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Non-alcoholic fatty liver disease (NAFLD) is frequently associated with metabolic

disorders, being highly prevalent in obese and diabetic patients. Many concomitant

factors that promote systemic and liver inflammation are involved in NAFLD

pathogenesis, with a growing body of evidence highlighting the key role of the gut

microbiota. Indeed, the gut-liver axis has a strong impact in the promotion of NAFLD

and in the progression of the wide spectrum of its manifestations, claiming efforts

to find effective strategies for gut microbiota modulation. Diet is among the most

powerful tools; Western diet negatively affects intestinal permeability and the gut

microbiota composition and function, selecting pathobionts, whereas Mediterranean

diet fosters health-promoting bacteria, with a favorable impact on lipid and glucose

metabolism and liver inflammation. Antibiotics and probiotics have been used to

improve NAFLD features, with mixed results. More interestingly, medications used

to treat NAFLD-associated comorbidities may also modulate the gut microbiota.

Drugs for the treatment of type 2 diabetes mellitus (T2DM), such as metformin,

glucagon-like peptide-1 (GLP-1) agonists, and sodium-glucose cotransporter (SGLT)

inhibitors, are not only effective in the regulation of glucose homeostasis, but also in

the reduction of liver fat content and inflammation, and they are associated with a

shift in the gut microbiota composition towards a healthy phenotype. Even bariatric

surgery significantly changes the gut microbiota, mostly due to the modification of

the gastrointestinal anatomy, with a parallel improvement in histological features of

NAFLD. Other options with promising effects in reprogramming the gut-liver axis,

such as fecal microbial transplantation (FMT) and next-generation probiotics deserve

further investigation for future inclusion in the therapeutic armamentarium of NAFLD.
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Introduction

Non-alcoholic fatty liver disease (NAFLD) is considered the liver mirror of systemic
metabolic dysfunction, and represents a condition driven by chronic inflammation (1). NAFLD
encompasses a wide spectrum of alterations, ranging from non-alcoholic fatty liver (NAFL) to
non-alcoholic steatohepatitis (NASH), with fibrosis at different stages up to cirrhosis (2).
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Despite less than 10% of people suffering from NAFLD develop
liver-related complications, such as cirrhosis and hepatocellular
carcinoma (HCC), the economic burden of the disease is heavy. In
fact, NAFLD global prevalence is around 25% in the adult population
and 7.6% among children. Owing to its high prevalence, NAFLD is
the most rapidly increasing cause of end-stage liver disease, HCC and
liver transplantation worldwide, being already in USA and Europe the
second leading cause of death (3). In addition, NAFLD is associated
with an increased long-term risk of fatal and non-fatal cardiovascular
events, and the risk of cardiovascular disease (CVD) is proportional
to the stage of fibrosis (4).

Thus, the NAFLD umbrella includes a wide heterogeneity
of patients, which cannot be defined simply by the absence of
alcohol consumption. The term fatty liver disease associated with
metabolic dysfunction (MAFLD) has been therefore introduced to
define the disease based on its features, precisely the evidence
of liver fat accumulation in addition to at least one among:
overweight/obesity, type 2 diabetes mellitus (T2DM) or evidence of
metabolic dysregulation (such as high blood pressure, altered lipid
panel, impaired fasting glucose, or insulin resistance) (5, 6).

Based on these premises, NAFLD is an increasingly emerging
global health problem. Understanding the pathophysiology and
molecular mechanisms underlying NAFLD is necessary to highlight
new therapeutic targets, considering that there are currently no
approved drugs for the treatment of NASH and the standard of care
is still based on lifestyle modification (2).

In this review, we focus on the impact of the gut microbiota
on the molecular mechanisms underlying NAFLD, understanding
how current therapeutic approaches used to treat NAFLD/MAFLD
and its associated comorbidities may influence the natural history
of the disease through gut microbiota modulation. Finally, we
point the view to what may become future therapeutic weapons in
NAFLD/MAFLD, acting on the gut microbiota.

Multiple parallel hits hypothesis and
the importance of the gut microbiota
in NAFLD/MAFLD pathogenesis

The most valuable hypothesis on the development of NAFLD
concerns the presence of several parallel factors that simultaneously
generate and maintain inflammation, promoting liver damage with
the accumulation of fibrosis. The main protagonists are high-fat diet
(HFD), lipotoxicity, gut barrier dysfunction, and dysbiosis (7, 8).

In the last decades, the importance of the gut microbiota
in the pathophysiology of NAFLD has strongly emerged. Several
studies have been carried out to understand the gut microbiota
composition. The wide variety of bacteria and the multiple
factors which can modify the gut microbiota, included genetic
and environmental factors, make the issue hard, with discordant
results involving phyla, but also families and genera (9). Of note,
some studies correlate the severity of the disease with a specific
microbial signature. Enterobacteriaceae, including Escherichia coli
and Shigella, Bacteroides and Ruminococcus are enriched in patients
with moderate-severe fibrosis, while Faecalibacterium prausnitzii
and Prevotella decrease (Figure 1) (10, 11). A recent study by
Oh et al. (12) identified some bacteria and bacterial metabolic
signatures that independently predict NAFLD-cirrhosis. Veillonella
spp., Enterobacteriaceae and Acidaminococcus correlated positively

with the severity of liver fibrosis, whereas Eubacterium spp. and
Faecalibacterium prausnitzii showed opposite trends; in addition,
tryptophan, and related metabolites such as indole and kynurenic
acid were altered in NAFLD-cirrhosis, with an overall increase in
stool tryptophan levels.

