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Breast milk represents the optimal source of feeding for newborns, in terms of 
nutritional compounds and as it provides immunological, metabolic, organic, 
and neurological well-being. As a complex biological fluid, it consists not only of 
nutritional compounds but also contains environmental contaminants. Formulas 
through production, contact with bottles and cups, and complementary feeding 
can also be contaminated. The current review focuses on endocrine-disrupting 
chemicals, and made-man xenoestrogens present in the environment and both 
commonly present in food sources, agricultural practices, packaging, consumer 
products, industry, and medical care. These contaminants are transferred by 
passive diffusion to breast milk and are delivered during breastfeeding. They 
mainly act by activating or antagonizing hormonal receptors. We  summarize 
the effects on the immune system, gut microbiota, and metabolism. Exposure 
to endocrine-disrupting chemicals and indirect food additives may induce tissue 
inflammation and polarize lymphocytes, increase proinflammatory cytokines, 
promote allergic sensitization, and microbial dysbiosis, activate nuclear receptors 
and increase the incidence of allergic, autoimmune, and metabolic diseases. 
Breast milk is the most important optimal source in early life. This mini-review 
summarizes current knowledge on environmental contaminants and paves the 
way for strategies to prevent milk contamination and limit maternal and infant 
exposure during pregnancy and the first months of life.
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Introduction

The developing immune system can be dysregulated by environmental agents in early life. 
The goal of this review is to provide the current knowledge related with exposure to some 
environmental contaminants with nutrition from breast milk and formula milk to feeding with 
particular emphasis in infancy. We focus on the effects of endocrine-disrupting chemicals 
(EDCs) and indirect food additives.

Endocrine-disrupting chemicals

Breastfeeding is the optimal natural process of feeding from the first hour after birth (1). 
Nutritive and non-nutritive breast milk compounds contribute to a child’s well-being, protect 
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TABLE 1 Endocrine disrupting chemicals mechanism of action.

Endocrine disrupting chemicals

Mechanism of action Nanoparticles Bisphenol A Phthalates PFAS Pesticides Dioxins

Mimic hormones – ++ + + + +

Stimulation receptor signaling + + – + + +

Inhibitition of receptor signaling + + + + + +

Stimulation or inhibition of hormone 

synthesis
+ + + + + +

Hormonal signal disruption + + + + + +

Changes in hormone receptor expression + + + + + +

Epigenetic changes + + + + + +

+, evidence of action; – stands for no known effect; ++, strong evidence; ±, there is some data on EDC effect. PFAS, Perfluoroalkyl substances.

against infectious diseases, and promote immune and organ 
maturation, decrease the risk of developing obesity and type 2 
diabetes, allergy, cardiovascular diseases, gastrointestinal, ear, and 
respiratory tract disorders, and on mental and behavioral health in 
both childhood and adulthood (1–5). Breast milk also contains a 
maternal microbiome community that colonizes the infant’s gut 
which is crucial for the infants’ health (2, 6). The presence of innate 
lymphoid cells in breast milk which share functions with T cells and 
play an important role in adaptive immunity and maturation of 
infants’ gut and microbiota, has been defined in recent years (7). 
Epigenetic regulation is performed by exosomal microRNA 
transport through breast milk also; these are then taken up by the 
intestinal epithelial cells (2, 3). Breast milk contains any 
contaminants to which the mothers are exposed (8). Among these, 
EDCs, made-man environmental chemicals, are present in food 
sources, consumer products, manufactured products, etc. EDCs are 
exogenous substances or mixtures that alter the function(s) of the 
endocrine system and consequently cause adverse health effects in 
an intact organism, or its progeny or (sub)populations (9). EDCs 
may bioaccumulate and bioamplificate in the body, and may 
be  mobilized during the energetically-expensive periods of 
pregnancy or lactation (10). Prenatal EDCs can be transferred to 
the infant through transplacental absorption in utero, postnatally, 
through colostrum/breast milk (10, 11). Transfer of EDCs in breast 
milk occurs by passive diffusion through the membrane that 
separates the blood flowing in capillaries from the alveolar epithelial 
cells of the breast (2, 3). Studies have shown that breast milk is also 
an important matrix for biomonitoring exposure to contaminants 
in early life (3, 4, 10–13). Rovira et  al. (14) found 31 organic 
contaminants and 14 toxic and essential elements in breast milk 
samples stored in a biobank in a Spanish cohort of nursing mothers. 
Interestingly, some compounds were higher in breast milk samples 
from low-income mothers as dichlorodiphenyltrichloroethane 
(DDT) and dichlorodiphenyldichloroethylene (DDE) (14). 
Differences were also seen in primiparous mothers compared with 
multiparous. Higher levels of bisphenol A (BPA) in low-income 
pregnant USA women were also found and were associated with 
adverse effects on offspring (15).

