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In the last decades, evidence has indicated the beneficial properties of dietary 
polyphenols. In vitro and in vivo studies support that the regular intake of 
these compounds may be a strategy to reduce the risks of some chronic non-
communicable diseases. Despite their beneficial properties, they are poorly 
bioavailable compounds. Thus, the main objective of this review is to explore 
how nanotechnology improves human health while reducing environmental 
impacts with the sustainable use of vegetable residues, from extraction to the 
development of functional foods and supplements. This extensive literature review 
discusses different studies based on the application of nanotechnology to stabilize 
polyphenolic compounds and maintain their physical–chemical stability. Food 
industries commonly generate a significant amount of solid waste. Exploring the 
bioactive compounds of solid waste has been considered a sustainable strategy 
in line with emerging global sustainability needs. Nanotechnology can be  an 
efficient tool to overcome the challenge of molecular instability, especially using 
polysaccharides such as pectin as assembling material. Complex polysaccharides 
are biomaterials that can be extracted from citrus and apple peels (from the juice 
industries) and constitute promising wall material stabilizing chemically sensitive 
compounds. Pectin is an excellent biomaterial to form nanostructures, as it has 
low toxicity, is biocompatible, and is resistant to human enzymes. The potential 
extraction of polyphenols and polysaccharides from residues and their inclusion 
in food supplements may be  a possible application to reduce environmental 
impacts and constitutes an approach for effectively including bioactive 
compounds in the human diet. Extracting polyphenolics from industrial waste 
and using nanotechnology may be  feasible to add value to food by-products, 
reduce impacts on nature and preserve the properties of these compounds.
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1. Introduction

Polyphenolic compounds in foods, supplements, and 
pharmaceuticals have been gaining interest due to their health 
benefits, reducing the risks of developing chronic non-communicable 
diseases (1–3). These natural compounds from the secondary 
metabolism of plants occur in a wide range of plant species, and 
regular consumption is highly encouraged, mainly due to their 
antioxidant properties (4–6). Extracting polyphenolic compounds 
from residues of food industries and by-products is a viable option to 
minimize environmental impacts (7, 8). In addition, including natural 
antioxidants in functional foods and developing dietetic supplements 
constitute a public health strategy (9, 10).

Despite being recognized for their functional properties, the 
technological incorporation of polyphenolic compounds in food or 
pharmaceutical formulations could be  more feasible due to 
pronounced molecular instability (9, 11). They are sensitive 
compounds to environmental conditions such as temperature, 
changes in pH ranges, and luminosity (12, 13). Polyphenolic 
compounds have limited stability in human gastrointestinal ambient, 
such as intestinal pH, enzyme action, and intestinal microbiota, 
reducing the absorption of intact structures and bioavailability and 
significantly affecting functional activity (14, 15). Thus, the 
nanoencapsulation of these natural compounds can be an alternative 
to enable technological inclusion in different food matrices (16).

Natural polysaccharides extracted from fruit peel can be used as 
resistant biomaterials to form nanostructures to encapsulate 
chemically unstable compounds such as polyphenols (17). In recent 
years, complex polysaccharides such as pectins have been studied for 
this purpose (18, 19). They are low-toxic compounds, biodegradable, 
biocompatible, and widely applicable in food products. Therefore, 
polysaccharides extracted from food residues are composed of a 
sustainable source for elaborating efficient nanosystems to overcome 
the (20, 21) physical–chemical instability of some bioactive 
compounds (22, 23). The nanoencapsulation process maintains the 
integrated structure of stable bioactive compounds that is better 
biologically utilized than free compounds and enables specialized 
application in the food and pharmaceutical industries (24).

The scientific literature has reported that polyphenolic 
compounds have functionalities and bioactivities (anti-aging, anti-
inflammatory, antioxidant, and antiproliferative) that effectively 
promote human health (9). Moreover, there is an emerging global 
need for sustainable actions for using residues from the food 
industries (25). Therefore, this review summarizes current 
knowledge about the properties of polyphenols from by-products 
and discusses the implications of nanoencapsulation with 
polysaccharides extracted from by-products to stabilize polyphenols. 
The basic principles of the full use of food residues as primary 
sources of phenolic compounds and the advantages of 
nanoencapsulation techniques applied to protect these 
phytochemicals, thus creating nano-fortified foods and supplements. 
Polysaccharides, such as pectins, are biomaterials indicated for this 
purpose, and together with the main techniques, they will 
be discussed. The explanation of aspects related to the extraction of 
compounds from by-products and the inclusion of food products 
through nanoencapsulation is essential to instigate future research 
with impacts on the environment and, simultaneously, stimulate the 
consumption of bioactive for health promotion.

2. The molecular structure and role of 
polyphenolic compounds for human 
health

Polyphenolic compounds are extensive and heterogeneous 
phytochemicals in plant-based foods (26, 27). They are among plant 
tissues’ most important secondary metabolites, such as flowers, seeds, 
peels, roots, and edible parts. They are widely distributed in various 
food sources, such as wine, tea, coffee, cereal grains, and vegetables, 
such as multiple fruits (28–30).

Polyphenols have a wide diversity of structures, changing their 
functional properties according to their molecular composition. They 
are constituted by aromatic rings (benzene) with attached hydroxyl 
groups, organic acids, sugars (mono-, di-, or oligosaccharides), and 
acylated sugars that are conjugated to primary phenolics structure 
with many hydrophilic groups (27). They are composed of two phenyl 
groups linked by a three-carbon bridge, with different degrees of 
oxidation and unsaturation of the three-carbon segment, and various 
sugar units associated in various positions of the polyphenol structure 
– or associated with organic acids or both – can be attached to the 
hydroxyl groups of flavonoids (31). Phenolic acids consist of a single 
phenyl ring, and the molecular structure of these compounds can 
affect their absorption and, consequently, their functional properties. 
Despite attributing positive effects to the metabolites, the 
bioavailability and activity of polyphenolic compounds are directly 
linked to their intact structure. Some aspects can affect molecular 
stability, such as the interactions with other food constituents and 
factors intrinsic to human digestion, such as intestinal pH and 
microbiota (32, 33). The functional properties (antioxidants) protect 
cells against oxidative damage. However, these compounds’ biological 
activity directly depends on the structural and glycosylation 
patterns (34).