Going beyond the mere association between microbial signatures
and NAFLD, several studies showed that the gut microbiota is
pivotal in inducing the disease phenotype. Indeed, germ-free mice
receiving fecal microbial transplantation (FMT) from NASH-affected
mice develop hepatic steatosis and inflammation, compared to those
receiving FMT from healthy mice (13), on the contrary, FMT
from healthy controls protects mice on HFD from intrahepatic
lipid accumulation and inflammation (14). Furthermore, FMT from
HFD fed mice into pathogen-free mice fed a standard diet, can
induce intestinal epithelial barrier (IEB) and gut-vascular-barrier
(GVB) derangement (15). This confirms that it is not the type of
diet to induce intestinal barrier alteration with consequent bacterial
translocation and establishment of inflammatory damage, but rather
its influence on the gut microbiota composition. In addition, this
study highlighted that the disruption of the intestinal barrier is an
early event in the development of NAFLD (15) explaining why liver
fat accumulation and lipotoxicity facilitated by insulin resistance
(IR) are only components of a wider and more complicated picture.
On the other hand, recent studies showed that allogenic FMT from
healthy donors can only improve intestinal permeability in patient
with NAFLD, with no effect on metabolic parameters (16). Of note, in
a mice model of HFD-induced obesity, FMT was able to transmit the
beneficial effects of diet and exercise on gut microbiota and metabolic
profiles (17).

Noteworthy, gut microbiota exerts a continuous pressure on the
immune system, especially when intestinal permeability and bacterial
translocation are increased, as it happens in NAFLD (8, 18). Pathogen
associated molecular patterns (PAMPs), such as lipopolysaccharide
(LPS) from Gram-negative bacteria, bind toll like receptors (TLRs)
expressed on epithelial cells and cells belonging to the innate immune
system, modulating the inflammatory response against exogenous
antigens (19–22). Some preclinical studies have shown a marked
involvement of TLR4 and TLR9 in the development of steatosis,
inflammation and fibrosis. In fact, TLR4- or TLR9-deficient mice
given HFD or choline-deficient diet were protected from hepatic
steatosis and inflammation (23, 24). Therefore, dysbiosis associated
with many chronic metabolic diseases, producing a continuous
immunological stimulation, can promote a condition of low-grade
chronic inflammation called meta-inflammation (25, 26).

Therefore, gut microbiota modulation appears crucial in the
future treatment of NAFLD/NASH.

Effect of current NAFLD/MAFLD
treatment options on the gut
microbiota

Diet and physical activity

Though several pharmacologic agents have been developed
or tested for the treatment of NAFLD, diet still represents the
therapeutic cornerstone (2, 27).

It is well-known that the dietary pattern strongly influences
the development of NAFLD and other metabolic diseases, but
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FIGURE 1

Changes in gut microbiota have been associated with non-alcoholic fatty liver disease (NAFLD), with progressive alteration of some bacterial
components, according to the fibrosis degree. Loss of bacterial diversity and depletion of beneficial bacteria such as Lactobacillus and Bifidobacterium
have been described with the progression of NAFLD, together with the increase in Ruminococcus and Escherichia in patients with advanced fibrosis.
NAFLD, non-alcoholic fatty liver; NASH, non-alcoholic steatohepatitis.

also the gut microbiota (Figure 2). Western diet (WD) rich in
refined sugars and saturated fat, mainly based on high red meat
consumption and low fish, fruit, vegetables, and fibers intake, has
been found to be associated with liver fat deposition (28–32).
Conversely Mediterranean diet (MD) based on vegetables and fruit,
legumes, aromatic herbs, and extra virgin olive oil as the main source
of fat is associated with improvement in metabolic syndrome and
intrahepatic fat accumulation (28, 33, 34).

Recently, a clinical trial (35) evaluated the effects of the green-
MD, a type of MD further restricted in red and processed meats
and particularly enriched in green plants and polyphenols, in a
population of patients affected by obesity and dyslipidemia; a
significant reduction in liver fat was found with a halving of NAFLD
prevalence in the study population. An effect on the gut microbiota
was also reported; in particular, at the genus level, eight bacteria
were significantly associated with changes in the intrahepatic fat
content. Long-term adherence to MD is, in addition, protective
against cardio-metabolic diseases, and this effect is greatest among
Prevotella copri non-carriers in their gut microbiota (36). Fibers, one
of the most beneficial and healthy element of MD, improve liver
enzymes, lipid panel and fatty liver status in patients with NAFLD,
but also improve intestinal permeability (37) and have a great impact
on the gut microbiota composition. Overall, fibers intake increases
Bifidobacterium and Bacteroidetes, and decreases inflammatory
bacteria such as Enterococcus, Streptococcus, and Ruminococcus (38).
A specific subtype of fibers is represented by resistant starch, which
are found in foods such as banana, potatoes and corn, and enhance
the growth of SCFAs producing bacteria, such as Lactobacillus and
Bifidobacterium among others (39). SCFAs interact directly with the
G protein-coupled receptors (GPR) 41 and 43, also known as free
fatty acid receptor (FFAR) 3 and 2, respectively. The main SCFAs
agonists of these receptors are acetate, butyrate and propionate,
with different affinity (40). Through this interaction, SCFAs

