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Underutilized/orphan legumes provide food and nutritional security to resource-

poor rural populations during periods of drought and extreme hunger, thus,

saving millions of lives. The Leguminaceae, which is the third largest flowering

plant family, has approximately 650 genera and 20,000 species and are distributed

globally. There are various protein-rich accessible and edible legumes, such

as soybean, cowpea, and others; nevertheless, their consumption rate is far

higher than production, owing to ever-increasing demand. The growing global

urge to switch from an animal-based protein diet to a vegetarian-based

protein diet has also accelerated their demand. In this context, underutilized

legumes offer significant potential for food security, nutritional requirements,

and agricultural development. Many of the known legumes like Mucuna spp.,

Canavalia spp., Sesbania spp., Phaseolus spp., and others are reported to contain

comparable amounts of protein, essential amino acids, polyunsaturated fatty

acids (PUFAs), dietary fiber, essential minerals and vitamins along with other

bioactive compounds. Keeping this in mind, the current review focuses on

the potential of discovering underutilized legumes as a source of food, feed

and pharmaceutically valuable chemicals, in order to provide baseline data for

addressing malnutrition-related problems and sustaining pulse needs across

the globe. There is a scarcity of information about underutilized legumes

and is restricted to specific geographical zones with local or traditional

significance. Around 700 genera and 20,000 species remain for domestication,

improvement, and mainstreaming. Significant efforts in research, breeding, and

development are required to transform existing local landraces of carefully

selected, promising crops into types with broad adaptability and economic
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viability. Different breeding efforts and the use of biotechnological methods such

as micro-propagation, molecular markers research and genetic transformation

for the development of underutilized crops are offered to popularize lesser-

known legume crops and help farmers diversify their agricultural systems and

boost their profitability.

KEYWORDS

underutilized legumes/orphan legumes, food and nutritional security, climate resilience,
genetic improvement, comparative genomics

1. Introduction

Food security has long been a vexing subject that is yet to
be resolved. A significant increase in population and a decline in
available water and arable land are limiting agricultural viability
(1). Furthermore, global climate change is a huge impediment
to existing production processes, while some arable land may
become inaccessible for agriculture in the future as ice melts. The
current global situation is so grave that millions of people are
going hungry, and many are dying as a result of malnutrition.
Since the green revolution began in the 1960s, greater irrigation
and the use of inputs like chemical fertilizers and pesticides
have enhanced the productivity of the world’s major staple crops
(especially wheat, maize and rice) (2). However, future food security
is threatened due to human dependence on less than 1% of edible
plant species, as well as the detrimental effects of climate change
and resource limitation (2, 3). Having constant, reliable, and low-
cost access to a diverse range of healthy foods across a range of
dietary preferences is what is meant by the term "food security"
(4). Over the last decade, more than 800 million individuals
have been reported as chronically undernourished globally, with
around 821 million instances recorded in 2017 (5). With rapid
population increase and quicker loss of non-renewable natural
resources, it has become critical to diversify modern intensive
agriculture to suit the diverse human demands. Diversifying
agricultural output has several benefits for farmers and the local
community, including biodiversity conservation, enhanced soil
and plant health, less vulnerability to pests, diseases, and extreme
weather events. Therefore, the present sustainable development
goals (SDGs) emphasize agricultural diversification through the use
of undervalued and forgotten crops.

After cereals, which have been a staple of the rationed human
diet for millennia (6–8), legumes have been identified as the second
most relevant plant source for human and animal dietetics (9),
especially in drought and famine situations (10). In order to satisfy
the ever-increasing need for vegetable proteins, there has been
a recent shift in focus toward underused legumes as a potential
source of blooming new alternative protein sources (11). Reduced
malnutrition could help reduce global disease burden by 32%, as
estimated by the World Health Organization (WHO): 115 million
children under the age of five are stunted; 462 million adults are
underweight; 41 million children are overweight and obese; and 1.9
billion adults are overweight and obese (12). Success in introducing
such novel legumes to a region has the potential to increase dietary
diversity and reduce the prevalence of malnutrition. A country’s

agrarian standing may also be bolstered in this way, since it will
provide new chances for domestic businesses, raise living standards
for locals and decrease the need to rely on foreign suppliers.
Many types of legumes, whether they are wild or domesticated,
are now only farmed in a tiny fraction of their original range.
Orphan legumes/underutilized plants like these have the potential
to contribute to sustainable agriculture. Thanks to the fact that
they can be bred for desirable traits like increased nutrition and
resistance to stresses (13). Very little is known about the lesser
utilized crops, and knowledge regarding these is limited to areas
with special cultural or historical significance. Although they
have become increasingly main-stream, they have received less
international attention (14). The family of legumes, often known as
Fabaceae or Leguminaceae, is the third largest in the world in terms
of total population. The legumes are reported to be cultivated in
broad variety of environments, from deserts to woodlands, alpine
to aquatic and from the African rainforests to the Amazon. It is
believed that they originated in Africa, made their way to South
America and then spread north to North America and ultimately
the rest of the world. Large populations of these may be found
all throughout the South Asian continent and the Indo-Pacific.
Caesalpinioideae, Mimosoideae and Papilionoideae are the three
subfamilies based on floral characteristics, which make up this
large family. The Papilionoideae, with 476 genera and over 14,000
species (15), is the most numerous, followed by the Mimosoideae
with 77 genera and roughly 3,000 species and the Caesalpinioideae
with 162 genera and roughly 3,000 species. However, only a small
number of legumes including peas, soybeans and a few types of
beans are widely consumed. There are still about 700 genera and
20,000 species that can be developed and incorporated into the
mainstream for domestication and human consumption.