Polyphenolic compounds are present in the human diet, and their 
regular consumption is highly recommended (34, 35). The sources of 
dietary polyphenols in nature are vast, and they can be  found in 
various plant-based foods, including cereals, teas, chocolates, 
vegetables (such as broccoli, onions, and cabbage), and fruits (such as 
grapes, pears, apples, cherries, and others). In berries, the content can 
vary from 200–300 mg of polyphenols for each 100 g of total fresh 
weight (34, 36–38). Dietary polyphenols are divided into subclasses 
according to their chemical structures, from simple ones (single 
aromatic ring), such as hydroxycinnamic acids, to complex structures, 
such as ellagitannins (37). The main classes found in plants are 
flavonoids, phenolic acids, lignans, and stilbenes. Flavonoids are 
considered the most abundant polyphenolic compounds in food. The 
different structures can be  subdivided into six main subclasses: 
flavonols, flavones, flavanones, flavanols, isoflavones, and 
anthocyanidins (39). The basic structure of flavonoids comprises three 
aromatic rings linked together and different radicals attached to the 
primary structure. In addition, the position and number of hydroxyl 
and glycosylation groups also differ in other flavonoids. Resveratrol, a 
subclass of stilbenes, and some phenolic acids, such as caffeic acid, 
chlorogenic acid, and ferulic acid, are some examples of polyphenols 
(40–43). The chemical structures of dietary polyphenol groups in 
foods are shown in Figure 1.

Flavonoids are the predominant polyphenols in the human diet, 
and many foods are sources of these phytochemical classes. 
Anthocyanins (glycosylated anthocyanidins) are present in foods such 
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as blackberries, strawberries, grapes, red cabbage, and blueberries. 
They are responsible for various plant species’ blue, purple, pink, and 
red colors. Quercetin is the main flavonoid in onions, tea, and apples. 
Citrus fruits are the primary sources of hesperidin, and soy is an 
essential source of genistein and daidzein. Tea, cocoa, chocolate, and 
beans are sources of other flavonoids. In turn, flavanones are primarily 
present in oranges, grapefruits, and lemon; flavonols in onion, 
broccoli, apple, berries, bean, and red wine and flavones in capsicum 
pepper (43–48). Recent studies suggest that appropriate combinations 
of polyphenols (quantity and proportion) can increase their 
bioactivity (49).

The benefits are mainly due to the antioxidant action – but not the 
only one – as they are considered a natural reactive oxygen species 
reducer and can donate hydrogen atoms and electrons (32, 50, 51). 
They are potent antioxidants and can prevent oxidative damage 
(reactions mediated by free radicals) of biomolecules such as proteins, 
nucleic acids, polyunsaturated lipids, and sugars (52, 53). The 
structure–activity relationship of polyphenolic compounds interferes 
with the antioxidant activities, such as the number and positions of 
the hydroxyl group (–OH), the presence of a double bond (C2 = C3), 
glycosylation and the presence of radicals attached to the primary 
structure (33, 54, 55). The hydroxyl groups donate hydrogens and 
electrons to stabilize the radicals. The ring with two hydroxyl groups 
(–OH) indicates a high antioxidant effect. Also, the number of 

hydroxyls is related to the increase in the hydrophilicity of the 
molecule (54). The double bond in molecular structure (C2 = C3) with 
a 4-carbonyl group provides planarity, electron expansion, and 
displacement between adjacent rings, altering the dissociation 
constant of the hydroxyl groups and favoring the radical stabilization, 
thus increasing the antioxidant activity (36, 54). The presence of 
glucose also affects the antioxidant activity, while the C-glucoside 
form demonstrated greater antioxidant capacity when compared to 
O-glycoside due to planarity, methylation, and electron displacement 
(54, 56). The mechanisms of antioxidant action can occur through two 
distinct pathways (57). In the first mechanism, the free radical (R) 
removes a hydrogen atom from the antioxidant (ArOH) (Scheme 1). 
The second mechanism involves donating an electron to the free 
radical, which becomes a cation radical (Scheme 2) (53, 57).

 1. R. + ArOH → RH + ARO˙
 2. R. + ArOH → RH− + ARO˙ +

Plant proteins derived from residues are considered ideal 
biomaterials to nanoencapsulate phenolic compounds for protection 
and controlled delivery (58–61). They can be used alone or combined 
with polysaccharides (17, 62). Phenolic compounds and proteins can 
interact and form complexes (through covalent and non-covalent 
bonds) through hydrophobic, electrostatic, van der Waals forces, and 

FIGURE 1

Chemical structures of polyphenolic compounds in foods. The basic structure forms of the main groups are depicted: flavonoids, phenolic acids, 
stilbenes, lignans, and ellagitannin and their subclasses. The figure was created with MolView (https://molview.org) and Mind the Graph (https://
mindthegraph.com) (accessed on 10 April 2023).
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hydrogen bonds. Interaction between polyphenolic compounds and 
proteins can change the conformation of the protein structure, lead to 
folding or unfolding, forming insoluble or soluble complexes, affecting 
their nutritional and functional properties and their bioactivities that 
could generate beneficial effects on human health (63, 64). On the 
other hand, molecular interactions between proteins and polyphenolic 
compounds can favor molecular stability and modify polyphenols’ 
physical and chemical properties, thus improving intestinal release 
and absorption (65).

Polyphenolic compounds may synergistically affect cellular 
signaling to increase the expression of molecules, including receptor 
proteins, enzymes, cofactors, and regulators. Furthermore, these 
compounds can also regulate different signaling, such as activating 
convergent mitochondrial signaling pathways (66–68). Polyphenolic 
compounds can regulate intracellular signaling pathways, targeting 
intracellular enzymes, transcription factors, receptors, and other 
functional proteins regulation (64, 65, 69–71). Due to these 
mechanisms, polyphenolic compounds have anti-inflammatory 
action, anti-aging, antibacterial, cardio-protective, neuro-protective, 
and anticancer effects (5, 49, 72).

