which catalyzes glycine breakdown to 
produce one-carbon metabolism intermediate 5,10-methylene-
tetrahydrofolate, was identified in MYCN-amplified patients and was 
associated with advanced disease stage and poor prognosis. In OS, the 
rate-limiting enzyme in serine biosynthesis 3-phosphoglycerate 
dehydrogenase is inversely correlated with patient survival (94). In ES, 
two methylenetetrahydrofolate dehydrogenase genes (MTHFD2 and 

https://doi.org/10.3389/fnut.2023.1091067
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Wang et al. 10.3389/fnut.2023.1091067

Frontiers in Nutrition 04 frontiersin.org

MTHFD1L) were upregulated by EWS-FLI1, and high expressions were 
linked with high-risk disease and poor survival (74).

Arginine is a semi-essential amino acid and an intermediate in 
many biological pathways, such as the urea cycle and tricarboxylic acid 
cycle (95). AML depends on arginine, as depletion of intracellular 
arginine (via a pegylated arginine deiminase ADI-PEG20) and 
extracellular arginine (via a pegylated human recombinant arginase 
BCT-100) decreased proliferation of AML (23, 30). Depletion of 
arginine in combination with chemotherapy cytarabine exerted greater 
efficacy compared to single therapy in AML and ALL. Still, resistance 
eventually occurred (30, 96), likely due to compensatory activation of 
endogenous production of arginine (23, 97). Therefore, additional 
metabolic dependencies in AML must be targeted.

Asparagine is a nonessential amino acid that facilitates glycoprotein 
synthesis and the uptake of extracellular amino acids such as arginine, 
histidine, and serine (98). Asparagine presents a potential nutrient 
dependency in leukemias as these tumors lack asparagine synthetase 
(24, 99). Deprivation of exogenous asparagine by asparaginase resulted 
in a remission rate of >90% in children with ALL (24).

Polyamines are active organic compounds with at least two amino 
groups (100). They can be  synthesized by ornithine decarboxylase 
(ODC1), the rate-limiting enzyme in polyamine synthesis (100), and 
imported by transporters such as SLC3A2 (53). Polyamines are 
frequently deregulated in cancer because they involve fundamental 
processes related to cell growth and survival (100). For example, 
putrescine, spermidine, and spermine levels were elevated in children 
with leukemias (101). MYCN directly increased polyamine synthesis in 
NB and promoted NB tumor growth by upregulating ODC1 and 
SLC3A2 (51–53).

Glycolysis and oxidative phosphorylation

As discovered by Otto Warburg in the 1920s, cancer cells exhibit an 
increased dependence on glycolysis, preferentially catalyzing the 
conversion of glucose to lactate in the presence of oxygen (102). Despite 
a relatively low mutational burden, pediatric cancers exhibit aberrant 
expressions of key glycolytic enzymes, suggesting an increased 
dependence on glycolysis. Expression of hexokinase (HK1/2), which 
converts glucose to glucose-6-phosphate, was raised in several pediatric 
cancers and high HK expression predicted poor prognosis [i.e., 
metastatic NB (54), the SHH subtype of MB (43), diffuse large B-cell 
lymphoma (35) and OS (71)]. High expression of lactate dehydrogenase 
(LDHA/B) that converts pyruvate to lactate is linked to poor prognosis 
in NB, ES, and HB (55, 69, 75). Additionally, glucose transporter GLUT1 
was highly expressed in ALL (25), NB (56), and WT (67), and GLUT3 
upregulated in HB (69).

More recent work has demonstrated that mitochondrial respiration 
also plays a significant role in tumor growth and survival (103). WT and 
NB exhibited heterogeneity in mitochondrial phenotypes and energy 
metabolism (57, 58, 68). Stromal regions of WT showed reduced 
mtDNA copy number, whereas the epithelial and blastemal regions were 
normal (68). MYCN-amplified NB demonstrated higher mitochondrial 
activity than non-MYCN-amplified NB (57, 58). The pyruvate 
dehydrogenase kinase 1 (PDK1) phosphorylates pyruvate dehydrogenase 
and in turn, lowers its activity, which reduces the conversion of pyruvate 
to acetyl-CoA. PDK1 was activated in AML, GBM, and RB, and its 
inhibition blocked cell proliferation and restored sensitivity to 
chemotherapy (31, 38, 65).