In infants, low or high concentrations of compounds cannot 
be adequately metabolized or excreted due to undeveloped physiology, 
anatomy, immature metabolizing enzymes and lower capacity to 

eliminate toxic compounds or because of the high sensitivity of target 
organs (9, 10, 16, 17).

Finally, EDCs concentrations in the human body, which depend 
on individual factors, environmental parameters related to diet, 
indoor and outdoor exposure, have an effect on the human 
microbiome (9, 11, 18, 19) also affecting immunity.

Endocrine disrupting chemicals, their 
major effects and findings in breast and 
formula milk

EDCs are natural or synthetic substances that interfere with the 
synthesis, secretion, transport, metabolism, binding action, or 
elimination of natural hormones and are present in our daily life 
products and environment (9, 20, 21). Naturally occurring compounds 
with endocrine-disrupting potential are metals and metalloids, 
parabens, polyaromatic hydrocarbons (PAHs), and phytoestrogens. 
Man-made synthetic chemicals are commonly used in agricultural 
practices (pesticides, insecticides, and fungicides), packaging (food-
storage materials and plastics), industry (solvents, flame retardants, 
preservatives, emulsifiers, and fracking chemicals), consumer products 
(household chemicals, cosmetics, flame retardants, building materials, 
children’s toys, electronics, and cookware), and medical care (birth 
control pills, biocides, intravenous bags and tubing, disposable gloves, 
and disinfectants) (9, 22). Some EDCs are xenoestrogens, others 
activate or antagonize hormonal receptors by direct binding or altering 
hormone receptor expression or signal transduction in hormone-
sensitive cells, and most induce epigenetic changes (9, 10, 21, 23, 24). 
At the cellular level EDCs inhibit lysosome and mitochondria 
functions, causing DNA damage and UVB-induced damage through 
the production of reactive oxygen species and nitric oxide (25). 
Multigenerational effects of EDCs have been demonstrated in rodent 
studies up to four generations (26, 27). Endocrine disruptions involve 
all endocrine pathways, including effects on the placenta (Table 1).

Phthalate metabolites and BPA mimic endocrine nuclear 
receptors, modulate genes through epigenetic changes such as changes 
on DNA methylation, histone modifications, and effects on 
non-coding RNAs including micro RNA (miRNAs) expression and 
have been detected in breast milk in many studies (4, 15, 21, 25), and 
in infant formulas (16).
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Maternal exposure to parabens has been associated with abnormal 
inflammatory cytokine levels in the blood in infants (24). Exposure to 
parabens leads to altered microbial composition, perturbed 
steroidogenesis, and induces oxidative stress and inflammation (19, 
28). Parabens have been found in Chinese women’s breast milk and 
infant formula (28), and in Canadian women’s breast milk also (29).

Dioxins have estrogenic effects through the interaction of the 
dioxin- aryl hydrocarbon receptor (AhR) nuclear translocator 
complex with estrogen receptors (ER), which regulate in turn other 
nuclear receptors and there are few studies that have shown the 
presence of dioxin or dioxin metabolites in breast milk (13, 30).

Perfluoroalkyl substances (PFAS) have a cumulative toxic effect 
through the activation of nuclear receptors and by binding different 
protein receptors, and are limited studies about their presence in 
breast milk or formulas (9, 16, 17).

Pesticides can bind to ER and stimulate ER-dependent 
transcriptional activation and proliferation, inhibit androgen binding 
to the androgen receptor and its activation (31).