Another aspect is the ability of polyphenolic compounds positively 
impact human health due to systemic effects (73, 74). Polyphenols can 
induce microbiota homeostasis, maintaining intestinal barrier integrity 
(75, 76). They can modify the composition of the microbiota by 
increasing the ratio of beneficial bacteria to pathogenic ones and 
promoting immunomodulatory and prebiotic effects (77, 78). At the 
same time, intestinal microbiota can biotransform some of the 
polyphenols into more active metabolites. The literature has reported 
that, although not fully elucidated, changes in the microbiota 
composition affect the neuronal and endocrine systems. The microbiota-
gut-brain is an essential neuroendocrine system that bidirectionally 
regulates the development of some neural disorders. Thus, the positive 
effect of phenolic compounds in the gut is initially due to the modulation 
of the local microbiota, extending to systemic impacts (79–81).

Several studies support that consuming these phytochemicals is 
associated with health benefits. Particularly, anthocyanin consumption 
has been associated with the prevention of type 2 diabetes mellitus 
(82), the prevention of metabolic diseases and obesity (32, 83), the 
cardio-protective potential, the protection of the gastrointestinal tract 
from high fat diet-induced alterations in redox signaling, barrier 
integrity and dysbiosis (84), the anticancer effects (85), and the 
decreased oxidative stress and inflammation (86), and many other 
positive effects on human health (3).

The biological properties of polyphenols indicate the numerous 
applications for the chemical, pharmaceutical, and food industries. 
Developing epidemiological strategies to enrich foods with these 
compounds may constitute a public health strategy to reduce the risks 
of developing diseases like the ones mentioned above. In addition, 
dietary supplements enriched with polyphenols may be an effective 
way to increase consumption in the population, with favorable long-
term results (16, 87, 88).

3. Molecular stability of polyphenolic 
compounds through 
nanoencapsulation systems

Molecular instability limits the inclusion of polyphenols in foods 
and reduces the biological effects due to low absorption. Limited 

bioaccessibility and bioavailability are challenges to be  overcome 
through innovative technologies (17, 89–92). The combination of 
polyphenolic compounds with other compounds (biomacromolecules) 
in nanostructures can protect them from factors intrinsic to human 
digestion (intestinal pH, action of digestive enzymes, and intestinal 
bacteria) (11, 16, 93). Thus, the wide use of polyphenols is limited due 
to their poor stability (maintenance of molecular integrity) under 
gastrointestinal factors, which significantly impact the effectiveness 
delivered to the target tissues to perform their biological function 
(92, 94).

The technological use by the food and pharmaceutical industry is 
impracticable since, during the processing and storage, these 
compounds are susceptible to several factors, limiting their application 
(59, 95). Environmental conditions, such as temperature, light, 
oxygen, pH, enzymes, and the presence of other food compounds, are 
considered the main factors that degrade these bioactive compounds. 
Processing, storage, and digestion conditions can cause chemical and 
structural changes and instability (96, 97). Also, the temperature in the 
food industry is essential to preserve microbiologically, and to 
improve texture and flavor characteristics, impairing the addition of 
these antioxidants before this step (98). Current research points to 
nanoencapsulation as a potentially efficient approach for protecting 
polyphenolic compounds from adverse environments, providing 
stability to maintain the properties, thus enabling technological use 
(99–101). In addition, scientific literature has reported a significant 
loss of properties and functionality of polyphenolic compounds when 
exposed to environmental factors, processing, and human digestion 
(89). The high temperature and increase in pH values in the period of 
storage and food processing by the industry are the main factors 
responsible for polyphenols degradation (59). Molecules such as 
anthocyanins are susceptible to the environment and easily degraded, 
limiting their application as a natural dye. Molecular instability 
impacts color, decreasing the intensity and affecting other sensory 
characteristics of the food (102, 103).

When ingested, polyphenolic compounds are extensively 
degraded and biotransformed by the action of digestive enzymes, 
intestinal pH, and intestinal bacteria (76). Studies have shown that 
only small amounts of intact molecules are available for absorption 
after oral ingestion. In the gastrointestinal tract, degraded polyphenols 
have less absorption, high excretion, decreasing antioxidant activity, 
and consequent lower biological activity than intact molecules (104, 
105). Many polyphenols reach the colon and are biotransformed by 
the local microbiota, resulting in different metabolites that can 
be  absorbed or excreted (76, 106). In the intestine, polyphenolic 
compounds undergo successive phases of biotransformation and 
degradation. In the large intestine, several reactions occur with 
polyphenols, such as deglycosylation, dihydroxylation, α- and 
β-oxidation, dehydrogenation, demethylation, decarboxylation, 
C-ring fission, and cleavage to lower molecular weight (36, 107). 
Additionally, the molecular composition, bound radicals, size, charge, 
hydroxylation, glycosylation, acylation and pigmentation, possible 
matrix effect, and presence of specific transporters are some factors 
that influence structural stability, antioxidant capacity and absorption 
of polyphenols in the human organism (108, 109).

The low bioavailability of these compounds results in decreased 
bioefficacy and decreased health effects. It hinders technological 
application, which limits all the health benefits attributed to in vitro 
and in vivo studies and restricts specialized applications (108, 110). 
Bioavailability can vary between different polyphenol compounds, but 
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bioavailability is generally low for most of these polyphenols due to 
molecular instability being the determinant factor. The 
biotransformation in the gastrointestinal tract is basically due to two 
main factors. The first is specific to the molecular structure of the 
phenolic compounds because, according to the form (scaffold), it can 
facilitate metabolization by the human intestinal enzymes and the 
intestinal microbiota. The second factor responsible for the low 
biological use concerns the diversity of the colonization of the 
intestinal microbiota. Some structural alterations of polyphenols (such 
as deglycosylation) occur by more generic groups of bacteria, while 
others arise by specific bacterial genera (111–113).