Lipids

Lipids are also critical for cancer cell proliferation by serving as 
membrane components, providing energy sources, maintaining redox 
homeostasis, and acting as signaling molecules (104). Several pediatric 
cancers heavily rely on lipids for survival. For example, fatty acid 
transport (via fatty acid transporter SLC27A2), biosynthesis (via fatty 
acid synthase FASN and stearoyl-CoA desaturase SCD), and oxidation 
(via carnitine palmitoyltransferase 1 CPT1) were activated in MYCN-
amplified NB (58–61). Inhibition of fatty acid oxidation by 
malonyl-CoA decarboxylase inhibitor prohibited RMS growth, and 
knockdown of fatty acid metabolism regulator sterol regulatory 
element-binding protein-1c (SREBP-1c) suppressed HB, suggesting a 
dependency on lipid metabolism (70, 76). Lipids such as 
phosphatidylinositol, sphingolipids, free cholesterol, and 
monounsaturated fatty acids were increased in isocitrate 
dehydrogenases mutant AML cells (32). Moreover, AML blasts 
activated adipocyte lipolysis, thus allowing fatty acids to be transferred 
from adipocytes to blasts (33). A recent study identified the mevalonate 
pathway as a novel vulnerability in early T-cell ALL (26). Inhibition of 
3-hydroxy-3-methylglutaryl-CoA reductase, the rate-limiting enzyme 
in the mevalonate pathway, significantly blocked T-cell ALL growth 
(26). Besides, smoothened-activating sterol lipids such as cholesterol 
and 7-keto-cholesterol sustained oncogenic Hedgehog signaling in 
MB (44).

Vitamins and minerals

Besides the macronutrients, vitamins and minerals are essential as 
substrates and cofactors for critical metabolic processes (105). Pediatric 
cancer patients were disproportionately vitamin D deficient (27, 36, 82), 
suggesting sequestration of this vitamin by tumor cells. Vitamin B12 has 
also been identified as a pediatric cancer dependency, specifically in NB 
cells, such that B12 depletion induced cell-cycle arrest and neuronal 
differentiation (62).

Among minerals, iron serves as a significant dependency across 
pediatric cancers. Iron depletion by iron chelator deferoxamine or 
sodium ascorbate has demonstrated anti-proliferative activity in NB 
(63, 64). However, exogenous iron exposure induced ferroptosis in 
malignant brain tumors and NB (106–108), indicating that tight control 
of iron levels is required for cancer cell survival.

Dietary modifications in pediatric 
cancers

Inhibitors used to disrupt active cancer metabolism have been 
extensively summarized in many reviews (81, 109–111). Nevertheless, 
a majority of drugs fail to enter clinical trials. Compensatory 
activation of other metabolic routes or uptake of the source 
metabolite reduces the anti-tumor effects (59, 112). Moreover, the 
specificity of the metabolic inhibitors to tumor cells and their 
potential toxicities remain a question. Therefore, supportive 
approaches such as dietary modifications should be  considered 
during cancer treatment. Dietary composition determines nutrient 
availability in the microenvironment of cells in the body (113). 
Accumulating evidence suggests that dietary modifications, 
including calorie and nutrient restriction/supplementation, 
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reprogram tumor metabolic activity and produce shifts in 
proliferation rate and drug sensitivity (114, 115). Herein, this review 
will focus on dietary modifications applied to pediatric cancers.

Calorie restriction and ketogenic diet

Calorie restriction emphasizes a chronic 20–30% reduction of the 
standard calorie intake (116). This approach reduces tumor growth in 
several adult tumor models, including breast cancer, pancreatic cancer, 
and lymphoma (117–119). Interestingly, calorie restriction also inhibited 
tumor growth in neuroblast mouse xenograft models, although its 
molecular mechanism remains unknown (120). However, it remains a 
concern to use calorie restriction during childhood, given the risk of 
malnutrition and disrupted endocrine function (121).

Consequently, researchers have sought a safer approach that sustains 
overall calorie intake but modifies the diet composition. The ketogenic diet 
was introduced to meet such demand. Ketogenic diets have normal calorie, 
low-carbohydrate but high-fat content, leading to increased ketone bodies 
in plasma (122). The ketogenic diet showed anticancer effects in preclinical 
models of NB and GBM (39, 120, 123). Researchers further identified that 
a medium-chain fatty acid-containing ketogenic diet was more effective 
than a long-chain fatty acid-containing diet (120, 123). It remains uncertain 
whether ketogenic diet can be applied to all cancer types.

Nutrient restriction

Germline mutations in the methionine synthase gene have been 
associated with childhood leukemia risk (124), and methionine depletion 
augmented the anticancer activities of chemotherapeutics against pediatric 
sarcoma cells in vitro (125). However, it remains unknown whether 
methionine dependence is a broader feature across pediatric cancers and 
whether this dependency can be effectively exploited against tumors in 
children. Besides methionine, serine deprivation has also been shown to 
induce oxidative stress and prohibit tumor growth in adult cancer models 
(126, 127). Given that NB and ES showed active serine metabolism (50, 74), 
it will be interesting to determine whether serine restriction is effective in 
treating those cancers.