While EDCs have been detected in breast milk, studies have also 
shown that they can be present in infant formulas and contaminated 
food. Therefore, infants who are not breastfed may still be exposed to 
EDCs through their diet (6, 16–18, 28).

Gut microbiota

The gut microbiota (GM) represents the largest microbial 
community in the human body, estimated to be more than 1,014 
bacteria associated with archaea, viruses, fungi, and protozoa (32, 33). 
GM is an “organ” in its own right and the human being should 
be considered as a “superorganism” consisting of the combination of 
Homo sapiens cells and microbial flora (34). The GM consists of 
anaerobic, facultative anaerobic and aerobic bacteria. Ninety percent 
is composed by Firmicutes and Bacteroidetes species (35).

The fetal human gut is physiologically sterile and is progressively 
colonized (36). At about 2 years of age the gut flora becomes similar to 
the adult one (37). The process colonization in newborns begins during 
delivery and is influenced by many factors including the mode of 
delivery (38, 39). As a vital and dynamic “microbial organ”, the GM 
plays a role in host well-being for digestive processes and nutrient 
absorption, growth and development, activation of the immune system 
to protect the host from pathogens (40–42). Dysbiosis correlates with 
health disorders, including metabolic alterations, neurodevelopmental 
disorders, inflammatory bowel disease, allergy, diabetes, obesity, cancer, 
infections and cardiovascular diseases (43, 44).

Breastfeeding modulates GM (45) through an entero-mammary 
pathway involving the transfer of different microbes from the mother’s 
gut to the baby through breast milk (46, 47) with a protective effect 
(48). It is well known that in contrast with formulas (42), breast milk 
contains complex human milk oligosaccharides that act as selective 
prebiotics in the colonization of the child’s gut, generating beneficial 
microbiota (49, 50). HMOs have shown to have a major impact on gut 
microbiota in breastfed infants, working as growth substrates for 
specific colonic bacteria, mainly belonging to the Bifidobacterium 
genu. These latter have a protective effect against inflammation and 
infection. Formula fed infants do not have HMOs, and their 
microbiota generally consists of other bacterial species, such as 
Enterobacteriaceae, Clostridia, and Staphylococci. This may have 

implications for future health, as a less diverse gut microbiota has been 
associated with an increased risk of health disorders (49, 50).

The breast-gut axis refers to the connection between breast milk 
and the development and maintenance of the gut microbiota in infants 
by compounds present in breast milk. It includes also a feedback loop 
between the gut microbiota and breast milk production. Studies have 
shown that the composition of breast milk changes over time, with 
variations in the levels of nutrients and bioactive components based 
on the infant’s needs. This suggests that the gut microbiota may 
communicate with the mammary gland, influencing breast milk 
composition in response to changes in the infant’s gut microbiota.

Breast-fed babies gut microbiota consists mainly of 
Bifidobacterium and Lactobacillus, and after breastfeeding has ended 
it becomes enriched with other species (Roseburia, Clotridium, and 
Anaerostipes) remaining the major driver in the development of adult 
microbiota. EDC increase the numbers of adult-like bacteria (49, 50).

The effects of EDCs on the gut microbiota

The gastrointestinal tract is the main route of entry of EDCs. Their 
absorption in the gut is poor and they are transported by the peristaltic 
movement to the distal small intestine and cecum where the microbial 
flora metabolizes them directly, increasing or decreasing their toxicity. 
The portal circulation transports part of the EDCs to the liver where 
they are conjugated and excreted in the bile, thus entering the small 
intestine again where they undergo further deconjugation by the local 
microbiota, restoring the original compounds or producing new toxic 
metabolites (51).

Microbiota disrupting chemicals is the term used to group substances 
that alter these gut microbial pathways. EDCs can be metabolized by 
microbiota in a bidirectional interaction to biologically active or inactive 
forms, and EDCs can prompt the proliferation and growth of certain 
bacteria. These changes can lead to disturbances in different host systems. 
In vitro and in vivo models have shown that several EDCs promote 
dysbiosis or inhibit bacterial growth (51).