trigger anti-inflammatory pathways and the peroxisome proliferator-
activated receptor (PPAR)-γ/adenosine monophosphate-activated
protein kinase (AMPK) signaling pathway, the latter causing the
inhibition of triglycerides and cholesterol production, the increased
release of pro-peptide YY (PYY) and glucagon-like peptide 1
(GLP-1), the regulation of appetite and the improvement of
intestinal barrier function (39–41). In a preclinical study, inulin
fiber administration improved hepatic steatosis and fibrosis in
mice, through hepatic free fatty acid receptor 2 (FFAR2)/G-protein-
coupled receptor 43 (GPR43) signaling; it should be noted that this
effect was mediated by the growth of the SCFAs-producing strains
Bacteroides acidifaciens and Blautia producta, resulting in increased
acetate content in the intestinal lumen (42). In a randomized, double-
blind, cross-over study, colonic infusion of SCFAs mixtures increased
fat oxidation, energy expenditure and PYY levels, also decreasing
lipolysis in overweight and obese men (43). Another randomized,
controlled, cross-over study demonstrated that ingestion of 10 g
inulin-propionate ester significantly increased postprandial plasma
PYY and GLP-1 secretion and reduced energy intake over a 24-
week period; furthermore, hepatic lipid content and visceral fat
deposition were reduced, while weight gain and insulin-resistance
were prevented (44). In murine models, administration of sodium
butyrate, reduced inflammation and liver steatosis, protecting against
WD-induced NASH (45).

Fructose is another crucial dietary element involved in the
onset of NAFLD, both by damaging the intestinal barrier and
inducing dysbiosis (46–53). Indeed, rats fed with high-sugar-diet
show an overall decrease in gut microbiota alpha diversity, as well
as a reduction in Bifidobacterium, Lactobacillus, and members of
Clostridiaceae family, and an increase in Coprococcus, Ruminococcus,
Clostridium, and Firmicutes/Bacteroidetes ratio (51, 53, 54).

Meat, yolk, and dairy products are rich in choline, an essential
nutrient involved in triglyceride metabolism and necessary for the
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FIGURE 2

Diet and bariatric surgery effects on the gut microbiota. Adherence to Mediterranean diet (MD) leads to a reduction in intestinal inflammatory bacteria
and an increase in beneficial bacteria, including short chain fatty acids (SCFAs)-producing bacteria (mainly Bifidobacterium and Lactobacillus). Most
studies agree on the increase in Akkermansia abundance after bariatric surgery (BS). For both MD and BS, the end result is a reduction in inflammation,
lipid production and preservation/improvement in the gut barrier function.

packaging of very low-density lipoprotein (VLDL) and its export
from hepatocytes (55–57). For this reason, a choline deficient diet has
been adopted for decades to study NAFLD and NASH in rats (58). As
the gut microbiota uses choline for the production of trimethylamine
(TMA) (59), contributes to reduce choline bioavailability, mimicking
the effects of a choline deficient diet (60). In addition, TMA is
oxidized by hepatic flavin monooxygenases to trimethylamine oxide
(TMAO) before being released into circulation (61). Noteworthy,
higher levels of TMAO were found in NAFLD patients with respect
to healthy controls, and correlated with fibrosis stage (62). TMAO
reduces cholesterol conversion into bile acids (BAs) altering lipid
homeostasis (63), promotes inflammation in adipose tissue and
leads to insulin resistance (64), thus favoring the development of
NAFLD and NASH. Choline deficiency has been recently linked not
only to NASH development, but also to gut microbiota dysbiosis
in mice; decreased abundance of Alistipes, Ruminococcaceae,
Bifidobacterium, Lactobacillus, and Akkermansia, and increased
abundance of Bacteroides and Ruminococcus were found (65, 66).
As mentioned above, Bifidobacterium and Akkermansia usually
have beneficial effects through SCFAs production and modulation
of inflammatory response, while Ruminococcus is associated with
fibrosis in patients with NASH.

Besides diet, physical activity has been proven to be effective in
NAFLD treatment, even without weight loss or any dietary change
(67–69). Eight weeks of individualized exercise reduce transaminases,
markers of inflammation, and improve surrogate scores of steatosis
and fibrosis. Furthermore, exercise modifies the gut microbiota,
increasing the abundance of Bacteroidetes and Euryarchaeota,
decreasing Actinobacteria, and improving richness (70). Both
moderate-continuous and sprint-interval training reduce systemic
and intestinal inflammation, and improve the gut microbiota
profile by reducing Firmicutes/Bacteroidetes ratio, and decreasing
Clostridium and Blautia abundance (71). Responders to exercise
exhibit gut microbiota enhanced capacity for SCFAs biosynthesis and
catabolism of branched-chain amino acids (72). In a 1-year lifestyle
intervention with energy-restricted MD plus physical activity and

behavioral support, a decrease in several members of Firmicutes and
a selective increase in SCFAs producers was observed, which was
paralleled by weight loss and improved CVD risk (73).