There are several technologies of nanoencapsulation to maintain 
molecular stability, reduce the degradation of polyphenols, and 
develop an efficient delivery system (100, 114, 115). Nano-functional 
plant-based foods have aroused growing interest from researchers to 
investigate the mechanisms for metabolic diseases, such as prevention 
and adjuvant treatment, including the disorders mentioned in item 2 
(62, 116). Nanotechnology is considered a new frontier for improving 
food quality in the food sector, resulting in increased nutritional value 
and food safety. For the health area, nanoscience corresponds to the 
targeted delivery of nutrients and bioactive compounds in the body, 
thus possibly impacting disease decrease (117). In addition to the 
search for applied technologies to maintain molecular integrity/
stability, there has been a need to identify alternative sources for 
extracting polyphenolic compounds. In recent years, sustainable 
sources have been explored in line with current demands for 
environmental preservation and the development of nano-functional 
foods (118, 119).

4. The use of waste from food 
industries: possible benefits for human 
health, and prospecting the reduction 
of impacts on the environment

Recent research indicates that food systems significantly affect 
climate change (120). It is estimated that in the subsequent years, the 
impact on the environment caused by the inefficient use of natural 
resources, concurrent with the exponential growth of the world 
population, will result in profound social consequences (118, 121). 
The production of residues from the food industry significantly 
impacts the environment, constituting approximately one-tenth of 
food systems emissions (122, 123). This complex panorama indicates 
a current urgency for actions aimed at the sustainable use of natural 
sources, such as reducing waste and optimizing the use of by-products 
from the food industry.

Food losses and waste are part of the production chain, starting at 
the harvest, passing through the industrial processing stage, and 
throughout distribution. According to data from the FAO (United 
States Food and Agriculture Organization) around the world, 
approximately 14% of the world’s food – about US$ 680 billion in 
developed countries and US$ 310 billion in developing countries – is 
lost annually (124, 125). The agro-food system supply chain produces 
significant by-products (118). The considerable amount of food 
discards and biomass generates an accumulation in nature, increasing 
environmental and economic impacts (120).

Regardless of the considerable progress in industrial residue 
management in the world in the last decades, the remaining natural 
by-products still need to be  used to their maximum potential, 

indicating a critical and current problem (25). The need for public 
policies to reduce food losses in the production chain has recently 
been discussed, as well as the impact on the sustainable use of 
environmental resources for the economy of countries and on social 
issues related to food and nutrition security (124, 126). The United 
Nations (UN) has been encouraging actions to achieve sustainable 
development goals, which include specific proposals such as “Zero 
Hunger,” “Good Health and Well-Being,” “Responsible Production 
and Consumption,” and “Climate Action.” Innovative strategies that 
culminate in these objectives must be instigated, mainly those that 
seek the development of concrete actions for the full use of shared 
natural resources and direct continuous efforts to reduce food waste 
while promoting the health of populations (120, 123, 127, 128).

Although several technological approaches aim to reduce the 
environmental impacts of food industries, some challenges remain 
open (129, 130). Globally, millions of tons of food waste from 
vegetables are generated annually, mainly from processing fruits and 
grains (131). Food sub-products constitute a huge extractive source of 
nutrients such as vitamins, minerals, and macromolecules (proteins 
and polysaccharides) (121, 132). In addition, vegetable residues, 
mainly from fruit peel, can extract non-nutrients, such as bioactive 
phytochemicals. The wide diversity of these compounds includes 
several groups, comprehending carotenoids, prebiotics and dietary 
fibers, pigments, and phenolic compounds – most of them with 
remarkable beneficial bioactivity (26, 133). Sustainability actions are 
being planned, such as the rational use of raw food materials and the 
correct disposal of by-products (121). In this sense, the technological 
use of food waste can be  an alternative to reduce environmental 
impacts with positive economic consequences (127). In addition, the 
extraction methods must also be  carefully selected, with 
environmentally friendly techniques, and exclude potentially toxic 
compounds (119, 134, 135).

Pereira et al. (121) indicated that adding value to the wasted parts 
of food can be a strategy to mitigate food shortages in the future. The 
use of peels and seeds, in addition to being nutritionally adequate, can 
have positive environmental impacts in the long term. The use of 
by-products from the food industry as alternative sources for the 
extraction of polyphenolic compounds and the development of 
supplements can be an action to provide functional products to the 
population while attributing value to the waste (131). The use of 
vegetable peels for the characterization and extraction of polyphenols 
and the destination for the enrichment of products can be a promising 
option for this purpose (119, 124).

Some of the extracted phenolic compounds (e.g., anthocyanins) can 
be used as pigments and natural dyes, replacing synthetic ones with vast 
industrial applications and commercial interest (103). Due to the 
beneficial health properties already discussed, they can be used as an 
additive to nano-foods due to their properties, and for the development 
of new functional products/ingredients and supplements for use as 
adjuvant treatments in different physiological processes (116, 136, 137), 
upcycling by-products into biofunctional components (26, 119).

Suleria et  al. (26) indicated that fruit peels have diverse 
phytochemicals, including phenolic compounds. The levels of the 
bioactive compounds were identified through a comprehensive 
screening and characterization/quantification by HPLC and LC–MS/
MS in different fruit peels. The antioxidant content was attested and 
the potential use for extracting phenolic compounds in the peel of 
twenty other fresh and ripe fruits was proposed, such as apple, apricot, 
avocado, banana, custard apple, dragon fruit, grapefruit, kiwifruit, 
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lime, mango, melon, nectarine, orange, papaya, passionfruit, peach, 
pear, pineapple, plum, and pomegranate.

The sub-product sources for polyphenolic compounds are varied 
and widely available and indicate a potential unexplored source for 
extraction. Table 1 shows some of the residual sources rich in phenolic 
compounds, and different studies (in vitro and in vivo) are described 
to indicate the biological effects.