Dysbiosis and immune system dysfunction precede the 
development of the obese phenotype in mice perinatally exposed to 
BPA (52, 53). Structural changes in the GM exposed to BPA with diet 
were similar to those found in mice on high-fat and sucrose diets that 
were correlated with metabolic disorders and inflammatory bowel 
disease (54, 55). Exposure to polychlorinated biphenyls (PCBs) during 
growth can induce dysbiosis and epithelial permeability defects in the 
ileum and colon (56), specifically, an increased Bacteroidetes -to- 
Firmicutes ratio (57).

Three rodent studies showed that exposure to pesticides induced 
dysbiosis in the microbiota and inflammation (58–60). Few data are 
available regarding the effects of parabens on the microbiota (19). 
Exposure to triclosan has been shown to induce changes in the GM of 
rats (19, 61–64), and is associated with increased Bacteroidetes, and 
lipid accumulation (65, 66).

Phytoestrogens are also modulators of the GM and can in turn 
be  metabolized (67). Their metabolites have stronger estrogenic 
activity than natural compounds and, due to microbiome variability, 
there are large differences in their effects among individuals (68, 69).

Dietary 2,3,7,8-tetrachlorodibenzofuran would alter the composition 
of the GM, shifting the ratio of Firmicutes to Bacteroidetes, triggering 
inflammation and modifying host metabolic homeostasis (70).
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Moreover, the GM via surface molecules and metabolic products 
communicates with cells of the innate immune system. EDCs and 
dysbiosis can impair this communication and the function of the gut 
mucosal barrier (71–73) causing immune-related diseases (74). 
Among these EDCs the most important is BPA (75, 76).

Finally, EDCs in the diet and environment could influence other 
microbiota in different parts of the body other than the gut. Gonzalez 
et al. showed temporal changes in the milk microbiome of healthy 
Guatemalan mothers throughout the lactation period. A shift from 
Staphylococcus and Streptococcus species present at the beginning of 
lactation, to Sphingobium and Pseudomonas species found at the end 
of lactation was described. Interestingly, the species found in early 
lactation included commensal bacteria known to colonize the oral and 
intestinal tracts, whereas the species found in late lactation, showed 
common functional traits associated with the biodegradation of 
hazardous substances (77). Therefore, overall exposure to EDCs 
through foods can alter GM and activate pathways involved in the 
metabolism of EDCs favoring the development of different metabolic 
diseases. It remains unclear whether EDCs-induced metabolic 
disruptions in the host occur before changes in the microbiome or 
whether EDCs-induced changes in the microbiome cause metabolic 
disruptions (78).

Indirect food additives, immune-mediated 
reactions and the epithelial barrier 
hypothesis

The “epithelial barrier hypothesis” (79) suggests that the epithelial 
barrier function can be disrupted by indirect food additives including 
nanoparticles, nano-microplastics, chemicals, enzymes and 
emulsifiers in processed food. Barrier impairment provokes dysbiosis 
(80) with the translocation of altered microbiota through the damaged 
barrier resulting in chronic tissue inflammation and polarization of 
lymphocytes toward specific phenotypes. These include chronic 
immune conditions like inflammatory bowel disease, systemic lupus 
erythematosus disease, and rheumatoid arthritis characterized by T 
helper(Th)1/Th17 or Th23 responses (81–84). Moreover, in 
predisposed individuals, barrier disruption in allergic diseases 
including atopic dermatitis (43), food allergy (85) and asthma (86, 87), 
predisposes to allergen penetration that differentiate Th2 cells leading 
to IgE production. Allergens can also trigger innate lymphoid cell 2 to 
activate a T2 response (88, 89). An impaired epithelial barrier can 
precede sensitization development (90, 91). On the other hand, a T2 
inflammation can increase barrier damage.