Increased visibility of underutilized legumes’ stems from the
fact that, they can better endure to a range of climatic conditions
(5). Since legumes are one of the most numerous plant families
and contain a lot of proteins, we have many possibilities to pick
from. It is unfortunate because legumes are an excellent substitute
for those trying to eliminate or reduce their intake of animal
products. Cowpeas, pigeon peas, and Bambara groundnuts are
underrated legumes that can add a lot of nutritional value to our
diets. Such legumes are widely produced in areas where they have
traditionally functioned as a staple crop, but are consumed by
significantly fewer people in other parts of the world. In addition
to supporting the small farmers who grow them, eating more
of these legumes will increase your intake of protein and other
essential nutrients. Additionally, underutilized legumes can aid
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in the worldwide fight against hunger and malnutrition. People
in these areas considerably benefit from these crops because of
their resilience and hardiness, which are especially important
given the scarcity of other food sources. Their increased resistance
to climate change, pests, and diseases makes them a potentially
game-changing crop for the second green revolution in farming.
There are multiple ways in which the widespread adoption of
underutilized legumes can contribute to the advent of a second
green revolution. Underutilized legumes are a highly nourishing
and sustainable food supply that can aid in increasing food security
and decreasing poverty in many regions of the world. Further, these
crops are a versatile and robust, that may be grown in a wide variety
of agroecological and production systems and can improve soil
health and increase food production. Further, increasing the use
of underutilized legumes can boost economic growth and alleviate
poverty in many regions of the world. The local economy can be
stimulated and new jobs created by expanding the production and
consumption of these legumes.

This article examines the potential of many obscure legume
plants for future sustainable agricultural solutions to hunger
and nutritional challenges, as well as genetic and molecular
approaches promoting their wider usage and adaptability in
modern agriculture.

2. Nutritional status and health
benefits of underutilized legumes

One of the most urgent concerns of the time is ensuring
everyone has enough to eat. The nutritional, agronomic, economic
and ecological ramifications of relying so heavily on a small
number of essential basic crops have limited global food security
over the years (16). Stunted growth (especially in children under
the age of 5) as well as child and infant mortality are largely
attributable to malnutrition (17). Reduced economic growth and
productivity are the result of both under nutrition (leading to
stunted growth, underweight and mineral and vitamin deficiency)
and over nutrition (leading to cancer, diabetes mellitus, stroke
and heart disease) (12). The World Health Organization (WHO)
reports that 462 million people are underweight, 115 million
children under the age of five are stunted, 41 million youngsters
are overweight or obese and 1.9 billion adults are overweight
or obese. Disease rates worldwide may be lowered by 32% if
malnutrition were reduced (12). Abnormal fetal brain physiology
and morphology have been linked to malnutrition, particularly
protein shortage (18). Death rates, medical expenses, and recovery
times are all impacted by poor nutrition (19–22). Nutrient-rich
but often overlooked legumes can improve both health and food
security (23). They are low-cost and a good source of protein at a
time when the consumption of animal products is prohibited due
to potential health risks. Consequently, there has been an increase
in the promotion and endorsement of plant-based protein as a
means of satisfying the demands of the people (3). Beans, lentils,
chickpeas, peas, and soybeans are currently some of the most widely
farmed and consumed legumes. The Americas, Asia, and Africa
are just some of the places where these legumes are cultivated.
Numerous legume types exist that are underutilized since they are
not as commonly grown or consumed as the big legumes. These

legumes are not only an excellent food source, but also beneficial
to soil health and erosion control. In conclusion, large legumes are
notable for being an essential food crop and staple in many parts of
the world. In addition to their potential to boost food security and
soil health, underutilized legumes are a valuable resource in and
of themselves. Bambara groundnut (Vigna subterranean), Jack bean
(Canavalia ensiformis), Lima bean (Phaseolus lunatus), and sword
bean (Phaseolus edulis) had their nutritional profiles analyzed by
Soetan and Adeola (24). The nutritional needs of humans can be
adequately met by consuming plants like Cassia hirsuta L., which
has a high protein, lipid, potassium, fiber, carbohydrate, and energy
content (24–26), and velvet bean (Mucuna pruriens), which has
optimal crude protein, lipid, fiber, carbohydrate, energy, calcium,
potassium, phosphorus, zinc, manganese, and magnesium content.
Since different parts of underutilized legumes can be consumed,
picky eaters can still get the same amount of nutrients. The blossom,
seeds, pod case, immature pods, tuberous roots, and leaves of
some underutilized legumes like winged bean, fenugreek, marama
bean, and African yam bean are all edible. This confirms their
wider usage over traditional legumes. The details of nutritional and
anti-nutritional compounds in underutilized legumes have been
furnished in Table 1.

The protein content of 104 legumes across 17 families was
analyzed by Prakash et al. (27). Underutilized legumes ranged in
protein content from 41 to 45%. Several species of Bauhinia and
Canavalia gladiata had greater protein content than soybean. In
terms of amino acids, both Bauhinia and Delonix are enriched
in diverse amino acids. There is a wide variety of fatty acids
in the seeds of tree beans (Parkia timoriana) and winged beans
(Psophocarpus tetragonolobus) (26, 28). Legumes are an excellent
source of carbohydrates, fiber, and ash, but are often overlooked.
Indigofera linifolia’s nutrient and anti-nutrient composition was
reported by Siddhuraju et al. (29) and significant amounts of
protein (47.2–64.2 g/kg), lipids (56.7–72 g/kg) and fiber (27.6–
31.9 g/kg) were reported. Unlike S. bispinosa, the seeds of I. linifolia
are packed with nutrients. Albumins and globulins are found
in I. linifolia seeds, while globulins and glutelins are abundant
in S. bispinosa seeds. Although both species had sufficient levels
of all other essential amino acids, they were deficient in sulfur
containing amino acids (25, 26). Protein makes for 20.2–293.3% of
a velvet bean, while lipids account for 6.3–7.4% and carbohydrates
make up 49.9–61%.

Crude lipids, calcium, magnesium, and iron are found in
Bauhinia malabarica seeds (30). The majority was glutamic acid
(45%), with just trace amounts of cystine and methionine. Seed
lipids were predominantly composed of oleic acid and linoleic
acid. Vigna aconitifolia and V. vexillata were analyzed (29) and
found with higher protein and mineral content. The crude fat
content of V. aconitifolia seed was higher, while the amounts of
cysteine and methionine were lower. However, V. aconitifolia has
oleic acid and palmitic acid while V. vexillata does not. Canavalia’s
biochemical composition and nutritional value was evaluated (29)
and the seeds were found to contain 31.8–36.0% protein. There is
a wide range of digestible starch content (70.6–71.8%), fatty acids
(71–78%) and dietary fiber (17.5–23.6%) among Canavalia species.
Canavanine content ranged from 27% in C. gladiata to 42% in
C. ensiformis. Furthermore, Ayerdi and Marraccini (18) determined
that the crude protein, fat, fiber, and carbohydrate contents of
Cassia hirsuta ranged from 15.52–21.74, 3.77–7.04, 4.68–6.92, and
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62.45–70.16%, respectively. The calorie content per 100 grams of
seeds was reported to vary between 1549 and 1634. The crude seed
protein content of Cassia obtusifolia ranged from 18.52 to 22.93%,
with lipids making up 5.37–7.40% and carbohydrates accounting
for 57.00–60.69%. Most of the protein in the seeds was found
to be globulins.