Most of the macromolecules extracted in abundance from 
by-products can be considered sustainable, with high quantities for 
extraction (118, 131). Non-starch polysaccharides, such as pectins, 
chitosan, and cellulose, are abundant in industrial food waste and with 
well-established extraction and isolation methods (134, 180) 
(Figure 2). These biomaterials can be used to form nanostructures for 
encapsulating compounds highly sensitive to environmental and 
biological factors (181).

Food polysaccharides are used in food technology applications as 
physical modifiers and gelling agents for foods and drug formulations. 
Especially the non-starch polysaccharides are gastro-resistant and are 
used to compose drug delivery systems (33, 182). The various new 
functionalities and biological effects are being extensively explored (183), 
and nanotechnology is a new possibility for applying these biomaterials, 
such as pectins (62). Pectins are complex polysaccharides of plant origin 
and are widely distributed in nature, with excellent application in 
nanotechnology for food and pharmaceutical industries (184).

Pectins are abundant in wasted food because they are constituents 
of the plant cell wall and form a primary layer that surrounds and 
supports plant cells. They are in various vegetables, mainly citrus peel 
and albedo (orange, lemon, lime, and pomelo), apple peel, chayote peel, 
and passion fruit albedo. All these by-products from fruits are 
considered adequate sources for the extraction of pectin (Figure 2) 
(185–187). The industrial processing of citrus fruits to produce juices is 
one of the primary sources for obtaining pectin, and several agro-
industrial residues are being investigated as potential extractive sources. 
The peel and albedo of remaining fruits are ~50% of the total fruit, with 
25 to 30% (dry weight of citrus peel) composed of pectin (134, 188–
190). Other alternatives sources can be used to obtain pectins, such as 
sugar beet and sunflower seed head (191), tomato waste (192), cocoa 
husks (193), grapefruit peel, pomegranate peel, passion fruit peel, 
mango peel, banana peel, and kiwi fruit pomace (194–199).

The extraction, purification, and fractionation of pectins from 
alternative sources can be  considered sustainable. The physical, 
chemical, rheological, and functional properties of pectin indicate the 
potential for technological application in several segments since 
pectin is stable in the digestive tract, with excellent mechanical 
resistance, biodegradability, and biocompatibility (188). Therefore, 
pectin is a promising biomaterial to compose nanostructure systems 
to protect chemically unstable compounds, such as phenolic 
compounds (8, 23, 200). Other characteristics and applicability of 
nanostructured pectins will be discussed later in this article.

5. Biomaterial for elaborating 
nanostructure systems for 
encapsulating polyphenolic 
compounds from food residues

To increase the economic value of the compounds extracted from 
losses/residues and by-products of the food industry, phenolic 
compounds and pectins can be applied in nanotechnology (16). Using 

vegetable peels to extract these two natural compounds represents the 
valorization of the agro-food losses and waste from the food industry 
while constituting a strategy to produce new products with added 
economic and nutritional value (118). Using nanoencapsulated 
polyphenols as a natural and potent source of antioxidants in the 
various segments of the food and pharmaceutical industries is 
considered an innovative approach (59).

Over the last few decades, various technologies were developed 
to encapsulate and consequently protect polyphenols, such as 
microencapsulation (201, 202). Although effective, technology at 
nanometric scales (sizes <1,000 nm), such as nanoemulsion, 
nanoliposomes, nanoparticles, and nanogel, is indicated to increase 
stability, bioaccessibility, controlled delivery, and bioavailability of 
phenolic compounds with numerous application possibilities (7, 
114, 203, 204). Notably, there is a significant difference between the 
bioavailability of free and nanoencapsulated polyphenols 
(100, 116).

The nanoencapsulation techniques physically and chemically 
stabilize the compounds, promoting better absorption of intact forms, 
thus improving the bioavailability. Nanoencapsulation can also 
increase storage stability, enabling its use as a food ingredient (16, 100, 
115, 205). The nanotechnology process can also enhance some 
sensorial characteristics, such as the taste and astringency of some 
polyphenols (16, 115). Moreover, different nanoencapsulation systems 
can be  used to optimize the controlled delivery of polyphenolic 
compounds (93, 114). Two distinct approaches are reported for the 
formation of nanostructures: (I) top-down and (II) bottom-up. The 
top-down approach aims to reduce the size of structured material to 
a nanometer scale through external disruptive mechanical forces 
using precise tools/equipment. On the other hand, the bottom-up 
approach involves using molecules by self-organization/self-assembly 
(62, 200). Factors such as proportion and concentration between 
compounds (encapsulated and encapsulating), temperature, pH, 
agitation, and ionic strength must be carefully controlled to form 
nanocapsules (206, 207).

Nanoencapsulation means a scientific and technological effort 
that can reduce food waste by upcycling by-products to generate 
value-added products, highly specialized and intended for broad 
application in the food industry (food, health, pharmaceutical, and 
cosmetic areas). Nanotechnology is an alternative to value this 
industrial waste and can contribute to global sustainability actions (16, 
119). Different materials such as fruit peels as sources of 
polysaccharides to form nanostructures – for improving the stability 
of labile compounds – indicates an innovative possibility for 
introducing new resources, such as expanded technological use of 
phytochemicals and their controlled release in the specific tissues/
organs. The impacts on the use of by-products of the food industry 
through the application of nanotechnology polysaccharide-based 
constitute opportunities and innovations (11, 16, 17, 116, 131).

Several scientific investigations are directed toward identifying 
methods to retain and improve the polyphenolic content and delivery 
to the human body. The antioxidant activity of polyphenolic 
compounds extracted from coffee grounds was preserved through 
encapsulation based on polysaccharides (maltodextrin, gum Arabic, 
1:1 ratio) and with techniques such as lyophilization and spray-drying 
(30). The study done by Kasote et al. (208) reviewed several studies 
that used different methodologies for stabilizing polyphenolic 
compounds and their inclusion in cereals. Nanoencapsulation was 
cited as a promising technology and as one of the options for 
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TABLE 1 According to the group and sub-group, polyphenolic compounds in by-products of the food industry, and the main effects are reported in studies in vitro e in vivo.