Bariatric surgery

Bariatric surgery (BS) is the most effective treatment for long-
term weight control in obese people (74, 75), and to effectively
improve obesity-related comorbidities (74). Epidemiological data
report that almost all obese patients and about 75% of overweight
people are affected by NAFLD (76). Several studies and meta-
analyses demonstrated a significant improvement or even resolution
of NAFLD histological features, liver enzymes, glucose tolerance, and
lipid panel after BS (76, 77). This beneficial effect results not only
from the metabolic consequences of weight loss and visceral adipose
tissue reduction, but also from the inhibition of pro-inflammatory
cytokines release from adipose tissue, and the reduced supply of
free fatty acids (FFAs) to the liver, with a consequent modulation
of lipids and glucose metabolism (41). Roux-en-Y Gastric Bypass
(RYGB), inducing anatomical changes with hepato-biliary diversion,
lowers the concentration of BAs delivered to the colon; while some
studies reported either an increase or a reduction in both primary and
secondary BAs (78–82), overall it seems that the ratio of primary to
secondary BAs decreases regardless of weight loss (83). Furthermore,
BS is associated with changes in the release of gastrointestinal
hormones, such as GLP-1, gastric inhibitory polypeptide, leptin, PYY,
and ghrelin, which are implied in the reduction of appetite and
increase in energy expenditure (84).

Changes in the gut microbiota and its related metabolites have
been observed after BS, potentially being crucial in NAFLD/NASH
improvement or resolution (Figure 2). Published data agree on
increased microbial richness after BS, mostly Roux-en-Y Gastric
Bypass (RYGB) and Sleeve Gastrectomy (SG) (9, 72, 85–87). There
is also broad consensus on the increased abundance of Akkermansia
muciniphila after both SG and RYGB, and, generally, after weight
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loss (76, 87–89). Akkermansia has been demonstrated to prevent the
development of fatty liver disease in mice, reducing the expression
of interleukin (IL)-6 and sterol regulatory element-binding protein
(SREBP), which is involved in triglycerides synthesis in the liver
(90). Akkermansia is also a mucin degrader, with the ability to
reinforce epithelial barrier, and has been linked with reduction in
fat deposition, and protection against insulin resistance and obesity
in humans (91). While after RYGB abundance of Proteobacteria
seems always to increase (78, 88), data about Firmicutes and
Bacteroidetes after both RYGB and SG are discordant (76, 88, 89).
A recent meta-analysis investigating human studies and animal
experiments involving six different BS techniques, found a reduction
in Firmicutes abundance with concomitant increase in Bacteroidetes,
Proteobacteria, Verrucomicrobia, and Fusobacteria (92). Also during
the long-term follow-up of nine severe obese patients who underwent
biliopancreatic diversion, gastric bypass, or SG, Enterobacteriaceae
enrichment was observed, while Clostridiaceae and Lachnospiraceae
decreased (86). Interestingly, Tremaroli et al. (93) showed that
changes in the gut microbiome did not depend on body mass index
(BMI) variation.

However, it is not clear whether changes in the gut microbiota
are a mere consequence of the anatomical, hormonal, and metabolic
changes, or take part to these modifications contributing to the
beneficial effects of BS. The most important proof of concept that the
gut microbiota is a main actor in this context is provided by FMT
models. Indeed, FMT from mice treated with RYGB to non-operated
germ-free mice or from obese patients treated with RYBG or vertical
banded gastroplasty to germ-free mice resulted in weight loss and
reduced fat mass (93, 94).

Anti-diabetic drugs

Due to the strong association between NAFLD and diabetes (6,
95) in absence of drugs specifically approved for the treatment of
NAFLD the effect of anti-diabetes drugs on this disease have been
object of great interest. Intriguingly, the effect on gut microbiota
composition, which is a crucial element in NAFLD pathogenesis and
progression, may contribute to their benefit in this setting (Figure 3
and Table 1).

Pioglitazone appears to be especially effective in reducing liver
fat content, fibrosis and liver enzymes, despite causing an increase
in BMI (96, 97). Pioglitazone belongs to PPARs agonists. PPARs
are a group of receptors involved in glucose and lipid metabolism
and in the anti-inflammatory response in NAFLD/NASH (98–100).
They also take part in gut microbiota modulation, being involved
in commensal bacteria homeostasis and prevention of the growth
of pathobionts such as Escherichia and Salmonella (99–101). As
demonstrated in HFD fed mice, rosiglitazone restores a healthy gut
microbiota and improves intestinal permeability after only 1 week of
treatment (102).

Metformin has shown some improvement in glucose tolerance,
liver function and steatosis, in patients with NAFLD associated or not
whit diabetes (96, 103, 104). Its effects are mediated, at least partially,
by gut microbiota modulation, as metformin is able to select SCFAs
producing bacteria such as Bifidobacterium, Blautia, and Shewanella,
increasing also the abundance of Akkermansia muciniphila (105).

GLP-1 agonists are another relatively new class of drugs effective
in diabetes and also able to ameliorate BMI, liver enzymes and liver fat
content in NAFLD/NASH patients (96, 97, 106–109). A recent phase

2 trial on Semaglutide reported 40% of NASH resolution in patients
with or without type 2 diabetes (107). Remarkably, in a pre-clinical
study, a GLP-1/GLP-2 receptor dual agonist improved BMI, glucose
homeostasis, liver triglycerides, liver fibrosis, and intestinal barrier
permeability in NASH murine models. In addition, the abundance of
SCFAs producing bacteria, in particular Bifidobacterium, increased,
together with that of several bacteria associated with a healthy
phenotype such as Prevotella, Lactobacillus, and Akkermansia; on the
contrary Firmicutes, implied in obesity, were decreased (Figure 3)
(110).