Legumes’ resistance to disease is enhanced by anti-nutrients
like polyphenols, tannins, saponins, amylase inhibitors, protease
inhibitors, phytic acids and lectins. Raffinose, stachyose, and
verbascose can all be found in legumes. Potentially unintended
consequences (31) lead to their low consumption. Legume plants
contain the anti-nutrient terpenes, amongst all, saponins are
sugar-containing triterpenes found in legumes such as lentils,
chickpeas, soybeans, and broad beans (32). Seeds are high
in proteinaceous anti-nutrients called phytohemaglutinins or
lectins, which agglutinate red blood cells (33). Legumes include
compounds that impede the activity of enzymes like trypsin
inhibitors (34). Phenolic compounds are the most abundant
class of plant defense secondary metabolites and act as anti-
nutrients due to their ability to form complexes with proteins
and digestive enzymes. Tannins, complex polyphenolic chemicals,
reduce nutrient absorption, and are found in high concentrations
in underutilized legumes. Legumes whose tannin content is high
may not be as appealing as they otherwise would be. Phytic
acids are present in legumes and regulate the body’s ability to
absorb nutrients. They facilitate the use of proteins and are the
primary source of phosphate in most seed crops. Phaseolus lunatus
and Phaseolus vulgaris, respectively, have been found to contain
sapogenol. Lima beans, jack beans, African yam beans, and pigeon
peas are all good plant sources of the α-galactoside (35). The
removal of anti-nutrients is possible through careful processing
(36) that can reduce anti-nutrient components in legumes,
making them safe for human consumption. It is possible to aid
underutilized legumes in adapting by selecting and domesticating
suitable genotypes based on anti-nutritive compounds. Thanks to
advancements in biotechnology; allergenic proteins and secondary
metabolites have been significantly diminished (37). Improved
adaptation and long-term viability of underutilized legumes can be
achieved through genome editing or marker-assisted breeding (38).
Underutilized legumes are not used more widely due to a lack of
knowledge, research funding, and academic interest. The existing
agricultural system only allows for the cultivation of a selected few
crops, yet even these have contributed to efforts to improve national
and international food security. In the contemporary movement to
end world hunger and improve nutrition, the use of non-traditional
food sources is a fundamental tactic. The collection, preservation,
and propagation of germplasms, followed by the selection of crops
based on quality parameters, can improve food security.

2.1. Functional properties of
legume-produced proteins

The behavior and performance of proteins in food systems are
determined by their functionality, which includes a wide range of
traits like solubility, gelation, surface activity, solubility index (%),
swelling power (%), water absorption capacity (g/g), oil absorption
capacity (g/g) and more. Animal proteins are widely employed
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in or a part of food systems because of their excellent functional
qualities, which have prompted substantial scientific investigation.
However, there are a number of detrimental effects associated
with the creation of animal proteins. Characteristics of legume
proteins are being investigated (39) in order to evaluate their
potential as a source of animal protein substitution. However,
such investigations have received less attention in the case of
underutilized legumes. Legume hulls have significantly varying
solubility indices. Black gram was found to have the maximum
swelling capacity, whereas green gram was found to have the
lowest. Water-holding capacity is higher in black gram and dolichos
hulls, and oil-holding capacity is highest in soybean (40). The
physicochemical properties of legume components are affected
by the ratio of SDF (soluble dietary fiber) to IDF (insoluble
dietary fiber). SDF’s hydrophilic nature gives it a WHC that
is much greater than that of IDF (41). As the most abundant
fraction, pectic compounds (soluble fractions) are responsible
for the water-binding properties of fiber in legumes. Oil-binding
capability of legume fibers is improved by the insoluble fractions
(pectic polysaccharides, lignin, cellulose, and hemicellulose) (42).
Due to their unique physicochemical features, DFs are able to
alter the food system’s physical, rheological/textural, and sensory
characteristics (43). White bread’s shelf life, rheological, physical,
and sensory qualities were all enhanced by the inclusion of chickpea
and soybean hulls to the formulation (44). The physicochemical
characteristics of legume DFs (Dietary fibers) also have an effect on
human health. The high water-holding capacity (WHC) of legume
DFs, for instance, promotes transit time in the colon. By binding
heavy metal ions, DFs with a high viscosity (such pectic substances)
can aid in the absorption and removal of hazardous chemicals and
bring down serum glucose and fat levels (45). In addition, the ratio
of SDF to IDF, DF particle size, pH, environmental temperature and
bile acid type; all affect the cholesterol-binding capacity of legume
DFs (46) (Table 2).

3. Problems related to production
and climate resilient features

Orphan crops are generally more adapted to the extreme
soil and climatic conditions may thrive in hot, dry climes, even
when grown in rain-fed circumstances on marginal soil that
exist in many parts of the world than are the major world food
crops. Thus, understanding and deciphering the genetic foundation
for these remarkable traits can be helpful in transferring elite
characters to current growing cultivars. A plant’s morphological
and physiological traits can be altered as a kind of adaptation in
response to drought. Some of the ways plants react to drought
include shrinking their leaves, sealing their stomata, altering the
proportion of their biomass that is found in their shoots and
roots, and modifying their roots (47–49). In response to drought
stress, legumes’ root systems grow and are distributed in ways
that optimize their ability to survive (50, 51). Root development
in legumes accelerates throughout the vegetative growth stage but
slows down after seed filling occurs in order to maximize the
plant’s ability to take in as much soil moisture as possible (52,
53). Enhanced drought resistance in legumes has also been linked
to a higher root hydraulic conductivity, which is influenced by