Chemical 
class

Chemical sub-
class

Polyphenolic 
compounds

Molecular 
formula

By-products/peel: possible source for 
extraction

Reported effects Reference

Phenolic acid Hydroxybenzoic acids Gallic acid 4-O-glucoside C13H16O10 Apple, apricot, grapefruit, mango, orange, passionfruit, 

pear, pineapple, plum, pomegranate, jaboticaba

Benefits for the cardiovascular system (hypertension, 

atherosclerosis, and dyslipidemia).

(138)

Protocatechuic acid 

4-O-glucoside

C13H16O9 Apple, apricot, banana, grapefruit, kiwifruit, mango, 

orange, passionfruit, pear, pineapple, plum, pomegranate, 

papaya, coffee

 - Beneficial effect of regulating blood lipids

 - Higher antioxidant capacity

 - Attenuate changes induced by high-fat diet in rats

(139, 140)

Vanillic acid 4-sulfate C8H8O7S Mango, pear, kiwifruit Action on intestinal barrier and urinary epithelium (141)

Ellagic acid arabinoside C19H14O12 Orange  - Antimicrobial properties against a wide range of 

microbial pathogens

 - Neuroprotective potential

(142–144)

Hydroxycinnamic acids Caffeoyl tartaric acid C13H12O9 Plum, mango, orange, passionfruit Antibacterial potential and Antioxidant Capacity (145)

Isoferulic acid 3-sulfate C10H10O7S Plum Antioxidant potential (146)

Ferulic acid 4-O-glucoside C16H20O9 Apricot, kiwifruit, mango, nectarine, pineapple, plum, 

pomegranate, avocado, custard apple, papaya

Antioxidant and potential pharmaceutical properties (147)

Caffeic acid 3-O-glucuronide C15H16O10 Custard apple, grapefruit, orange, kiwifruit, pineapple, 

dragon fruit

Antioxidant properties (148)

Hydroxy phenylacetic acids 3,4-Dihydroxyphenylacetic acid C8H8O4 Apple, apricot, custard apple, grapefruit, mango, melon, 

nectarine, peach, orange, pear, passionfruit, plum, 

pomegranate, avocado

Relax arteries ex vivo and decrease blood pressure in 

vivo

(149)

Hydroxy phenyl propanoic 

acids

Dihydroferulic acid 4-sulfate C10H12O7S Avocado Antioxidant potential (150)

Flavonoids Flavonols (−)-Epigallocatechin C15H14O7 Avocado Cellular targets and inhibits cancer cell proliferation by 

inducing apoptosis and cell cycle arrest.

(151)

Cinnamtannin A2 C60H50O24 Custard apple, kiwifruit, plum, avocado, dragon fruit, pine 

bark, grape

Improve cognitive function (152)

(+)-Catechin 3-O-gallate C22H18O10 Kiwifruit, pear, avocado Chemoprotective mechanism reduce oxidative stress (153, 154)

Flavones Apigenin 6,8-di-C-glucoside C27H30O15 Apple, apricot, grapefruit, kiwifruit, orange, papaya, 

passionfruit, peach, plum, lime, melon

Antioxidant activity (155)

Flavanones Narirutin C27H32O14 Apple, nectarine, dragon fruit, lime Antioxidant and anti-inflammatory activities (156)

Hesperidin C28H34O15 Lime  - Inhibitory effect against obesity diseases regulates 

lipid metabolism, glucose metabolism, and 

antioxidant action.

 - Neuroprotective effect

(157, 158)

(Continued)
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Chemical 
class

Chemical sub-
class

Polyphenolic 
compounds

Molecular 
formula

By-products/peel: possible source for 
extraction

Reported effects Reference

Flavonols Myricetin 3-O-rutinoside C27H30O17 Lime, mango, nectarine, peach, passion fruit, avocado - Antioxidant, anticancer, antidiabetic, and anti-

inflammatory activities

- Anticancer effects

(159, 160)

Quercetin 3’-O-glucuronide C21H18O13 Lime, orange, pomegranate, kiwifruit  - Effective in ameliorating endothelial insulin 

resistance by inhibiting reactive oxygen species-

associated inflammation.

 - Promotes the proliferation and migration of neural 

stem cells

(161, 162)

Myricetin 3-O-galactoside C21H20O13 Banana, orange, pomegranate - Antioxidant, anticancer, antidiabetic, and anti-

inflammatory activities

- Anticancer effects

(159, 160)

Kaempferol 3,7-O-diglucoside C27H30O16 Apple, apricot, nectarine, peach, orange, passion fruit, 

plum, lime, papaya, beans, broccoli, cabbage, gooseberries, 

grapes, kale, strawberries, tomatoes, citrus fruits, Brussel 

sprouts, grapefruit

-Prevention and treatment of inflammatory diseases.

- Chronic inflammation-induced diseases, anticancer, 

and anti-obesity.

- Antioxidant properties

(163–166)

Dihydrochalcones 3-Hydroxyphloretin 

2’-O-xylosyl-glucoside

C26H32O15 Apple, mango, pear, pineapple Antioxidant properties (167, 168)

Dihydroflavonols Dihydroquercetin C15H12O7 Custard apple, kiwifruit, mango, peach, pear, papaya Antioxidant properties (168, 169)

Anthocyanins Delphinidin 3-O-glucoside C21H21O12 Custard apple, avocado, kiwifruit, papaya, pomegranate,

jaboticaba, grape

 - Activate the immune response in the tumor 

microenvironment (human colorectal cancer cells) 

and induce cancer cell death in vitro.

 - Inhibits angiogenesis via VEGFR- 2* down-

regulation and migration through actin disruption.

 - Antiproliferative effect on several types of solid 

tumor cancer cells.

(170–172)

Cyanidin 3,5-O-diglucoside C27H31O16 Avocado, custard apple, kiwifruit, lime, papaya, peach, 

dragon fruit, blackberry, grape, strawberry, jaboticaba

 - Activate the immune response in the tumor 

microenvironment (human colorectal cancer cells) 

and induce cancer cell death in vitro.