Lastly, sodium-glucose cotransporter 2 (SGLT2) inhibitors have
also shown promising results in patients with NAFLD, liver fibrosis
and steatosis (98). Canagliflozin, a SGLT2 inhibitor with also a
modest inhibitory effect on SGLT1, was found to tendentially increase
Bacteroidetes and decrease Firmicutes abundance, and to increase
cecal SCFAs content in mice (111). Selective inhibition of SGLT1 has
demonstrated to restore gut dysbiosis in renal failure mice (112, 113).

Future treatment options for
NAFLD/MAFLD: Efficacy comes
through the gut microbiota
modulation

Antibiotics

Systemic antibiotics have been one of the first experimented
pharmacologic treatment for NAFLD, with beneficial effects on
insulin resistance and liver fat accumulation in humans and mice
models (48, 114). More recently, broad spectrum antibiotic therapy
with metronidazole 1,000 mg per day plus ciprofloxacin 500 mg
daily for 1 week, has been proven to reduce plasma levels of
TMAO in healthy participants exposed to phosphatidylcholine
challenge (115). This supports a possible use of antibiotics as disease
modifiers by correction of NAFLD-associated dysbiosis via the
TMAO metabolic pathway.

Rifaximin, a poorly absorbed antibiotic with eubiotic properties
(116), also showed beneficial effects in patients with NAFLD.
Some clinical trials in biopsy-proven NAFLD and NASH patients
treated with rifaximin 1,100/1,200 mg daily have shown a significant
reduction in endotoxin and liver enzymes serum levels, while
reduction in BMI was only mild and no changes in the lipid profile
were observed (117, 118). In addition, a NAFLD-liver fat score
improvement occurred (117).

Rifaximin is currently approved for the treatment of hepatic
encephalopathy, and its use is supported by data showing an overall
improvement in intestinal permeability, bacterial translocation, and
endotoxemia (119, 120). Preclinical studies have investigated the
possible mechanisms. Rifaximin directly upregulates the expression
of tight junction proteins, mainly zonula occludin-1 (ZO-1), thus
lowering intestinal permeability (121, 122). A recent clinical study
also showed that rifaximin improves hepatic encephalopathy by
suppressing the enrichment of living from the oral cavity mucin-
degrading bacteria in the colonic microbiota (i.e., Veillonella,
Streptococcus, Akkermansia, and Hungatella) (120). Among these
bacteria, Akkermansia is usually known for its beneficial effects
including the control of host mucus turnover, layer thickness,
and gut barrier preservation (123). However, it is possible that
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FIGURE 3

Anti-diabetic drugs effects on non-alcoholic fatty liver disease (NAFLD) and gut microbiota. GLP-1, glucagon-like peptide 1; SCFA, short-chain fatty
acids; SGLT, sodium-glucose cotransporter inhibitors.

TABLE 1 Studies investigating the effect of anti-diabetic drugs and farnesoid X receptor (FXR) modulators on the gut microbiota.

Drug name Drug class Study design Effects on microbiota

Rosiglitazone (102) PPAR-γ agonist 1 week rosiglitazone administration to mice
fed with HFD for 30 days

Restoration of spatial distribution of ileal
microbiota

Canagliflozin (111) SGLT2 inhibitor,
SGLT1 inhibitor (modest)

2 week canagliflozin administration to renal
failure mice

↑Bacteroidetes
↓Firmicutes
↓Actinobacteria/Bifidobacterium
↑ cecal SCFAs content

SGL5213 (112) SGLT1 inhibitor 2 week SGL5213 administration in normal
and adenine-induced
renal failure mice

↑Bacteroidetes
↓Firmicutes
↓Allobaculum

Metformin (105) Hepatic glucose output suppression
through AMPK-dependent and
independent pathways

4 months metformin administration in a
randomized, placebo-controlled, double-blind
study in individuals with newly diagnosed
T2DM on a calorie-restricted diet

↑ SCFAs producing bacteria (Bifidobacterium,
Blautia, Proteobacteria Shewanella).
↑ Akkermansia muciniphila

TUDCA (146) FXR modulator 4 week TUDCA administration to mice with
HFD-induced NAFLD

↑Bacteroidetes
↓Firmicutes
↑Faecalibacterium/Akkermansia
↓Mucispirillum/Ruminococcus gnavus

Aldafermin (149) FGF19 analog 12 week aldafermin treatment in patients with
NASH in a prospective, phase 2 study

↑Veillonella
↓hydrophobic bile acids

PPAR, peroxisome proliferator activated receptors; HFD, high fat diet; SGLT, sodium−glucose co-transporter; SCFA, short chain fatty acid; AMPK, adenosine monophosphate-activated protein
kinase; T2DM, type 2 diabetes; TUDCA, tauroursodeoxycholic acid; FGF19, fibroblast growth factor 19; NASH, non-alcoholic steatohepatitis.

excessive mucus-degrading activity exerted by multiple elements of
the gut microbiota can be potentially harmful, and may damage the
intestinal barrier.

