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Background: Many studies show that the intake of raspberries is beneficial to 
immune-metabolic health, but the responses of individuals are heterogeneous 
and not fully understood.

Methods: In a two-arm parallel-group, randomized, controlled trial, immune-
metabolic outcomes and plasma metabolite levels were analyzed before and after 
an 8-week red raspberry consumption. Based on partial least squares discriminant 
analysis (PLS-DA) on plasma xenobiotic levels, adherence to the intervention was 
first evaluated. A second PLS-DA followed by hierarchical clustering was used 
to classify individuals into response subgroups. Clinical immune and metabolic 
outcomes, including insulin resistance (HOMA-IR) and sensitivity (Matsuda, 
QUICKI) indices, during the intervention were assessed and compared between 
response subgroups.

Results: Two subgroups of participants, type 1 responders (n = 17) and type 2 
responders (n = 5), were identified based on plasma metabolite levels measured 
during the intervention. Type 1 responders showed neutral to negative effects on 
immune-metabolic clinical parameters after raspberry consumption, and type 2 
responders showed positive effects on the same parameters. Changes in waist 
circumference, waist-to-hip ratio, fasting plasma apolipoprotein B, C-reactive 
protein and insulin levels as well as Matsuda, HOMA-IR and QUICKI were 
significantly different between the two response subgroups. A deleterious effect 
of two carotenoid metabolites was also observed in type 1 responders but these 
variables were significantly associated with beneficial changes in the QUICKI index 
and in fasting insulin levels in type 2 responders. Increased 3-ureidopropionate 
levels were associated with a decrease in the Matsuda index in type 2 responders, 
suggesting that this metabolite is associated with a decrease in insulin sensitivity 
for those subjects, whereas the opposite was observed for type 1 responders.

Conclusion: The beneficial effects associated with red raspberry consumption 
are subject to inter-individual variability. Metabolomics-based clustering appears 
to be an effective way to assess adherence to a nutritional intervention and to 
classify individuals according to their immune-metabolic responsiveness to the 
intervention. This approach may be replicated in future studies to provide a better 
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understanding of how interindividual variability impacts the effects of nutritional 
interventions on immune-metabolic health.
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1. Introduction

It has been shown that obesity and metabolic syndrome increase 
type 2 diabetes (T2D) incidence and cardiovascular disease morbidity 
and mortality rates (1). With both environmental and biological 
factors affecting the risk of an individual to develop T2D (2), the 
beneficial effects of plant-based diets on metabolic health have been 
previously highlighted (3). The consumption of fruits, and in 
particular berries, has been associated with beneficial health effects, 
especially in the prevention of metabolic disturbances (4). Berries 
have been consumed since the roman empire and were used to treat 
diseases in medieval Europe (5).

These fruits are natural source of dietary fiber and many other 
nutrients and phytochemicals with beneficial health properties. 
Berries are rich in numerous polyphenols, classified as flavonoids and 
non-flavonoids, which have favorable effects on obesity, hypertension, 
dyslipidemia and hyperglycemia, at least in part through their 
potential antioxidant and anti-inflammatory properties (6). In 
particular, the polyphenolic content and antioxidant activity of 
raspberries are ranked among the highest of commonly consumed 
fruits (7). Moreover, studies have shown that most consumed berries 
such as raspberries improve postprandial hyperglycemia and 
hyperinsulinemia in individuals with overweight or obesity, as well as 
with metabolic syndrome, suggesting that these fruits may have a 
beneficial impact on type 2 diabetes prevention and management (8, 9).

The inclusion of metabolomics-based plasma metabolic profiling 
has allowed the identification of nutritional markers related with 
intervention adherence and health response (10). The human plasma 
metabolome contains hundreds of circulating metabolites reflecting 
the physiology, genetics, environmental exposures and dietary habits 
of individuals (11). These metabolites include mainly xenobiotics, 
lipids, amino acids, vitamins and cofactors, and nucleotides. In this 
regard, while most of past research has demonstrated the beneficial 
effects of raspberry consumption on health parameters, few studies 
have focused on analyzing the metabolic response to raspberries 
through metabolomics. The main goals of the present study were to 
identify different types of metabolic responses to an 8-week raspberry 
consumption based on the plasma metabolomics signature of 
participants and to develop a framework for assessing adherence to a 
nutritional intervention’s guidelines.