 - Antioxidant activity

(170, 173)

Pelargonidin 3-O-rutinoside C27H31O14 Lime  - Hyperglycemic control

 - Antioxidant properties

(174, 175)

Lignans Secoisolariciresinol-sesquilignan C30H38O10 Avocado, custard apple Antioxidant capacity (176, 177)

Stilbenes Resveratrol C14H12O3 Custard fruit, avocado, dragon fruit, blackberry, grape  - Regulates immunity by interfering with immune cell 

regulation and proinflammatory cytokines.

 - Potentially improve the therapeutic outcome: 

diabetes mellitus, obesity, colorectal cancer, breast 

cancer, multiple myeloma, metabolic syndrome, 

hypertension, Alzheimer’s disease, cardiovascular 

disease, and rhinopharyngitis

(178, 179)

*VEGFR-2: Vascular endothelial growth factor receptor-2.

TABLE 1 (Continued)
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developing functional foods with bioavailability improvement (16, 
59, 116).

Polysaccharides, such as pectin, are important biomolecules to 
be used as biomaterials for sectors of the food and pharmaceutical 
industries. These natural polysaccharides’ properties, bioactivities, and 
versatility can be  applied in nanotechnology (209). Furthermore, 
pectins are found in many renewable sources and food by-products 
due to their wide distribution in nature (180). Nanoencapsulation 
based on pectin has attracted attention due to favorable properties, 
such as large specific surface area, excellent stability, good 
biocompatibility, improved permeability and retention time of the 
encapsulated compound, uncomplicated design and preparation, 
structural flexibility and preferred characteristics of controlled release 
in the intestine, and delivery to specific physiological sites (210–212). 
In addition, the nanoencapsulation process contributes to improved 
antioxidant properties and prebiotic effects (213).

Food polysaccharides can undergo reversible self-assembly and 
respond to stimuli such as ionotropic gelation. Besides, they interact 
with other molecules through self-assembly, generating structures on 
a nanometric scale (214, 215). The process can be performed without 
adding surfactants, emulsifiers, or other potentially unsafe products 
for human ingestion and the environment (62, 215). Scientific 
literature has reported that different approaches and varied techniques 
are used to prepare nanostructured polysaccharides, proteins, and 
lipids. They can be used alone or with other food biomacromolecules, 
forming nanocomplexes to encapsulate chemically unstable 
compounds (16, 216). For example, some coating materials are 
indicated for anthocyanin’s protection (24). Natural polysaccharides 
are indicated due to their high nutritional value and potential 
functional health properties. In this sense, some studies demonstrated 

the pectin-based nanoencapsulation of anthocyanins resulting in 
physical–chemical protection, enabling more excellent stability and 
color maintenance and aiming at an increase in intestinal absorption 
(18, 184, 217). Polyphenolic compounds were encapsulated in pectin-
based nanoparticles (isolated or combined with proteins) with 
excellent results and repeatability (205, 218).

As depicted above, food biopolymers (polysaccharides and 
proteins) are suitable for wall material encapsulation (219). Several 
studies successfully used pectin to encapsulate phenolic compounds, 
isolated or combined with other polysaccharides (chitosan and 
cellulose) and proteins (lysozyme and whey protein) (18, 205, 217, 
218, 220, 221). Table  2 shows the most recent studies that used 
different biomaterials to nanoencapsulation polyphenolic compounds 
(extracted from other sources), indicating the versatility of 
combinations between biomacromolecules and different purposes and 
applications. The various research highlights the main objectives for 
nanoencapsulation of phenolic compounds, which are maintaining 
the stability, the color, and the application in food matrices for 
resistance during the processing. In addition to industrial applicability, 
increased bioaccessibility, antioxidant capacity, and bioavailability are 
identified as the biological factors that motivate the development 
of nanocapsules.

As shown in Table  2, polysaccharides – isolated or bound to 
proteins – are predominantly used for the nanoencapsulation of 
anthocyanins, epigallocatechin gallate, catechins, and resveratrol. The 
nanoencapsulation of these polyphenolic compounds was developed 
to maintain physicochemical stability and properties such as 
antimicrobial, antitumor, antioxidant, and antiproliferative activity. 
Also, the nanoencapsulation process can promote a better intestinal 
release rate, improve bioaccessibility and bioavailability, inhibit 

FIGURE 2

Polysaccharides are found in by-products of the food industry, the primary sources for extraction available. Polysaccharides are considered potential 
biomaterials to form nanocapsules for the entrapment of chemically unstable compounds. The figure was created by Mind the Graph (https://
mindthegraph.com) (accessed on 10 April 2023).
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TABLE 2 Nanoencapsulation of polyphenolic compounds polysaccharide and protein-based nanostructures.

Encapsulating 
material

Phenolic 
compound

Method Size 
(nm)

Zeta 
potential 

(mV)

Encapsulation 
efficiency (%)

Purpose Reference

Pectin - Cellulose A blend of phenolic 

compounds 

extracted from 

pomegranate peel

Nanoemulsion ~200 – ~20 Highest antimicrobial 

activity

(220)

Carboxymethyl chitosan Epigallocatechin 

gallate

Ionic cross-linking 400 +36.6 75 Increase antitumor 

activity

(222)

Pectin – WPC Olive leaf phenolic 

compounds

Nanoemulsion 347.7 – 72.73 to 96.64 Increased antioxidant 

properties and release rate

(205)

Pectin – WPI Anthocyanin Self-assembly 200 −36 55 Improve Stability (184)

Carboxymethyl chitosan Anthocyanin Ionic interaction 219.53 – 63.15 Promote stability and 

inhibit degradation in the 

gastrointestinal tract

(224)

Chitosan Catechins Polyanion-gelation 169.0 to 

201.4

~ +30 24 to 53 Targeted delivery system (225)

Chitosan and 

β-lactoglobulin

Epigallocatechin 

gallate

Ionic gelation 100 to 500 +10 to +35 ~ 60 To release 

epigallocatechin gallate in 

the gastrointestinal tract

(226)