Besides amino acids, restriction of vitamins can be used in tumors 
that rely on those vitamins for survival. Restriction of vitamin B9 (folate) 
and B12 (cobalamin) together with other methyl donors (methionine 
and choline) inhibited one-carbon metabolism and protected against 
adenoma development (128). Restriction of minerals like iron may 
selectively target cancer cells (63, 64). However, care must be taken to 
avoid restriction toxicity since pediatric cancer patients are frequently 
vitamin deficient already (82, 129).

Nutrient supplementation

Omega-3 fatty acids exert anti-inflammatory and anti-tumor effects 
(130). Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) 
slowed MB tumor growth by alleviating the inflammatory tumor 
microenvironment (131). MYCN-amplified NB contained lower DHA 
levels than non-MYCN-amplified NB. DHA supplementation delayed 
the progression of NB in cell line-derived mouse xenograft models 
(132). However, another study using TH-MYCN transgenic NB model 
did not observe significant DHA effects (133). More studies and 

standard treatment strategies are needed to evaluate the efficacy of DHA 
supplementation in NB.

Folate and vitamin B12 deficiency was found in ALL patients who 
showed anemia on maintenance therapy (134). Supplementation of 
these deficient micronutrients significantly alleviated anemia. 
Supplementation of vitamin K2 and D3 improved bone mineral density 
in ALL patients during intensive steroid therapy (135). Further research 
is needed to comprehensively characterize micronutrient status before 
and after treatment and to precisely monitor the effects of micronutrient 
supplementation on patients’ health conditions.

Cachexia is a complex syndrome presenting with decreased food 
intake, weight loss, muscle and adipose tissue wasting, and hormonal/
metabolic abnormalities (136). Muscle wasting is associated with 
reduced protein synthesis and increased protein degradation (137). 
Oral supplementation of a mixture of amino acids partially reversed 
cachexia in patients with advanced solid tumors (138). Similarly, a diet 
enriched in leucine or branch-chain amino acids stimulated muscle 
protein synthesis and alleviated cachexia (139, 140). However, most 
studies were conducted on adult cancer patients. Further investigations 
into the effects of cachexia on pediatric tumor development and 
strategies for its reversal through dietary modifications are 
urgently needed.

Challenges for nutritional interventions 
and future directions

Studies on dietary modifications for adult cancer treatment have 
provided insights into pediatric cancer interventions. Nevertheless, there 
is still a long way to go. First, additional studies are needed to understand 
specific nutrient dependencies in different pediatric cancers and to evaluate 
the efficacies of various dietary interventions. Second, because dietary 
modifications induce systemic responses that impact both tumor and 
tumor microenvironment, a holistic understanding of how the nutrient 
restriction or supplementation affects tumor and tumor microenvironment 
such as anti-/pro-tumor immune response, stromal cell activity, 
angiogenesis, and whole-body homeostasis is highly demanded. Third, the 
duration and start time for nutritional therapy as well as the long-term 
toxicity from nutrient deprivation or supplementation should be evaluated. 
Fourth, it should be emphasized that no treatment works for all types of 
cancers. For example, histidine supplementation made leukemia 
xenografted tumors more sensitive to methotrexate (141), whereas 
histidine depletion in a Drosophila model selectively limited the growth of 
MYC-dependent neural tumors (142). Thus, specific tumor context needs 
to be mentioned when advertising nutritional therapies.

Conclusion

Compared to adult cancers, the understanding of crosstalks 
between nutrition and pediatric cancers remains poor, thus providing 
tremendous opportunities for studying how nutrition can help prevent 
and treat childhood cancers (Figure 1). Large-scale epidemiological 
studies of pediatric cancers could uncover additional relationships 
between nutrients and pediatric cancers. Moreover, omics technology 
combined with mechanistic studies can reveal novel nutrient 
dependencies. This will further guide preclinical and clinical nutritional 
interventions to optimize therapeutic strategies. This process can 
be applied to populations, subgroups, and individuals. Each patient’s 
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genetic information may guide the discovery of personalized nutrient 
dependencies and nutritional interventions. There is still much to learn, 
but additional studies will enlighten the future by overlapping nutrition 
and pediatric cancer fields.
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FIGURE 1

An outlook of nutritional research in pediatric cancers. The crosstalks between nutrition and pediatric cancers remain poorly understood. A combined 
approach of epidemiological investigation, clinical diagnosis, omics technology, and mechanistic study is necessary to understand better how nutrients 
alter cancer fate and to develop the optimal nutritional strategy for pediatric cancer patients.
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