2. Materials and methods

2.1. Study design and participants

The study design consisted of a two-arm parallel-group, 
randomized, controlled trial of the effects of raspberry consumption 
on the metabolic parameters and plasma metabolome in subjects with 

metabolic disturbances. The trial, registered as NCT03620617 at 
clinicaltrials.gov, took place from 2018 to 2019 at the Institute of 
Nutrition and Functional Foods (INAF) at Université Laval. The 
written consent was obtained for all participants after the study was 
approved by the Université Laval Ethics Committee (CER-Université 
Laval 2017-218). Study participants were men or pre-menopausal 
women aged between 18 to 60 years old, with a body mass index 
(BMI) ranging from 25 to 40 kg/m2 or a waist circumference greater 
or equal to 94 cm for men and 80 cm for women. After eligibility was 
confirmed and a 2-week run-in-period, subjects were randomly 
instructed to consume 280 g of frozen red raspberries per day (n = 24) 
or to maintain their usual diet (n = 25) for 8 weeks. Nutritional and 
clinical data of participants were collected from food frequency 
questionnaires (FFQ), medical questionnaires and physical 
examinations (12). Blood samples were taken before (week 0) and 
after the 8 weeks (week 8) of raspberry consumption. We  have 
summarized the nutritional composition of raspberries in 
Supplementary Table  1. All data is representative of two cups of 
raspberries (4 portions), which participants consumed daily for 
8 weeks. Further details on this clinical study are available in (12). For 
the present study, data from the 24 subjects of the group consuming 
raspberries were used. In addition to the clinical variables available in 
the clinical study (12), the quantitative insulin sensitivity check index 
(QUICKI) was computed for all participants using 1/[log10(fasting 
insulin) + log10(fasting glucose)] (13). Matsuda index is used to 
evaluate insulin sensitivity from the data obtained by an oral glucose 
tolerance test (14). Homeostatic model assessment for insulin 
resistance (HOMA-IR) is calculated from fasting glucose and fasting 
insulin levels and is an index widely used to assess insulin resistance 
in individuals (15).

2.2. Plasma metabolome profiling

Targeted metabolomics using ultra-performance liquid 
chromatography–tandem mass spectrometry on the Metabolon 
DiscoveryHD4® platform (Morrisville, NC, United  States) were 
performed on fasted plasma samples of the 24 participants of the 
raspberry group collected before (week 0) and after (week 8) the 
raspberry consumption (16). The dataset of metabolites consisted of a 
total of 1,132 biochemicals which included lipids, amino acids, 
xenobiotics, cofactors and vitamins, nucleotides, carbohydrates and 
peptides. Data were normalized by dividing the raw values in the 
experimental batch by the median of those samples in each instrument 
batch, giving each batch and thus the metabolite a median of one. After 
batch normalization, data were further imputed by replacing missing 
values for a given metabolite with its observed minimum. This was 
done to avoid inflating the false negative rate and weaken the statistical 
power of the analyses. Normalized and imputed data were then 
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transformed using natural log and filtered based on inter-individual 
variance. Metabolites presenting no variance (n = 14) or low variance 
(< 0.1; n = 272) were excluded from further analyses. Data were further 
filtered to remove unknown compounds (216 unnamed biochemicals).