the size and arrangement of the plant’s meta-xylem vessels (54).
For instance, chickpea (Cicer arietinum) is a grain legume with
a significantly lower root length density than barley (Hordeum
vulgare), yet superior hydraulic conductivity allows the legume
to more efficiently absorb water (55). Similarly, certain tepary
bean (Phaseolus acutifolius) lines have deeper roots, with the
biggest root mass located near the base of the soil profile. This
improvement in water uptake is a direct outcome of the adaptations
that have evolved. Lower stomatal conductance and smaller leaves
are two further adaptive features of the bean that help it conserve
water (56). Due to their hardiness and the soil microorganisms
in their rhizosphere and nodules, underutilized legumes may
tolerate harsh circumstances. Underutilized legumes contain
unique physiological constitution and bacteria that can live and be
active in harsh environments like salt, drought, pH, temperature,
etc (14, 57, 58). Degefu et al. (59) found that, Bradyrhizobium
elkanii and Bradyrhizobium japonicum thrive in salty and drought-
stressed soils in Ethiopia and assist the pigeon pea plant. Inducing
salt tolerance in mung beans with auxin and ACC deaminase-
producing Pseudomonas and Rhizobium strains is also studied in
details (60). Common bean was also tested for its capacity to
thrive in a salty environment. Rhizobium species PvMb1, ISRA352,
PvNk7, and PvNk8 alleviated salinity stress and increased plant
growth and osmolyte content (glycine, betaine, and proline) (61).
Rhizobium radiobacter from mung beans developed extracellular
polymeric compounds to bioremediate arsenic and promote plant
life and stress tolerance (62). Rhizobium-tolerant common beans
also tolerate salt and pH. HUCRM3B, HUCRM2D, HUCRM5C,
and HUCRM9C assisted common bean reduce pH and salt stress
in their nodules (63). Bioremediation can be employed to put
underutilized land to good use and the existence of microflora in
very saline and acidic soils is evidence that these microorganisms
thrive in these conditions. Pigeon pea can endure long periods
of drought; thanks to its deep roots and osmotic adjustment
in the leaves. Polycarpic flowering permits the crop to shed
reproductive components while still maintaining photosynthetic
activity, unlike drought-tolerant legumes like cowpea (64). Grass
peas can withstand high water levels, low moisture levels, and
moderate salt (65). The plant’s strong and extensive root system
allows it to survive in nutrient-poor soil despite its fine texture,
neutral to alkaline pH, and heavy clays (65). Maintaining soil
fertility and reducing production costs are two benefits of grass pea’s
nitrogen-fixing capabilities (65). Cowpea is a multipurpose plant
grown in Africa, Asia, the Americas, and southern Europe due to its
resilience in the face of adversity (66). Due to its ability to withstand
acidic and alkaline soil conditions as well as its high mycorrhizal
symbiosis and adequate SNF (solids not fat) levels, cowpea is
tolerant to soils with low fertility (66). Cowpea may thrive in poor,
sandy soils (67). In the semiarid tropics and subtropics, such as
parts of Asia, Africa, Latin America and the Caribbean, pigeon pea
is cultivated as a grain legume. It has a large window of maturity
(90–300 days), is highly drought-resistant, and can be grown in a
wide variety of climates (68). Pigeon pea’s high tolerance for acid
soils and high efficiency of P uptake make it particularly exceptional
(64). Future rhizofiltration systems may benefit from grass pea’s
ability to retain large amounts of lead in its root tissues (69). The
drought resistance of lentil, an annual legume crop used all over
the world, makes it especially valuable in semiarid environments
(70). The grass pea is an annual crop that serves two purposes (grain
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and forage) and is incredibly hardy in the face of adverse weather
(71). For the rapidly growing populations in Asia and Africa,
particularly in drought-prone and impoverished regions, it is one
of the most promising sources of energy and protein. It’s a great
option for diversifying cropping systems in Europe, Australia and
the United States because it requires so few external resources (71).
In "Adapting Agriculture to Climate Change," Kew’s Millenium
Seed Bank and the Global Crop Diversity Trust prioritize grass
peas (72, 73). Drought-resistant grass peas are "insurance crops" for
over 100 million Asian and African farmers (71). Unlike marama
bean, grass pea was reported to resist drought and dehydration
by modifying its maturity time, green leaf area and stomatal
conductance (74, 75). Grass pea resists pests, diseases, and abiotic
stress (75, 76) by producing ODAP (Oxalyldiaminopropionic acid),
phenolic, flavonoid, and antioxidant compounds (72, 77) under
stress conditions by scavenging the hydroxyl radicals (78).

Like soybeans and groundnuts, marama beans are high in
protein and oil (79, 80) and its tubers can store water and
lack nitrogen fixing nodules, thus can survive under water
and nitrogen limited conditions (81). Osmotic adjustment and
other drought avoidance strategies help the marama survive in
extremely arid environments (82). Furthermore, plants produce
many secondary metabolites and proteinaceous inhibitors to
defend against environmental stresses (83). Marama bean produces
a serine protease inhibitor (10.5% of its protein) which affects
proteolytic activities leading to better performance in water-scarce
conditions (84).

4. Advancements in breeding
methods

The UN’s Food and Agriculture Organization (FAO) recently
estimated that food and nutrition insecurity affect 800 million
people, mostly in developing nations (85). One of the Sustainable
Development Goals (SDG) of the 2030 Agenda, which the United
Nations endorsed in September 2015 (86), was to eradicate hunger
and malnutrition worldwide, with a focus on less developed nations
(87). Underutilized legumes have the potential to significantly

contribute to numerous SDGs by providing a highly nourishing
and sustainable food supply that can aid in the fight against
hunger and poverty, especially in third world nations and by
promoting sustainable agriculture that is adaptable to a wide
range of agroecological and production systems, requiring few,
if any, synthetic fertilizers or pesticides in their cultivation.
Additionally, underutilized legumes have great potential to boost
food production and soil health, both of which have a positive
impact on adapting to the effects of climate change and other
environmental issues. Furthermore, underutilized legumes offer
numerous social and economic advantages. Promoting biodiversity
and incorporating underutilized crop species into peoples’ diets
and food habits is a practical strategy for tackling this problem
(88). Underutilized legumes have enormous genetic potential, and
genetic erosion or the loss of important genetic resources is
concerning. The identification and application of untapped genetic
resources in the gene pools of minor crops need further study.
Therefore, coordinated research efforts are required to stop the on-
going loss of genetic resources among the underutilized legumes.
According to recent reports, the underutilized legumes face a
problem in developing efficient phenotyping and breeding methods
(89). The low level of genetic diversity that breeding programmes
have access to limits modern breeding efforts to increase disease
resistance, quality and yield (90). Although grain legume seeds in
gene banks contain a sizable amount of genetic variation, such
diversity has not been completely tapped into in active breeding
operations (91).