Nanoparticles, metals and nano-microplastics
Nanoparticles <1,000 nm, both metals (titanium, silicon, and zinc) 

and lipids, impair the gastrointestinal barrier leading to changes in 
GM and inflammation (92). This may explain the increasing incidence 
of autoimmune diseases (84). In vitro, SiO2, TiO2 (93, 94), and ZnO 
nanoparticles translocate to the extracellular area. Nanoparticles can 
also bind to membrane macrophage receptors (95) inducing 
phagocytosis and/or activating the NLRP3 inflammasome pathway 
(92). Nano-microplastics (NMP) are ubiquitous and accumulate in 
tissues, including placenta (96). They can also carry harmful chemical 
pollutants. Although infant intake of microplastics released by infant 

bottles is high (97), studies on NMP safety are lacking in infants. It is 
hypothesized that microplastics may damage the epithelial barrier and 
modify the immune responses. Acrylate monomer microplastics for 
floor cleaning, irritated conjunctive and airways in adolescents (98). 
In mice, polystyrene microplastic ingestion provoked microbiota 
dysbiosis, decreased mucus secretion and damage of barrier function 
in the gut (99). In pregnant mice, polyethylene microplastics ingestion 
(100) changed GM, impaired barrier with inflammation. Polyethylene 
microparticles reduced dendritic cells and increased both IgA and 
helper/cytotoxic T cells ratio (101). So far, the impact on health is 
largely unknown.

Antiseptics & phthalates
Using pacifiers cleaned with chemical antiseptics but not with 

boiling water increased the risk of food allergy (95) suggesting that the 
hazard is not linked to altered oral microbiota. In infants whose 
pacifiers were cleaned by sucking, an altered composition of 
microbiota and a reduced frequency of allergic disorders were 
observed in comparison with other cleaning methods (102). Thus, it 
remains unclear whether oral antiseptic exposure may affect oral and 
gut microbiome. Moreover, antiseptics increase plasticizer release 
such as phthalates. Phthalate exposure can increase the frequency of 
asthma and allergic sensitization to aeroallergens (103). In vitro, 
phthalates increase production of proinflammatory IL-6 and IL-8 
(104). However, vulnerability of children to phthalates should 
be confirmed since dietary exposure to phthalates in some studies was 
not a matter of concern (105).

Bisphenol A
BPA has been banned in baby bottles and children’s cups (106). 

However, it is used in teethers (107), in food and beverage 
containers to prevent metal corrosion and in polycarbonate plastics 
(108). In vitro, BPA disrupts the epithelial cell and induces Thymic 
Stromal Lymphopoietin production. In female mice, BPA exposure 
alters GM with decreasing Firmicutes and increasing 
pro-inflammatory Bacteroides species linked with b-cell 
autoimmunity resulting in type 1 diabetes development and 
exacerbation (109) and inflammatory bowel disease. In animal 
models, BPA impairs both the gut and airway barriers inducing 
chronic inflammation with innate immune system involvement. 
This may promote allergic sensitization and autoimmune diseases 
(76, 110, 111). Maternal bisphenol ingestion induced allergic lung 
inflammation in adults (112). These findings paved the way to 
studies on the role of BPA on allergic diseases in childhood. High 
urinary BPA levels in pregnancy (113), in preschool children (114), 
in school children (115) and in teenagers (116) were associated 
with preschool wheezing (113, 114), asthma (115, 116) and 
concomitant increase in IgE concentrations (114). However, 
urinary triclosan and propyl and butyl parabens but not BPA levels 
were associated with IgE to foods or inhalants in children (117). 
Bisphenol S does not safely replace BPA (118–120). Further studies 
are warranted to determine the effects of BPA on the immune 
system in infants.

Perfluoroalkyl substances
Perfluoroalkyl substances (PFAS) exposure occurs mainly through 