2.3. Xenobiotics and adherence to the 
nutritional intervention

Metabolites in the Metabolon dataset classified as “xenobiotics” 
were used herein as metabolites reflecting the adherence of participants 
to the nutritional intervention. Partial least squares discriminant 
analysis (PLS-DA) is a supervised classification algorithm reducing the 
dimensionality of the data to analyze the covariance between categorical 
dependent variables and a very large number of independent variables. 
A first sparse PLS-DA (sPLS-DA) was done to confirm adherence to 
the nutritional intervention by discriminating trial visits, before and 
after raspberry consumption, using only xenobiotics (n = 120; 
Supplementary Figure 1). To identify participants with a low adherence 
to the protocol, we performed a second step based on the prediction of 
the intervention timepoints. For training and testing data, the initial 
dataset was split in two equal sets containing the same number of 
samples and equal proportion of men and women. A trained sPLS-DA 
model was used to predict the intervention timepoint (pre-or post-
raspberry consumption) of plasma samples. This was first done while 
including participants whose adherence was considered as low, and 
then after excluding them. It served the purpose of confirming whether 
their exclusion from the dataset was justified by examining prediction 
performance statistics of the model and the model’s error rate. 
PLS-DAs, sPLS-DAs and classification performance evaluation of the 
models were computed using the mixOmics R package (v6.20.0) (17).

2.4. Clustering

Metabolites for clustering analysis were filtered by removing 
xenobiotics (n = 120) and partially characterized molecules (n = 24). A 
total of 486 out of the 1,132 initial metabolites reflecting the participants’ 
endogenous response to the intervention were used for this analysis, as 
shown in Supplementary Figure  1. A PLS-DA was then used in 
combination with a hierarchical clustering analysis (HCA) to identify 
clusters of participants with distinct metabolic response to raspberry 
consumption. The PLS-DA model was instructed to discriminate 
plasma samples belonging to pre-versus post-raspberry consumption 
timepoints. In order to identify response subgroups, the two main 
components resulting from the PLS-DA were used as input data for the 
HCA, with Euclidean distance and Ward linkage as the main parameters 
of the model. This was done using pvclust R package (v2.2.0) (18), 
which calculates approximately unbiased value of ps for all clusters by 
using multiscale bootstrap resampling (n = 1,000 replications). An 
unbiased value of p of 95% or above was considered to robustly support 
the identified clusters. Finally, a sPLS-DA was performed considering 
the newly identified clusters of participants. The sPLS-DA was done to 
strengthen the classification and identify the most discriminating 
metabolites in each subgroup. The optimal number of metabolites to 
use was determined during the tuning process, which was run using 
10-fold cross validation and 20 repeats. A multilevel approach was used 
to correctly assess the structure of the data, which includes two 

timepoints per participant (before and after the intervention). The 
stability of selected metabolites within each component was computed 
as the proportion of folds where the loading was used to assess a given 
component during cross validation. The model’s performance was then 
evaluated using the built-in tools to estimate the classification error rate.

2.5. Statistical analyses

A two-tailed unpaired t-test was first used to compare baseline 
characteristics between subgroups at week 0. We then explored the 
metabolic homogeneity of participants within each subgroup and the 
heterogeneity between subgroups, and assessed the physiological 
relevance of the metabolomics-based raspberry responsiveness 
classification. To do that, a linear mixed model using the nlme 
(v3.1.157) (19) and emmeans (v1.7.5) (20) R packages was used to 
compare the changes in metabolic parameters in response to raspberry 
consumption between subgroups. This model was used to test the 
effects of group, timepoint and their interaction considering the effects 
of age and sex. A second linear mixed model was used to test the 
association between plasma metabolite levels and clinical data at weeks 
0 and 8. The 10 most discriminant metabolites of components 1 and 2 
and the clinical variables for which the differences between subgroups 
were significant were used in this model. When significant interactions 
at p ≤ 0.05 between metabolites and clinical variables were observed, a 
contrast analysis was performed to test for differences between groups.

3. Results

3.1. Adherence confirmation by 
xenobiotic-based PLS-DA

Xenobiotics found in the metabolome of participants were useful 
for identifying participants with a low adherence to the study protocol. 
Based on the levels of certain xenobiotics, the sPLS-DA revealed two 
potential non-adherent participants (Supplementary Figure 2A). The 
most discriminant xenobiotics were methyl glucopyranoside, 
4-acetylphenyl sulfate and dihydrocaffeate sulfate 
(Supplementary Figure 2B). To confirm the outlier status of these two 
participants, we predicted the intervention timepoint. When removing 
these two participants, we achieved a prediction accuracy of 100%. By 
including these two participants, the accuracy decreased to 75%, and 
both subjects were systematically misclassified. For this reason, these 
two participants were removed from all further analyses, leaving a 
total of 22 study participants.