4.1. Conventional breeding approach

In terms of architecture, length of maturation, yield, and
nutritional content, genetic and breeding efforts to improve the
underutilized and neglected legume crops have not achieved the
expected degree of success (92). Although traditional hybridization
and other breeding methods have been attempted for some desired
objectives, the expected results have not yet been obtained. On
underutilized legumes, only a few successful crossings have so far
been documented. On Cajanus cajan and certain species, there

TABLE 2 Health benefits and bioactive compounds of some underutilized legume.

SL. No. Underutilized
legumes

Bioactive compounds Health benefits References

1 Adzuki bean Flavonoids: procyanidins B-1 and B-3, peonidin-3- rutinoside and
malvidin-3- O-glucoside Phenolic acids: caffeic acid, ferulic acid

Antioxidant activity (163)

Flavonoids: catechin 7-Oβ-D-glucopyranoside (C7G), epicatechin
7-O-βD-glucopyranoside (E7G), and catechin

Antihyperglycemic
activity

(164)

2 Rice bean Phenolics: catechin, epicatechin, p-coumaric acid, ferulic acid, vitexin,
isovitexin, sinapic acid, quercetin

Antioxidant activity (165)

Phenolics: catechin, epicatechin, p-coumaric acid, ferulic acid, vitexin,
isovitexin, sinapic acid, quercetin

Antidiabetic activity (165)

3 Horse gram Polysaccharides: Dribose, D-arabinose, Dxylose, D-mannose,
Dgalactose, and D-glucose

Antimicrobial activity (166)

Anthocyanins: cynidin, petunidin, delphinidin Antioxidant activity (167)

4 Stinky bean Polyphenols: gallic acid, catechin, ellagic acid, quercetin Antioxidant activity (168)

Phytosterols: stigmast-4- en-3-one, β-sitosterol and stigmasterol Hypoglycemic activity (169)
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haven’t been many successes documented (93). In the African
yam bean, no successful breeding lines have been reported to yet
(94). Dolichos bean classification based on photoperiod sensitivity
has been examined using molecular characterization utilizing
SSR markers (95). Many underutilized legumes have identified
reproductive obstacles, like embryo abortion, as constraints to
genetic advancement. Tissue culture and micro-propagation can be
utilized to produce viable haploid plants (14). Advances in DNA
technology have increased our awareness of the vast potential in
many plant genomes, especially underutilized legumes. Genetic
engineering of cereal crops has led to genomic advancements
(96). DNA-based approaches can trace plant ancestry, origin,
and phylogenetic relationships (97). Lablab purpureus, Tylosema
esculentum, Vigna subterranea, V. vexillata, and Vigna unguiculata
are underutilized and neglected legumes (98). Diverse omics
approaches have been focused to increase nutritional compounds,
reduce anti-nutritionals, and enhance plant qualitative as well as
quantitative traits have been deciphered in Figure 1.

4.2. Advanced breeding approaches -
OMICS interventions

4.2.1. Genomics approaches for improvement of
underutilized legumes

Through the use of Next Generation Sequencing (NGS),
crop genomics has undergone crucial developments during the
past 10 years (99). NGS can be used to sequence the genes
related to nutrients in underused crops to fulfill this criterion
(100). Using data from whole-genome sequencing (WGS), it is
possible to identify the genes related to nutrient accumulation,
which can be subsequently used in the breeding programs
(101). Previously, model legumes such as Medicago truncatula
and Lotus japonicus have provided genomic information that
has paved the way for advances in breeding programs and
technologies like omics and genome editing to mine and transfer
desirable traits for improving nutritional profile (102). These
crops’ reference genomes are publicly available and help in
whole genome sequencing, genotyping, and identifying genes,
genomic structural variations, and SNPs (SNPs). Integrating
high-throughput genotyping, phenotyping (phenomics) and crop
modeling will yield useful breeding data (103). Genome sequence
availability affects gene editing. The creation of a soybean reference
genome was significant for agricultural legumes and legume
genome research. Sanger sequencing provided eight times the
WGS data, resulting in the assembly of 969.6 Mb of the 1115 Mb
genome (104). Pigeonpea and chickpea draft genome sequences
account for 73 and 74% of the respective genomes, respectively.
Also, lentils, lupine, and mungbean genomes are being assembled.
Genome sequencing results revealed stress-related genes. Genome
sequencing analysis identified 187 disease-resistant chickpea genes
and 111 drought-resistant pigeonpea genes (99). These genes
uncovered by genome sequencing assist analyze gene candidates
for substantial pressures in crop legumes. Comparing entire
genome sequences offers a highly thorough understanding of the
genetic relationships between different organisms. Comparative
genomics plays an important role in the genome analysis of
orphan crops. Medicago truncatula and alfalfa have nearly complete

synteny between their two genomes and share highly conserved
nucleotide sequences (105). The co-linearity of genes is surprisingly
conserved between the two genomes, despite the pea genome
being around ten times bigger than that of Medicago truncatula
and having one fewer chromosome. The variation in chromosome
number between Medicago and pea was suggested to be caused
by chromosomal rearrangements involving Medicago chromosome
6 (106). A promising method called genomic selection (GS) was
developed to address many of the problems with marker-assisted
selection (MAS). In GS, DNA markers are utilized to predict or
estimate genomic estimated breeding values (GEBV), especially for
the traits complex in nature and poor heritability (99). In contrast
to the large family based mapping population phenotyping and
genotyping used in the MAS technique, GS can create marker-
trait associations (MTAs) based on a small training population
(TP) (107). GS can help in the selection of genotypes with high
heritability or can eliminate genotypes that perform very poorly for
the trait being selected based on GEBVs (low heritability). From
the training population (TP), genotypes with higher GEBVs are
chosen as parents, and crossings are performed to create candidate
populations (CP). In order to fully realize the potential of GS in
orphan crops robust TPs need to be generated from advanced
breeding lines for which historical data on their performance has
previously been acquired. Genome analysis of numerous orphan
legumes has made genomic markers such as SNP readily available
and thus expanding the potential for genomic selection (GS).
Rychel-Bielska et al. (108) implemented the ridge regression best
linear unbiased prediction (BLUP) model to predict anthracnose
resistance in white lupine based on genotyping-by-sequencing
(GBS)-derived SNPs. The GS model yielded an optimum predictive
ability of 0.56 (108). Minor legumes have very little GS application.
Thus, expanding the repertoire of genome-wide SNP markers will
significantly help in implementing GS to improve future genetic
gain in these legumes. Alfalfa (109), pigeonpea (110), chickpea
(111), pea (112), cassava (113) and peanut are some of the other
orphan crops in which GS has been employed (114). Functional
genomics and plant breeding have been revolutionized by genome
editing techniques, particularly the CRISPR/Cas9-based approach,
which efficiently and precisely modifies specific genes of interest in
plants to produce unique genetic changes (115). There are more
instances of genome editing in different crops but the success
rate in legume species has been relatively low (116). Soybean,
cowpea, and Medicago trancatula are some of the legumes to which
CRISPR/Cas9-mediated genome editing has been applied (117,
118). In cowpea, the CRISPR-Cas technique modifies the target
gene VuSYMRK, which regulates nodule symbiosis. The result
showed that the mutant plants were unable to synthesize nodules
when associated with Sinorhizobium sp. strain NGR234 due to
suppression of nodule formation (117). The detailed list of genome
sequencing, protein coding genes and selected QTLs identified in
underutilized legumes has been given in Table 3.