food products as they are contained in greaseproof paper and 
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paperboard (121). They persist for years and accumulate in different 
tissues (122, 123), including breast milk (124). PFAS compounds have 
cumulative toxic effects including immunotoxicity (9, 125). 
Perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), 
perfluorononanoic acid (PFNA) and classes of long-chain 
perfluoroalkyl compounds have been banned because of safety 
concerns. However, short-chain PFASs are still marketed (126). 
Neonatal PFOA and PFOS levels were correlated with elevated IgA, 
IgM, IgG2, and lower IgE (127). Elevated estimated PFAS exposure 
during infancy induces lower diphtheria and tetanus antibody levels 
while the relationship is weak at 18 months and 5 years of age (128). 
Accordingly, infants with elevated PFAS levels in cord blood were at 
higher risk of respiratory tract infections from 1 to 5 years of age and 
had lower serum IgG concentrations (129). Prenatal exposure to PFOS 
and PFOA was also associated with higher prevalence of fever in 
young children (130). Conversely, blood PFOS and PFOA 
concentrations during pregnancy did not predispose to 
hospitalizations for infectious illness in childhood (131). Contrasting 
data have been provided regarding Th2 responses and asthma 
occurrence (132–134).

Pesticides
The dysregulation of the immune system caused by pesticides 

is unclear. In Inuit children, prenatal exposure to DDE and 
hexachlorobenzene increased otitis media frequency (135). 
However, prenatal, perinatal or postnatal exposure to DDE was not 
associated with respiratory infections (136, 137) or levels of 
lymphocytes and monocytes (137, 138) while it was inversely 
related with circulating eosinophils (138, 139). Conversely, in 
Ghana, a significant association between DDE and other pesticides 
and increased low respiratory infections in children aged 2 to 
5 years was described (140).

Dioxins
Divergent data on the effect of PCBs have been provided in infants 

(141). Perinatal exposure to PCBs were not associated with respiratory 
infections at 12 months of age (136) and at 18 months (142). However, 
an increased risk of respiratory infection in the first 3 months of life 
prenatally exposed to PCB congeners was described (137). 
Lymphocytes and monocytes increased in prenatal exposure to CB-28, 
CB-52 and CB-101 congeners. Accordingly, PCB exposure in early 
childhood was associated with otitis media, chicken pox, bronchitis 
(143–145), and a lower prevalence of allergic reactions (143).

Higher maternal PCB exposure was associated with less wheeze 
and total polychlorinated dibenzodioxins (PCDDs), polychlorinated 
dibenzofurans (PCDFs) while PCB exposure was associated with 
coughing, chest congestion, and phlegm [108] at 42 months of age. 
Combined DDE and PCBs exposure was associated with otitis 
media (146).

Maternal hexachlorobenzene and PCBs but not DDE exposure was 
directly associated with asthma medication consumption in offspring 
(147) and no risk of allergic sensitization at 20 years of age (148). 
Perinatal dioxin exposure was inversely associated with the FEV1/FVC 
ratio at 7–12 years (149) and allergy, while there was an increase in Th 
cells and in T regulatory cells related to postnatal exposure (150). 
Maternal dioxin-like compounds were inversely related with cord blood 
IgE and wheezing in boys at 3.5 years of age and associated with 
wheezing in boys and girls at 7 years of age (151). PCB congeners 

increase serum AhR bioactivities (152) correlated with atopic 
dermatitis (153).

Conclusion

In early life any contamination of breast milk, and complementary 
feeding can play a role on immune response and GM development with 
effects on metabolism, on development of inflammatory diseases and 
on future health (Figure  1). The association between unbalanced 
microbiota diversity or dysbiosis and possible biological mechanisms 
responsible for the onset of diseases in different environmental exposure 
contexts remains largely unknown (19). Ongoing research on the effects 
of both EDCs and indirect food additives on GM may provide important 
insights, and correcting changes in the GM could represent an 
alternative for the treatment and prevention of metabolic diseases and 
inflammatory responses. Effects of exposure to EDCs can occur in 
childhood and/or adulthood, and some may be transient. Overall, there 
is, however, an increased need for more awareness, and further studies 
are warranted to improve our understanding of pathogenic mechanisms. 
Furthermore, prevention campaigns should be  designed to limit 
exposure before beginning pregnancy. The ongoing European LIFE-
MILCH project,1 focuses on detecting EDCs in breast milk and their 
effects on infants’ growth, adiposity and development from birth up to 
12 months of age, and at establishing a clear risk assessment model to 
prepare and disseminate safety guidelines to reduce and prevent 
exposure to these chemical substances. Ultimately the aim is to build a 
targeted and useful prevention campaign to protect and improve 
breastfeeding (154).
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