3.2. Hierarchical clustering of response 
subgroups to the raspberry consumption

The first two components of the PLS-DA aimed at discriminating 
between intervention timepoints with endogenous metabolites 
accounting for, respectively, 16 and 6% of the variance (Figure 1A). The 
HCA on the two latent variables derived from the PLS-DA revealed 
subgroups of matched participants with homogenous and well-
discriminated metabolomic profiles at pre- and post-intervention visits, 
with approximately unbiased p-values greater than 95% (Figure 1B). 
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Two clusters of participants were discriminated based on component 1 
and were considered as type 1 responders (n = 17). Another two 
subgroups of participants were discriminated based on component 2 
(n = 5) and were considered as type 2 responders (Figure 1B).

A multilevel sPLS-DA model was then built using these two 
subgroups as an input to determine which metabolites were the most 
discriminant and to discover the optimal number of metabolites to use 
in each component (Figure 1C). From this sPLS-DA, component 1 
accounted for 16% of variance and was composed of 30 metabolites 
whereas component 2 accounted for 5% of variance and also included 
30 metabolites. A heatmap illustrating these results is shown in 
Figure 1D. Performance evaluation of the model showed an average 
classification error rate of around 26% (Supplementary Figure 3A). 
The stability of the selected metabolites is shown in 

Supplementary Figure  3B. We  observed a high stability for most 
discriminant metabolites in components 1 and 2. The top  10 
metabolites in component 1 all have a stability of 0.90 or higher, while 
component 2 top 10 metabolites ranged from 0.98 to 0.74. This shows 
that metabolites in both components are highly discriminative.

3.3. Physiological relevance of clustering

We observed no significant differences between type 1 and type 2 
responders for age, sex, body weight, BMI and all other clinical 
parameters at week 0 (Supplementary Table 2).

Changes in all clinical parameters between weeks 0 and 8 for type 
1 and type 2 responders are shown in Table 1 and all the significant 

A B

C D

FIGURE 1

Main steps of the metabolomic-based clustering procedure. Panel (A) shows participants spanned by the two main components derived from partial 
least squares discriminant analysis (PLS-DA) grouped by timepoint (pre- and post-intervention, respectively in blue and red). Each ellipse represents the 
95% confidence interval for each timepoint group. Panel (B) shows the four clusters of participants identified from hierarchical clustering analysis 
(HCA). Red and orange squares regroup type 1 responders at pre- and post-intervention timepoints. Blue and purple squares represent type 2 
responders at pre-and post-intervention timepoints. Numbers in red represent the approximately unbiased p-values of each cluster. Panel (C) shows 
participants spanned by the two main components derived from sparse PLS-DA portraying the two distinct response subgroups identified from HCA. 
R1 pre-and R1 post-intervention subgroups are colored in red and orange, respectively. R2 pre- and R2 post-intervention subgroups are colored in 
blue and purple, respectively. (D) Heatmap illustrating the classification of participants based on the most discriminating metabolites derived from 
sparse partial least squares discriminant analysis (sPLSDA). The left dendrogram branches in four major nodes, representing the clustering of 
participants. The upper dendrogram branches in two major nodes, representing the first component with its 30 metabolites on the right, and the 
second component with its 30 metabolites on the left. The intensity of red color indicates an increase in metabolite levels between pre-and post-
intervention timepoints.
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visit-by-group interactions are shown in Figure 2. As compared to 
type 1 responders, type 2 responders showed a significant decrease in 
waist circumference (p for group x visit interaction, pi = 0.02; 
Figure  2A), waist-to-hip ratio (pi = 0.01; Figure  2B), plasma 
apolipoprotein B (ApoB; pi = 0.003; Figure 2C), C-reactive protein 
(CRP; pi = 0.02; Figure 2D), fasting insulin levels (pi = 0.02; Figure 2E), 
and HOMA-IR (pi = 0.03; Figure 2F) and a significant increase in the 
QUICKI index (pi = 0.02; Figure  2G) and Matsuda (pi = 0.003; 
Figure 2H).For most clinical parameters, we observed the opposite 
effect in type 1 responders, with fasting insulin, waist-to-hip ratio and 
plasma CRP levels being higher than baseline after the intervention, 
while QUICKI and Matsuda indices were lower. Waist circumference, 
HOMA-IR and ApoB levels remained stable or showed a slight 
increase after the intervention for type 1 responders.