4.2.2. Transcriptomics approaches for qualitative
and quantitative improvement

The main methods for identifying potential genes involved in a
biological process are transcriptomics or gene expression profiling.
Twenty years ago, the only methods available for gene expression
profiling were northern hybridization, serial assessments of gene

Frontiers in Nutrition 07 frontiersin.org

https://doi.org/10.3389/fnut.2023.1110750
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-10-1110750 May 12, 2023 Time: 14:30 # 8

Samal et al. 10.3389/fnut.2023.1110750

FIGURE 1

Diagram deciphering diverse omics approaches has been focused to increase nutritional compounds, reduce antinutritionals, and enhance plant
qualitative as well as quantitative traits. Advances in agricultural molecular biology, crop genetics, and breeding have been made possible by the
combination of conventional breeding and biotechnology. Revolutionary developments in the use of next-generation sequencing from SNP marker
discovery to the whole genome-sequencing have occurred in the previous decade and these developments are expected to bring breakthroughs in
crop research, particularly for underutilized crops. Molecular markers provide accurate and repeatable data on the DNA level of genetic variation
across the entire genome. There has been a huge impact on crop development and the description of genetic variation thanks to these
investigations of main crops. Advancements in OMICs technology have revolutionized the traditional plant breeding and emerged as one of the
crucial crop-saving tool in wake of the climate change. There has been extensive use of different OMICs techniques, including Next-Generation
Sequencing (NGS), transcriptomics, proteomics, and metabolomics, in the study of legumes subjected to abiotic stressors. Scientists have
successfully leveraged these platforms to conduct genome-wide association analyses of linked markers known as Quantitative Trait Loci (QTL), that
would enhance phytochemicals, plant growth promoters, plant nutritional status, abiotic and biotic stress tolerance, nitrogen fixation ability and
wider genetic variability of underutilized legumes.

expression (SAGE), microarray, etc. The situation has drastically
improved over the past few years due to advancements in analytical
tools and next-generation sequencing (NGSs) technologies (119).
Through the sequencing of cDNA, RNA-sequencing has become
a substitute for gene expression research (120). This is one of the
most effective tools, widely utilized for analyzing genes that are
nutrient-responsive and associated with adaptation. Transcriptome
study between mungbean yellow mosaic virus (MYMV) susceptible
and resistant variety revealed key genes such as JAZ and LOX
genes, phytoene synthase, and cytochrome P450 that contributed to
the resistance against the virus (121). Based on the transcriptome
study of two distinct horse gram genotypes for drought tolerance
several transcription factors (TFs) families such as WRKY, NAC
and MYB were reported to be involved in conferring drought
stress tolerance (122). Similar comparative transcriptome analysis
of common vetch revealed various genes out of which the majority
were involved in ABA oxidative stress response and cell wall
modification in drought conditions (123). The development of
molecular markers based on the chickpea gene that responds
to drought was investigated. The development of the drought-
responsive gene and molecular markers based studies on the
genes in chickpea; about 435,018 reads and 21,491 ESTs were
generated. Additionally, the Medicago genome assembly and

relative genome sequencing data for chickpeas indicated 42,141
aligned tentative unique sequences (TUSs). Different markers
comprised of 728 SSRs (Simple-sequence repeats), 495 SNPs (Single
nucleotide polymorphisms), 387 COS (Conserved Ortholog Set),
and 2088 ISRs (Inter-simple sequence repeats) were also found
using the preliminary unique sequencing (124). Similar to this,
the pyrosequencing method was used in another work to yield
two million sequences in chickpeas, with an average length of
372 bp. The de novo assembly showed that the combination of
long reads and short reads produced effective outcomes. With an
average length of 1020 bp, about 34,760 transcripts were produced,
accounting for 4.8% of the entire chickpea genome (125). About
2000 SSR markers are reported in chickpeas using transcriptome
data (126). In addition, approx. 80,000 sequence tags for chickpeas
were produced using whole-genome sequence profiling (127).

4.2.3. Proteomics approaches for qualitative and
quantitative improvement

The portion of the transcriptome that is translated into proteins
is reflected in the proteome. In the field of proteome analysis, two
methods are typically distinguished: a protein-based method and a
peptide-based method. Proteins are isolated and quantified in the
first method. The target proteins are subsequently digested, and
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TABLE 3 Genome sequencing, protein coding genes and selected QTLs identified in underutilized legume.