In mice model of NASH, Jian et al. (124) found that
rifaximin modulates gut microbiota and reduces ileal deoxycholic
acid, whereas Enomoto et al. (125) found that combination of
rifaximin and the pro-kinetic lubiprostone ameliorated intestinal
permeability via restoring gut epithelial tight junction proteins
and counteracting LPS-induced intestinal barrier dysfunction;
in addition, the abundance of Bacteroides, Lactobacillus, and
Faecalibacterium increased while that of Veillonella decreased,
resulting in higher levels of SCFAs.

Next generation probiotics

In the last few decades, several clinical trials investigated the
effects of probiotics in NAFLD. Despite good expectations, a
recent meta-analysis by Tang et al. (126) showed poor efficacy in
reducing body weight, and minor results on the degree of liver
fat infiltration, liver enzymes, lipid panel, glucose homeostasis, and
pro-inflammatory cytokines. Another meta-analysis reported the
superiority of probiotics over placebo in patients with NAFLD on
the improvement of BMI, liver tests, and hyperglycemia; however,
probiotics failed to ameliorate liver fibrosis and did not seem as
beneficial as previously suggested on lipid profile, lacking strong
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evidence to support a positive effect on inflammation (127). In both
meta-analyses Lactobacillus spp. and Bifidobacterium spp. were the
predominant strains investigated. Apart from the modest results,
there was a large heterogeneity among studies, with the heavy
limitation of the absence of standardization of the currently available
probiotic supplements, and no guidance on the best formulations or
duration of treatment to adopt, which makes it difficult to interpret
the data. A further confusing element are technical limitations; in
fact, commercially available probiotics and those tested in previous
studies basically have an aerobic metabolism, whereas most beneficial
probiotics are anaerobic (128, 129). For these reasons, numerous
conflicting data on probiotics can be found in literature.

Nevertheless, research in this field is still ongoing. Starting from
the evidence of a lower abundance of Akkermansia muciniphila in
overweight/obesity untreated type 2 diabetes mellitus or hypertension
(130), a randomized, double-blind, placebo-controlled pilot study
of daily oral supplementation of 1010 A. muciniphila bacteria,
either live or pasteurized, for 3 months in overweight and obese
insulin-resistant subjects was performed (131). No safety issue
was reported; metabolic parameters such as insulin sensitivity,
plasma total cholesterol, insulin, and BMI improved; in addition,
pasteurized A. muciniphila led to the reduction of liver enzymes and
lipopolysaccharides (LPS) plasma levels, suggesting a strengthening
effect on the intestinal barrier. However, no significant change on
the overall gut microbiota community was observed, except for the
enrichment of A. muciniphila abundance. Further studies are needed
to bring this new probiotic in clinical practice.

Fecal microbial transplantation

FMT aims to restore intestinal homeostasis through the
administration of a healthy gut microbiota. It can be performed with
different techniques, mainly by endoscopic infusion or oral capsules
and it is currently approved for the treatment of C. difficile infection,
although potential application fields are multiple, including liver
disorders (132–134).

Benefits of FMT in mice models of HFD-induced steatohepatitis
has been demonstrated at many levels. A reduction in liver fat
content and intrahepatic pro-inflammatory cytokines, together with
improvement in NAS score has been reported after FMT; higher
abundance of beneficial bacteria such as Christensenellaceae and
Lactobacillus, increased butyrate cecal content and higher expression
of ZO-1 were also documented, along with reduced endotoxemia
(14). Histological amelioration of necro-inflammatory features, pro-
inflammatory cytokines, and lipid metabolism were found after
repeated FMT in humans as well (Table 2) (135). Only 6 weeks after
FMT from lean donors to male recipients with metabolic syndrome,
a significant increase in gut microbiota diversity and in butyrate-
producing intestinal bacteria, as well as an improvement in peripheral
insulin resistance was observed (136).

A recent randomized, double-blind, placebo-controlled trial
including obese subjects with type 2 diabetes demonstrated that FMT
via oesophago-gastro-duodenoscopy repeated every 4 weeks for up
to 12 weeks was safe and enhanced lean gut microbiota engraftment
(88.2%) in this population, although better results (100%) were
obtained by FMT plus lifestyle intervention (LSI). Notably, only
FMT plus LSI led to lipid panel and liver stiffness improvement at
week 24 (137).

Another double-blinded randomized controlled trial, conducted
in patients with NAFLD, evaluated the effects of autologous or

allogenic FMT from healthy donors on insulin resistance, hepatic fat
content, and intestinal permeability. After 6 months, no significant
benefits were observed, except for an improvement in small intestinal
permeability (16). Of note, a recent randomized controlled trial
conducted in patients with NAFLD, demonstrated FMT superiority
over probiotics in improving liver fat content and gut microbiota
composition; a superior clinical efficacy of FMT in lean NAFLD than
in obese NAFLD patients was observed (138).

Given the key role of the gut barrier and gut microbiota in the
pathogenesis of NAFLD, ongoing studies (Table 3) are trying to better
understand the reason for the failures of FMT in this setting and to
maximize its efficacy in NALFD patients.