3.4. Most discriminant metabolites 
between response subgroups

We sorted discriminant metabolites obtained through the 
sPLS-DA based on their loading weight, component by component. 
The top 10 metabolites of each component are shown in Figure 3. Type 
1 responders showed higher average changes on component 1 
metabolites than non-responders (Figure 3B). The top 10 metabolites 
of component 2 are shown in Figure 3C and Figure 3D. Briefly, type 1 
responders timepoints were differentiated by metabolites of 

component 1, and type 2 responders timepoints were differentiated by 
metabolites by component 2.

Significant associations were observed between changes in clinical 
parameters and changes in plasma metabolite levels from both 
components (Figure 4). The change in fasting insulin and QUICKI 
index according to the change in carotene diol 1 was significantly 
different between type 1 and type 2 responders (p = 0.04 and p = 0.02, 
respectively). Concretely, we observed a positive association between 
the increase in carotene diol 1 and fasting insulin levels, and a negative 
association with the QUICKI index in type 1 responders, while the 
opposite was observed for type 2 responders, i.e., a decrease in fasting 
insulin and an increase in the QUICKI index were associated with an 
increase in carotene diol 1 levels (Figures 4A,B). On the other hand, 
we  found that the change in the Matsuda index according to the 
change in 3-ureidopropionate was significantly different between type 
1 and type 2 responders (p = 0.05). A negative association between the 
increase in the metabolite and the Matsuda index was seen for type 2 
responders whereas a positive correlation was observed for type 1 
responders (Figures 4C,D).

4. Discussion

The most significant finding of this study is that, using a machine 
learning approach, changes in the levels of plasma metabolites may 
be  used to assess the metabolic responsiveness to raspberry 

TABLE 1 Changes in anthropometric and metabolic characteristics of type 1 and type 2 responders between week 0 and week 8.

Variable
Type 1 responders Type 2 responders p-Values

Week 0 Week 8 Week 0 Week 8 Group Visit Interaction

Weight (kg) 92.6 ± 4.3 93.1 ± 4.3 88.1 ± 7.1 87.5 ± 7.1 0.56 0.51 0.20

BMI (kg/m2) 31.2 ± 1.4 31.4 ± 1.4 29.2 ± 2.4 29.0 ± 2.4 0.45 0.42 0.19

Waist circumference (cm) 102.6 ± 3.3 103.7 ± 3.3 98.7 ± 5.5 96.2 ± 5.5 0.40 0.50 0.02

Hip circumference (cm) 113.0 ± 2.8 113.0 ± 2.8 106.8 ± 4.8 106.7 ± 4.8 0.28 0.93 0.88

Waist-Hip ratio 0.91 ± 0.02 0.92 ± 0.02 0.92 ± 0.03 0.90 ± 0.03 0.94 0.52 0.01

Systolic blood pressure 116.4 ± 2.4 114.4 ± 2.4 111.2 ± 4.0 110.1 ± 4.0 0.31 0.06 0.71

Diastolic blood pressure 74.9 ± 2.1 73.8 ± 2.2 68.0 ± 3.7 64.6 ± 3.7 0.06 0.14 0.41

ApoB (g/L) 0.93 ± 0.06 0.94 ± 0.06 1.06 ± 0.11 0.9 ± 0.11 0.72 0.20 0.003

Total-Cholesterol (mmol/L) 4.54 ± 0.24 4.54 ± 0.24 5.11 ± 0.41 4.78 ± 0.41 0.40 0.54 0.19