SL. No. Name of the
species

Chromosome
number

Origin Genome size Protein
coding genes

Trait Mapping
population

QTL References

1 Adzuki bean (Vigna angularis
var. angularis)

2n = 2x = 22 Asiatic origin 612 mb 26,857 Seed size Vigna angularis × Vigna
angularis var.
nipponensis

12 seed size related QTLs (153)

2 Bambara groundnut (Vigna
subterranean)

2n = 2x = 22 West Africa,
especially Nigeria

535.05 mb 31,707 Internode length IITA686 × Ankpa4, F2
263

One major QTL (154, 155)

3 Cluster bean (Cyamopsis
tetragonoloba)

2n = 2x = 14 west Africa and India 550.31 Mbp 34,680 NA NA NA (156)

4 Dolichos bean (Lablab
purpureus)

2n = 2x = 22 African origin 395.47 Mb 20,946 NA NA NA (154)

5 Horsegram (Macrotyloma
uniflorum)

2n = 20, 22 Tropical southern
Asia

279.1 Mb 24,521 Drought and yield HPK4 × HPKM249
(RIL,190)

qDFW01, qDFW02,
qDTM01

(157, 158)

6 Red clover (Trifolium
pratense)

2n = 2x = 14 European origin 418 Mbp NA NA NA NA (159)

7 Tepary bean (Phaseolus
acutifolius)

2n = 2x = 22 Sonoran Desert 512,626,114 bp 27,538 NA NA NA (160)

8 Common vetch (Vicia sativa) 2n = 14 Near Eastern centre
of diversity

1.8 Gb 31,146 NA NA NA (161)

9 White lupin (Lupinus albus) 2n = 50 Mediterranean
region

451 Mb 38,258 Anthracnose Kiev × P27174 F8, RIL antr04_1,antr05_1,antr04_2,
antr05_2

(115)

10 Grass pea (Lathyrus sativus) 2n = 2x = 14 Central Asia and
Abyssinia origin

59.7 kbp 33,819 NA NA NA (162)
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the peptides that arise are identified using mass spectrometry. In
the second method, peptide separation and quantification come
before protein digestion. Since all peptide-based approaches have
the drawback of losing connectivity between peptides produced
from the same protein, protein-based techniques are preferred in
almost all proteome investigations on orphan species (128). This
guarantees that every peptide that is produced comes from the
same protein. Multiple proteins are digested simultaneously in
the case of protein separation methods with a lesser resolution,
producing a more complicated peptide pool. The possibility of
producing false positive identifications rises when a combination of
masses of potentially unrelated peptides is entered into a database
search. Therefore, it is essential that the parent ions undergo
further Tandem mass spectrometry (MS/MS) analysis. For many
years, MS/MS has been employed to gather structural data on
biomolecules. The primary benefit of a protein-based approach
is that protein orthologs can be successfully identified using
structural data from various peptides. Furthermore, Peptide mass
fingerprinting (PMF) is a method for identifying and analyzing
the proteins present in a food or nutrition sample. Identifying the
specific proteins, allergens or toxins, and antinutrients or anti-
nutritional factors present in underutilized legumes (ULs) can be
beneficial for the improvement of these legumes. When used in
conjunction with the parent masses, peptide mass fingerprinting
(PMF) can successfully identify peptides produced from the same
protein, since MS/MS generates sequence-specific information.
Peptides with a high signal-to-noise (S/Guru P. N) ratio are chosen
for further fragmentation in the MS mode. In underutilized crops,
such prominent peptides may occur in fewer numbers or if present,
will not be informative as it is less likely that their reference
will be available in the database. Due to the aforementioned
reasons, the classical identification method can fail. However, when
the peptide mixture only contains a small number of peptides
that are all descended from a single protein, the informative
peptides with a lower S/N ratio are more likely to be chosen for
MS/MS analysis, increasing the likelihood of protein identification.
Unfortunately, practically all software tools are created to search
against a database of known proteins in an error-prone manner,
which results in poor protein scores when several orphan protein
peptide sequences are not similar to the annotated proteins in
the database. Grass pea is one of the few orphan legumes with
proteomics research (129). The seed albumin gene (AmA1) in
amaranth is a non-allergenic protein that is abundant in key amino
acids and largely satisfies human nutritional needs (130). Another
study characterized and isolated a full-length (2076 bp long) cDNA
clone from the perisperm of amaranth grain encoding a polypeptide
with 606 amino acid residues, including a transit peptide of 77
amino acids. This important gene is known as the waxy gene or
granule-bound starch synthase (GBSS), and it contains 1821 bp
open reading frame (ORF) (131). Seed proteome analysis of Lotus
japonicus exhibited a total of 846 unique proteins (132). Bhushan
et al. (133) studied the differential expression of proteins under
the moisture-stress condition in chickpeas. The study reported
134 proteins to be differentially expressed which were involved
in various cellular functions, for example, cellular modifications,
metabolism, and signal transduction (133). Comparative analysis of
the protein profile of endosymbiotic cells produced by Rhizobium
leguminosarum between peas and lentils revealed host-specific
proteins. It signifies that the endosymbiotic bacteria rely on a

combination of chemical stressors inside the nodule which are
specific to the hosts (134).

4.2.4. Metabolomics approaches for qualitative
and quantitative improvement

Stress tolerance, inter-organismal interactions, color, taste,
nutritional value, and shelf life are only few of the phenotypes
that are directly impacted by the metabolites of agricultural and
horticultural crops. Secondary (specialized) metabolites contribute
to processes that are unique to each organism, while primary
metabolites are vital for maintaining the fundamental life processes
of the organism. Among the biological “omes” (i.e., genome,
transcriptome, and proteome), the metabolome is thought to be
the most accurate reflection of the phenotype since it includes
both primary and secondary metabolites (135). Metabolite pool
detection is a method for identifying the specific metabolites
present in a food or nutrient sample. The detection of metabolite
pools can assist in identifying the specific metabolites responsible
for the distinctive flavor, aroma, and other sensory characteristics
of UL. In addition, it can aid in the identification of compounds
that may be toxic or detrimental to human or animal health,
as well as compounds with potential health benefits, such as
antioxidant or anti-inflammatory characteristics. This can inform
the research and development of UL-based foods and feeds that
are supplemented with these beneficial compounds and support
the propagation of UL as a nutritious food source. To detect the
metabolite pool of an organism, which is comprised of a wide
range of chemical structures with a wide range of chemical and
physical properties, the field of metabolomics primarily employs
mass spectrometry (MS) and nuclear magnetic resonance (NMR)
technologies, with or without chromatography (136). In the post-
genomic era, several different fields of science have made use
of metabolomics, which was first introduced by Nicholson et al.
(137). Rathi et al. (138) identified the unique and common
metabolites and their pathways responsible for the drought
or dehydration response of Lathyrus sativus (grasspea) (138).
330 Dehydration-responsive metabolites (DRMs) were measured
using chromatographic separation using high-performance liquid
chromatography (HPLC) in conjunction with multiple reactions
monitoring-mass spectrometry MRM-MS. The HPLC-MS data
were pre-processed using mzMINE (139) and the final peak
were searched against various databases such as Plant-Cyc, Kyoto
Encyclopedia of Genes and Genomes (KEGG) (140), LipidMaps
(9) and PubChEM (141). The metabolites belonged to 28 different
functional classes. The metabolome was composed majorly of
carboxylic acids (17%) followed by amino acids (13.5%). Flavonoids
(10.9%), and plant growth regulators (10%) were among the
compounds that constituted the metabolome. The metabolites
were predominantly involved in phyto-hormone biosynthesis and
osmotic adjustment. Future food security must also focus on minor
crops, especially legumes in addition to the major ones (142).
While the majority of orphan crops have been improved largely via
conventional breeding methods, only a small number of orphan
legume crops have been studied using cutting-edge technologies
like genomics, transcriptomics, and metabolomics (138, 143).
Omics-based breeding efforts and translational research are still
lacking in many of the orphan legume crops. With the availability
of high-quality genome sequences of such crops, it will be possible
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to apply genomic selection and prediction tools to find novel
targets for selection. This will facilitate simultaneous selection for
yield, disease resistance, and quality during the breeding process.
It has been suggested that combining metabolome analysis with
genetic analysis improves the predictability of crop attributes such
as calculating lipid content and yields (144). But it has also been
claimed that using metabolome data alone or in combination with
other data does not improve the forecasting of production and plant
height, respectively (145). This mismatch can be partially explained
by the fact that environmental conditions significantly impact the
plant metabolome. Further advancements in the selection of an
appropriate set of metabolome data for each crop, the development
of species-specific bioinformatics techniques, and the publication
of an accessible dataset for bioinformatics researchers are desired
in order to more accurately predict complex and environmentally
dependent traits, such as yield.