Farnesoid X receptor modulation

According to several preclinical studies, BAs metabolism is
involved in NAFLD pathogenesis and progression through different
mechanisms, including modulation of the farnesoid X receptor (FXR)
signaling (139). FXR, with the downstream expression of fibroblast
growth factor 19 (FGF19) in human intestine, is implicated in the
negative feedback of BAs synthesis (139, 140). Beyond their toxic
effect on the liver, BAs modulate the activation of Takeda G protein-
coupled receptor 5 (TGR5) which regulates inflammation and glucose
homeostasis, by inducing the release of GLP-1. FXR is also involved in
glucose and lipid homeostasis, so that its activation promotes glucose
uptake, inhibits lipogenesis, and favors fatty acids oxidation (139).

A progressive decrease in FXR expression was found in the liver
of healthy controls, patients with NAFLD and patients with NASH,
respectively (141, 142); notably, NAFLD-associated dysbiosis is
characterized by the overabundance of bacteria producing secondary
BAs, which inhibit FXR signaling (8). Indeed, BAs pool presents
some differences between NAFLD/NASH and controls. Serum
concentration of both primary and secondary BA is increased
in NAFLD (143) as well as in NASH, both in fasting and
postprandial conditions (144). A four-fold increase in glycocholate
and taurocholate, and a two-fold increase in glycochenodeoxycholate
were found in NASH, with a tendency for these two BAs
to increase also in simple steatosis (145). Remarkably, these
differences are associated with changes in the gut microbiota
composition. Patients with NASH have a higher abundance of
taurine and glycine metabolizing bacteria, compared with healthy
patients; moreover, the FXR antagonist DCA was increased,
while the agonist CDCA was decreased in NAFLD, explaining,
at least partially, the altered FXR-signaling mechanism (143).
In mice models of HFD-induced liver steatosis, supplementation
with tauroursodeoxycholic acid (TUDCA) counteracts intestinal
inflammation and intestinal barrier disruption by increasing the
expression of tight junction molecules, antimicrobial peptides,
lysozymes, and mucopolysaccharide, reducing serum inflammatory
cytokines and intestinal lipid absorption (146). Of note, HFD fed
mice showed a gut microbiota composition similar to that associated
with obesity and NAFLD, with increased Firmicutes and decreased
Bacteroidetes, whereas HFD fed mice treated with TUDCA presented
a gut microbiota composition similar to that of normal diet fed
mice, with inverted proportion of Firmicutes and Bacteroidetes and
reduction in Proteobacteria (146). In addition, anti-inflammatory
taxa such as Faecalibacterium and Akkermansia were increased, and
pro-inflammatory taxa such as Mucispirillum and Ruminococcus
gnavus were reduced in TUDCA treated mice (146), proving the strict
connection between BAs, microbiota and liver inflammation.
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TABLE 2 Human studies evaluating the efficacy of fecal microbial transplantation (FMT) or next generation probiotics for the treatment of NAFLD.

Study design FMT procedure Follow-up Results

FMT from healthy lean donors to male subjects with
metabolic syndrome (136)

One duodenal infusion Week 6 ↑insulin sensitivity
↑gut microbiota diversity
↑butyrate-producing bacteria

FMT from healthy lean donors with or without LSI, to
obese subjects with T2DM (137)

Repeated duodenal infusion every
4 weeks for up to week 12

Week 24 ↑ Prevotella copri
↑butyrate-producing bacteria
↓Clostridium clostridioforme/Fusobacterium ulcerans
(FMT with and without LSI)
↑Bifidobacterium spp./Lactobacillus
↓total LDL cholesterol
↓liver stiffness
(FMT with LSI)

Allogenic or autologous FMT from healthy lean donors
to patients with NAFLD (16)

One duodenal infusion Week 6 ↓intestinal permeability in patients with elevated small
intestinal permeability at baseline
(allogenic FMT arm)

FMT from healthy donors to NAFLD patients (138) One infusion via colonoscopy,
followed
by three enemas over 3 days

Week 4 ↓fat attenuation degree
↑gut microbiota diversity
↑Bacteroidetes
↓Firmicutes
↓Proteobacteria
Treatment effect of FMT on lean NAFLD was better
than that on obese NAFLD

Akkermansia muciniphila administration to
overweight/obese insulin resistant subjects

Daily oral administration of 1010

bacteria for three months, both
alive and pasteurized

Month 3 ↑insulin sensitivity
↓total cholesterol
↓BMI
↓GGT/AST
↓LPS

LSI, lifestyle intervention; NAFLD, non-alcoholic fatty liver disease; LDL, low density lipoproteins; BMI, body mass index; GGT, gamma-glutamyl transferase; AST, aspartate aminotransferase; LPS,
lipopolysaccharide.

TABLE 3 Ongoing trials investigating the application of fecal microbial transplantation (FMT) in non-alcoholic fatty liver disease (NAFLD)/non-alcoholic
steatohepatitis (NASH) treatment.

Study Design Status ClinicalTrials.gov
identifier

The effect of consecutive FMT on NAFLD Double-blinded randomized controlled trial,
randomization 1:1 to allogenic and autologous gut
microbiome transplantation
Phase 4

Unknown NCT04465032

Transplantation of microbes of fecal origin for
prevention and treatment of metabolic syndrome
and non-alcoholic fatty liver disease

Randomized
Phase 1/2

Completed NCT02496390

Efficacy, safety of intestinal microbiota
transplantation for non-alcoholic fatty liver disease

Open label, parallel study Unknown NCT03648086

Effects of fecal microbiota transplantation on weight
in obese patients with non-alcoholic fatty liver
disease

Randomized controlled trial Recruiting NCT04594954

FMT in NASH. A pilot study Single Group Assignment
Phase 1

Unknown NCT02469272

Fecal microbiota transplantation for the treatment
of non-alcoholic steatohepatitis, a pilot study.