TG (mmol/L) 1.61 ± 0.18 1.46 ± 0.19 1.44 ± 0.32 1.19 ± 0.32 0.52 0.24 0.78

HDL-C (mmol/L) 1.18 ± 0.08 1.18 ± 0.08 1.3 ± 0.13 1.27 ± 0.13 0.49 0.80 0.85

LDL-C (mmol/L) 2.61 ± 0.22 2.7 ± 0.22 3.15 ± 0.38 2.96 ± 0.38 0.37 0.79 0.20

Cholesterol HDL-C 4.39 ± 0.33 4.28 ± 0.33 4.06 ± 0.56 3.86 ± 0.56 0.56 0.40 0.79

HbA1C 5.10 ± 0.10 5.10 ± 0.10 5.00 ± 0.10 5.10 ± 0.10 0.66 0.25 0.79

CRP (mg/L) 2.73 ± 0.86 4.2 ± 0.87 2.92 ± 1.46 1.83 ± 1.46 0.53 0.05 0.02

Fasting glucose (mmol/L) 4.86 ± 0.13 4.78 ± 0.13 4.76 ± 0.21 4.81 ± 0.21 0.88 0.32 0.30

Fasting Insulin (pmol/L) 97.1 ± 10.5 97.4 ± 10.5 87.2 ± 17.6 67.7 ± 17.6 0.35 0.22 0.02

Matsuda 4.84 ± 0.56 4.15 ± 0.56 3.59 ± 0.73 5.18 ± 0.73 0.91 0.63 0.003

HOMA-IR 2.97 ± 0.58 3.06 ± 0.58 2.96 ± 0.76 2.36 ± 0.76 0.72 0.26 0.03

QUICKI 0.33 ± 0.01 0.33 ± 0.01 0.33 ± 0.01 0.34 ± 0.01 0.49 0.41 0.02

Data are means ± standard deviation. Type 1 responders (n = 17) and type 2 responders (n = 5). A linear mixed model adjusted for age, sex, and baseline values was used. BMI, body mass index; 
ApoB, Apolipoprotein B; TG, triglycerides; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; HbA1C, glycated hemoglobin; CRP, C-reactive protein.
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consumption. Concretely, following the classification of study 
participants into two distinct response subgroups based on the levels 
of plasma metabolites measured before and after the 8-week raspberry 
consumption, it is interesting to note significant differences in 
metabolic health features between the two distinct response 
subgroups, supporting our clustering approach. In this regard, while 
positive metabolic responses to the raspberry consumption are already 
well known (21–24), the results of the present study suggest that a 
clustering approach of plasma metabolomic data may contribute to 
explain the interindividual variability observed in metabolic 
responsiveness to red raspberry consumption.

The use of a metabolomics-based approach for clustering was also 
particularly useful to assess the adherence to the nutritional 
intervention. The consumption of xenobiotics present in raspberries 
led to an increase in such metabolites in the plasma of study 
participants (25, 26), which were used as raspberry intake markers to 
identify participants who had a low adherence to the study protocol. 
The classification algorithm was then trained to predict if a given 
sample belonged to pre-or post-intervention timepoints and served 

the purpose of justifying the exclusion of participants suspected of low 
adherence. This metabolomics-based approach has been used to 
monitor dietary intake and adherence to a specific diet in recent 
studies, suggesting that metabolites could be effective biomarkers of 
food intake (27–31). The second part of the clustering approach was 
designed to address previous attempts to classify the metabolic 
responsiveness to an 8-week raspberry consumption, such as a 
transcriptomics-based approach (12). The metabolomics-based 
clustering through PLS-DA and sPLS-DA appeared to be relevant, as 
we  observed a homogeneous response within subgroups of 
participants, as well as a heterogeneous response between subgroups.

Of all the metabolites analyzed in this study, those belonging to 
the carotenoid family had the most significant influence on metabolic 
parameters. A regular intake of raspberries has been reported to have 
positive effects on many metabolic parameters, including improved 
glucose, insulin, and lipid metabolism as well as reduced 
inflammation and oxidation (9, 32, 33). These berries contain many 
carotenoids (34), which have been linked to positive effects on 
metabolic health. In the present study, two carotenoids, identified as 