5. Conclusion and future
prospective

Throughout the review we have understood the importance
of underutilized legumes in human and animal diets, role of
underutilized legume’s in mitigating abiotic stress, fighting hunger,
malnutrition and achieving nutritional security and the possibility
of breeding stable, high yielding and resistant lines of different
legumes. Moreover, the nutritional and anti-nutritional contents of
these legumes help in solving the health related issues by supplying
essential nutrients to humans through alternate yet necessary food
sources. The major advantage of these underutilized legume’s is
their ability to acclimatize to wide range of climatic conditions
and evade the pest and disease problems through production of
autoimmune secondary metabolites. The underutilized legumes are
also rich source of proteins, vitamins, minerals, lipids, fiber and
carbohydrates, which provide balanced diet in optimum quantities.
They also have a major role to play in creation of employment
and additional income source to rural population during periods of
adverse drought and famine situations. Even though, the legumes
have several agronomic and nutritional advantages over the staple
cereals, but they are not gaining much popularity because of
several drawbacks, like, lack of knowledge regarding these legumes
among the consumers, trivial cultivation in rural areas, poor
government support for production and marketing, underfunding
of researches related to underutilized legume’s, over dependence
on staple cereals for food security, poor accessibility to genetic
materials of underutilized legume’s and non-tapping of genetic
diversity of underutilized legume’s in breeding programme.

Considering the nutritional and climatic significance; the
cultivation and consumption of underutilized legumes has to be
encouraged by several means to achieve both food and nutritional
security. The cultivation of underutilized legumes can be enhanced
by provision of good quality seed material, marketing facilities and
creating awareness among the consumers. Although underutilized
legumes can help increase food security and lessen poverty, they
aren’t always easy to sell to consumers. Not being as popular or
widely consumed as other important crops like rice, wheat, or
maize is a key obstacle for underutilized legumes. Because of this,
marketing and selling these legumes might be challenging because

they are less well-known among consumers. Some customers
may be put off by the fact that underutilized legumes differ in
taste, texture, and nutritional profile from more common crops.
There are, nevertheless, numerous openings for the promotion
and widespread adoption of underutilized legumes. Another option
to boost the marketability and appeal of underutilized legumes
is to process and value-add them into flour, protein powder, or
other food products. Food safety and quality are other aspects that
affect the marketability and customer acceptance of underutilized
legumes. Growing and processing underutilized legumes using
safe and sustainable practices, and then cleaning, inspecting,
and packaging them properly will boost their chances of being
accepted by customers. The research activities related to breeding
of underutilized legumes can be funded and exhilarated. The
expeditions need to be conducted throughout the world to collect
germplasms of underutilized legumes and enrich their genetic
diversity. The detailed study on nutritional and anti-nutritional
qualities of underutilized legumes can be carried out to understand
their role in human diet. Use of information on genomics,
proteomics, transcriptomics and metabolomics of underutilized
legume’s for breeding, pest, disease and climate resilient lines
need to be encouraged. In a variety of ways, advanced breeding
procedures highlighted in this review can be very beneficial for
strengthening underutilized legumes. Here are a handful of such
examples:

Accelerating the breeding process: Conventional
breeding methods can be time-consuming and resource-
intensive. Breeders can use advanced breeding methods
such as marker-assisted selection (MAS) and genomic
selection (GS) to swiftly and precisely identify desirable
features. This can save time and money on breeding
projects while also accelerating the development of
superior legume cultivars.
Increasing yield and quality: When compared to their
more extensively farmed cousins, underutilized legumes
frequently have lower yields and poorer quality. By
discovering and selecting for specific genes associated
with higher yields, disease resistance, and other desired
features, advanced breeding procedures can help to
increase these traits.
Nutritional enhancement: Although many underutilized
legumes have a high nutritional content, they may
also include anti-nutritional characteristics that limit
their utilization. These characteristics can be reduced
or eliminated by advanced breeding techniques,
making legumes more nutritious and easier to use
in food products.
Generating new varieties: Modern breeding techniques
can be used to develop new varieties of underutilized
legumes that are better adapted to certain conditions, have
higher yields or are more resistant to pests and diseases.
This can help to boost crop availability and promote
greater cultivation of these crops in agriculture and food
systems.

Thus, in conclusion, it would rather be right to say, that legumes
are the future crops that can tolerate the biotic and abiotic stresses

Frontiers in Nutrition 11 frontiersin.org

https://doi.org/10.3389/fnut.2023.1110750
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-10-1110750 May 12, 2023 Time: 14:30 # 12

Samal et al. 10.3389/fnut.2023.1110750

created by anthropogenic climate change and provide the staple
food for ever increasing population. Further, their inclusion in the
daily diet plan can create a healthy and stable food option for
both under nourished and over nourished population. Finally, the
underutilized legumes can form a major subject of second green
revolution, concentrating both on food security and nutritional
security of the world.
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