Single Group Assignment
Phase 1

Not yet recruiting NCT03803540

Positive evidences in mice have led to test FXR modulating
agents for the treatment of NAFLD/NASH. In the multicenter,
randomized, placebo-controlled phase 3 trial REGENERATE, the
FXR agonist obeticholic acid, has been shown to improve the
histological features of NASH. According to other previous studies,
pruritus and increased LDL cholesterol were the most commonly
reported adverse events (147). Another FXR agonist, the non-bile
acid agonist MET409, in a 12-week, randomized, placebo-controlled
study, ameliorated liver fat content in NASH patients, showing a
better and more tolerable profile then others FXR agonists (148).

A recent phase 2 study evaluated the effect of aldafermin, an
analogue of the intestinal hormone FGF19, on the gut microbiota
in patients with NASH. Aldafermin increased the abundance of
Veillonella, a commensal with lactate-degrading properties, in a
dose-dependent manner, and this inversely correlated with serum
levels of toxic, hydrophobic BAs. As both the richness and the
diversity of the gut microbiota were substantially stable during
aldafermin treatment, and only Veillonella abundance changed
significantly, Veillonella has been proposed as a biomarker of
treatment response (149).
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Discussion

NAFLD is a worldwide high-prevalent disease, nowadays one of
the main causes of chronic liver disease. It is strongly associated with
metabolic disorders, and heavily influenced by the gut microbiota for
both onset and progression.

A healthy gut microbiota seems to have features that are lost in
NAFLD. Indeed, bacterial diversity and richness are reduced, and
the proportion of Firmicutes increases over Bacteroidetes; bacteria
able to produce SCFAs from fermentation of dietary fibers, such
as Lactobacillus and Bifidobacterium, are depleted as well as those
with anti-inflammatory properties, such as Faecalibacterium and
Akkermansia. Conversely, pro-inflammatory pathobionts such as
Ruminococcus, Streptococcus, Enterococcus, Shigella, Escherichia, and
Clostridium are well-represented. The imbalance in BAs pool, in
particular the overall increase in BAs and the relative prevalence
of secondary BAs, is strictly associated with gut microbiota
composition and involved in the alteration of FXR signaling, with
detrimental metabolic and toxic effects. Intestinal barrier impairment
is another hallmark of NAFLD, being documented since the early
stages of the disease.

Several NAFLD features are similar to that induced by WD
regimens, while MD is associated with a healthy gut microbiota.
Although weight loss and MD are still the cornerstones of NAFLD
treatment, other promising treatment opportunities are landing in
the NAFLD scenario, and base their efficacy on gut microbiota
modulation. BS can lead even to a complete resolution of histological
features of NAFLD/NASH; it is associated with an increase in
gut microbiota richness and in the abundance of Akkermansia,
which has anti-inflammatory and positive metabolic properties.
However, little is known about the effects of increasing other
bacterial phyla, such as Proteobacteria, so further studies are
necessary to understand the clinical significance. Furthermore,
diabetes therapeutic armamentarium is part of NAFLD management,
as NAFLD and diabetes share a common metabolic background, and
are strictly connected. Diabetes drugs not only ameliorate glucose
homeostasis, but also influence the gut microbiota, promoting the
growth of healthy bacteria. Other agents such as next-generation
probiotics, mainly A. muciniphila, or FMT could be valid additional
or alternative options to restore a healthy microbiota and modify
the course of the disease. Finally, intestinal microbes may also be
used as biomarkers of treatment response, such as Veillonella during
aldafermin treatment.

The evidence discussed in this paper stems from the effort to
find a common thread between gut microbiota, NAFLD, and possible
therapeutic implications. However, as a final remark, it should be
noted that the scientific literature is overflowing with conflicting
data. This is because the gut microbiota is extremely complex in
its organization, and equally variable from person to person, being
strongly influenced by different pathological conditions and multiple
environmental as well as socio-cultural factors. Furthermore, the
taxonomic identification of bacteria reported by different studies is
strictly dependent on the methodology and bioinformatics pipeline
used (Supplementary Table 1). Therefore, results derived from
similar studies but using different analysis methodologies may
produce non-uniform data. Another element of difficulty in bringing
order to this vast landscape is the fact that bacteria are often analyzed
at high levels in the taxonomic scale, while at the genus and species
level they may have opposite behaviors. Each bacterium is also

capable of exerting different functions even though it belongs to the
same genus or species, making it extremely complex to understand
what metabolic results may derive from apparently taxonomically
similar bacterial populations. Last but not least, given the high
complexity of the microbiota-host-external factors interaction, the
end result is made even more fluid and variable. As a function of this,
the concepts of “healthy gut microbiota” and “disease signature” are
being questioned, as it is not possible to make generalizations that
can fit everyone. However, certain ecological features (e.g., a reduced
alpha diversity) and specific microbial elements (such as increase
of Enterobacteriaceae abundance in inflammatory conditions) are
recurrent in many studies, and suggest that there is a common
denominator or “core” features of the gut microbiota associated
with human disease.
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