A B C D

E F G H

FIGURE 2

Metabolic differences between pre- and post-intervention by response subgroup. Panels (A) – (H) show all significant differences in metabolic 
parameters between pre- and post-intervention timepoints for type 1 responders (red) and type 2 responders (blue) derived from a linear mixed model. 
p Values shown above each panel represent the p for group × visit interaction. Differences accounted for age and sex and resulted from the interaction 
between the effects of group and timepoint. Each point represents a participant. The mean is represented by the horizontal line, and the standard error 
is represented by the vertical lines. QUICKI, Matsuda, HOMA-IR and waist-to-hip ratio have no unit.
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carotene diol 1 and 2, were among the most discriminant metabolites 
in the clustering analysis, with carotene diol 1 also being significantly 
linked to opposite changes in fasting insulin and QUICKI index 
between type 1 and type 2 responders. Circulating plasma carotenoids 
have been associated with lower inflammation (35–37), including 
reduced CRP, which we observed in type 2 responders. However, the 
effects of carotenoids on insulin resistance and the prevention of type 
2 diabetes are dichotomic, with studies showing either an inverse 
association or no association (37). Some studies have reported 
positive health outcomes on fasting plasma glucose levels and insulin 
resistance (38) for beta-carotene and lycopene, respectively, whereas 
other studies have found no correlation between lutein or lycopene 
and the prevention of type 2 diabetes, but association of alpha-and 
beta-carotene with type 2 diabetes risk reduction (39). Similarly, 
carotenoids have also been associated with beneficial lipid and 
inflammatory responses (40). Many environmental, dietary, 
physiologic, structural and genetic factors may influence absorption 
and bioavailability of carotenoids, ranging from gender to hormonal 
status, interactions with other nutrients or molecules and smoking 
status, and can affect an individual’s response (41–43). Moreover, 
previous studies of our team suggest that the heterogeneous 
association observed between plasma carotenoid concentrations and 
lipid profiles might be mediated by genetic factors impacting on gene 
expression and methylation levels (40, 44, 45), which eventually may 
influence glucose homeostasis differently.

One of the most discriminant metabolites of component 2 in the 
sPLS-DA was the 3-ureidopropionate, an intermediate in the 
metabolism of uracil and member of the class of compounds known 
as ureas (46), and significantly linked to the difference in the Matsuda 
index between response subgroups. Another propionic derivative 
which was in the top 10 most discriminant metabolites of component 
2 was the 3-carboxy-4-methyl-5-pentyl-2-furanpropionate 
(3-CMPFP). Propionate is a product of colonic fermentation of dietary 
fibers (47), which inhibits glucose-induced insulin secretion and 
glucose decarboxylation in rat pancreatic cells (48). More recent 
studies have confirmed that propionate improves beta-cell function in 
humans (49) and improved insulin sensitivity (50), which can 
be linked to the well documented health effects of dietary fibers on 
glucose homeostasis (51, 52). Discrepancies reported in the literature 
around the impact of raspberry consumption on metabolic health are 
reflected in the present study. Accordingly, most of the significant 
effects observed in type 2 responders were generally beneficial on 
metabolic health. However, the increase in 3-ureidopropionate during 
raspberry consumption had opposing effects. Concretely, increasing 
levels of 3-ureidopropionate were associated with an increase in the 
Matsuda index in type 1 responders, and therefore with an 
improvement in insulin sensitivity. In contrast, type 2 responders 
sustained a decrease in Matsuda index values with increasing 
3-ureidopropionate levels, and a deterioration of their insulin 
sensitivity. However, overall insulin sensitivity of type 2 responders 

A B

C D

FIGURE 3

Most discriminant metabolites between type 1 and type 2 responder groups. Panels (A) and (C) show the ten most discriminant metabolites of 
component 1 and component 2 of the sparse partial least squares discriminant analysis (sPLS-DA) respectively, ordered from bottom to top by highest 
loading weight in the discrimination in their respective component. Negative loading weights are shown in light gray and positive loading weights are 
shown in dark gray. Panels (B) and (D) show the magnitude of change in metabolite levels for the top ten metabolites in component 1 and component 
2 for each response subgroup. Changes for type 1 responders are shown in red and changes for type 2 responders are shown in blue.
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after the intervention was improved. Although these results are 
preliminary due to the small numbers on which they are based, they 
reflect the interindividual variability observed in metabolic 
responsiveness to a nutritional intervention, possibly attributable to 
divergent capacity to metabolize, absorb or use these metabolites. On 
the other hand, chiro-inositol was the most discriminant metabolite 
of component 2. It has been reported to serve a purpose in the 
mediation of insulin action, and low concentrations have been linked 
to increased insulin resistance (53, 54). Xylose, the second most 
discriminant metabolite of component 2, has been linked to improved 
blood glucose levels regulation by selectively inhibiting the activity of 
sucrase (55, 56), and may have been a factor in the improved insulin 
sensitivity of type 2 responders. The different responses we observed 
between type 1 and type 2 responders may have different causes. 
Studies focusing on fruits and vegetables consumption found that 
many factors could influence the heterogeneity of individuals’ 
response: health status, excess weight, chronic inflammation and 
hypertension can affect the absorption and metabolism of biomarkers. 
This may explain the varying effectiveness of the intervention in the 
at risk of metabolic syndrome population of this study (57). Other 
studies have explored the different responses in individuals to the 
same meal, finding many determinants of postprandial metabolism 

such as glycemic response and triglyceride and insulin concentrations 
(58). Concentrations of specific enzymes and some polymorphisms 
and mutations affecting key genes may also influence individual 
metabolic response to many nutrients and therefore the presence of 
their metabolites in plasma samples (59). Metabolomics alone cannot 
fully explain the different responses we observed between the two 
subgroups, and future studies may use a multi-omics approach to 
further understand interindividual variability and its causes.

The small sample size of the present study as well as the low 
number of type 2 responders can be considered as a limitation and 
results should be  interpreted with caution. The generalization of 
clustering results therefore requires further studies in larger, 
independent study samples to confirm the present findings. The 
subgroup of type 2 responders with positive health outcomes consisted 
of only five people, which limits the impact of these results. Another 
limitation was the absence of polyphenols and polyphenol-derived 
metabolites in the Metabolon database of metabolites used in this 
study. The inclusion of these molecules could have revealed more 
meaningful interactions between metabolites and changes in clinical 
variables, allowing us to understand the distinct metabolic effects of 
red raspberry consumption. Moreover, the absence of a control group 
was also a limitation. The participants of the study were required to 

A B

C D

FIGURE 4

Association between changes in plasma metabolites and metabolic parameters during the intervention by response subgroup. Panels (A) and (C) show 
levels of carotene diol 1- and 3-ureidopropionate, respectively, for each response group, before and after the intervention. Panel (B) shows the 
changes of carotene diol 1 in relation to the changes in the QUICKI index for type 1 and type 2 responder groups. Panel (D) shows the changes in 
3-ureidopropionate in relation to the changes in the Matsuda index for type 1 and type 2 responder groups.
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limit their berry consumption and maintain consistent health habits 
during a 2-week run-in period, leading to raspberry supplementation 
as the primary dietary change during the intervention. However, since 
we do not have data from the control group, these observations should 
be  considered exploratory in nature and further studies utilizing 
randomized designs will be necessary to validate our findings. Despite 
the small sample size, some significant interactions between 
metabolites and clinical features were still found, opening the door to 
more in-depth studies on specific metabolites. Moreover, the use of 
metabolomics are herein revealed as particularly promising in 
assessing dietary intake biomarkers in conjunction with self-reported 
dietary assessment methods such as food frequency questionnaires, 
which alone are prone to a certain error (60, 61). Such results warrant 
further investigation into large study samples to confirm the potential 
of xenobiotics as a marker of adherence to nutritional interventions.

In conclusion, this metabolomics-based clustering approach 
derived from an 8-week raspberry consumption allowed to develop a 
framework to address the impact of the interindividual variability on 
the metabolic responsiveness to raspberry consumption. This 
approach paves the way to future studies focused on further 
understanding the role of plasma metabolites in identifying 
individuals more prone to take advantage from a nutritional 
intervention aimed at having beneficial health effects. This framework 
may then be extrapolated to understand other diseases and conditions, 
and further enhance the development of precision nutrition.
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