Chitosan-Alginate Anthocyanins Ionic pre-gelation 

and polyelectrolyte 

complex formation

358.5 to 

635.9

– 56.87 to 68.9 Maintenance of 

antioxidant activity

(227)

Chitosan Anthocyanin Ionic gelation 160 to 

1,093

– – To stabilize the color and 

the antioxidant activity

(228)

Chitosan - 

β-Lactoglobulin

Anthocyanin Ionic gelation 91,71 – 69.33 To improve stability and 

bioavailability

(223)

Soybean insoluble 

dietary fiber

Anthocyanin 

(Malvidin-3-O-

glucoside)

Emulsification 300 – – Storage stability and 

protection of color

(229)

Chitosan Anthocyanin Ionotropic gelation 274 to 455 −5.04 to −35.4 70 To improve in vivo 

antioxidant potential

(230)

Pectin Resveratrol Antisolvent 

precipitation and 

electrostatic 

deposition

120 −30 – Stability, Bioaccessibility, 

and Antioxidant Capacity 

Maintenance

(218)

Pectin–Chitosan Anthocyanins Self-assembly 100–300 – 66.68 Molecular Stability and 

Control Released

(215)

Pectin–Lysozyme Anthocyanins Self-assembly 198.5 −26 73 Molecular Stability (18)

Chitosan–Pectin Anthocyanin Polyelectrolyte 

complex

– + 37 to +55.5 60 Color protection and 

application in food 

packaging

(221)

Pectin-Chitosan Anthocyanin Nanoliposomes 64 to 352 −30 to +21 28.54 to 61.17 To investigate the 

protective effect of 

hepatocytes injury in L02 

cells

(231)

Hohenbuehelia serotina 

polysaccharides

Quercetin Self-assembly 360 −38.8 21.41 to 52.28 Maintenance of stability 

and its anti-proliferative 

activities during in vitro 

gastrointestinal digestion

(232)

(Continued)
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degradation in the gastrointestinal tract, ensure storage stability and 
color protection, apply in food packaging, promote thermal stability, 
and enable the oral administration of these compounds.

Some methods are indicated as viable for elaborating 
polysaccharide-based nanostructures to encapsulate polyphenols. 
The definitions, advantages, and applicability of the main 
techniques used to encapsulate polyphenols will be  discussed 
below. (1) Emulsification/Nanoemulsion: this nanoencapsulation 
process involves mixing two immiscible liquids using an interface 
agent, such as a surfactant. Among the main advantages is the 
promotion of adequate solubility and kinetic stability, providing 
a sufficient matrix for targeted delivery, protection, and stability 
of polyphenolic compounds, which tend to be spherical droplets. 
However, using surfactants and co-surfactant can be potentially 
toxic, which may be one of the disadvantages of this technique 
(235–237). (2) Ionic gelation: biopolymers with electric charges 
can interact by different forces when homogenized in an aqueous 
solution forming nanostructures with different characteristics of 
isolated initial compounds. The polysaccharide can be dissolved 
in aqueous acid and added to a polycationic solution. The ionic-
gelling polysaccharides can be  precipitated to form spherical 
nanoparticles. The methodology can form stable nanostructures, 
and the low cost and non-addition of potentially toxic products 
are advantages of this technique. On the other hand, the 
disadvantages are the non-uniformity of size, and the release of 
the encapsulated compound may be limited (200, 238, 239). (3) 
Ionic cross-linking: formed by complexes of polyelectrolytes and 
complex coacervates. Nanoparticles are formed through the 
binding of divalent cations, such as the addition of calcium. Ionic 
cross-linking is based on the interaction between 
tripolyphosphate anions and protonated amine groups of 
polymers. The interaction occurs between two oppositely charged 
molecules or polyelectrolytes. Polysaccharide, mainly composed 
of guluronic acid and the mannuronic acid units (alginates), 
forms ionic complexes with divalent cations like Mg2+, Ca2+, and 
Ba2+. This technique forms stable molecules without adding toxic 
products and with reduced diameter sizes (200, 240, 241). (4) 
Coacervation: This process involves an interaction between two 
oppositely charged biopolymers forming a complex to protect a 
bioactive compound. This technique’s use of biodegradable 
compounds, adequate stability, and high encapsulation efficiency 
is advantageous. However, the complexity of elaboration and 
control of all the factors involved limits its application (238, 242, 
243). (5) Self-assembly: different biopolymers are homogenized 
in an aqueous solution interacting by different electrostatic 
forces. It is low-cost and free of potentially toxic products. 

Despite this, encapsulation efficiency can be  limited (62, 215, 
238, 244). (6) Nanoprecipitation: the biopolymer 
nanoprecipitation process occurs by adding a non-solvent to a 
polymeric solution in supersaturation, nucleation, growth by 
condensation, and coagulation. It forms nanoparticles or 
polymeric aggregates that can adequately encapsulate 
polyphenolics. Despite having a limited controlled release, this 
method has low cost and broad applicability (245, 246).

Current challenges, such as increased chronic disease incidence 
in the population and diverse environmental impacts, instigate the 
research community for emerging intervention possibilities. There is 
considerable food waste from industries considered a potent source of 
nutritional compounds. In addition to the environmental impact of 
solid accumulation, there are significant economic losses. In this 
sense, nanotechnology can be  an advantageous alternative. The 
development of functional nano foods could increase the consumption 
of bioactive compounds – extracted from food waste – generating a 
protective effect on public health. The use of food waste directs it to a 
noble destination and generates economic value (247, 248).

6. Nanocarriers based on natural 
polysaccharides: the promising 
interaction between pectin and 
phenolic compounds

Polyphenolic compounds encapsulated into pectin nanocomplexes 
for physical–chemical stabilization are a breakthrough in allowing 
several technological applications aiming at human health benefits 
(249). The functional properties (mainly antioxidant activity), 
bioaccessibility, and bioavailability of polyphenolic compounds are 
known to be influenced by compounds linked to their structure (250). 
Nanoencapsulation is not different, and physical–chemical studies 
should be  done to depict how phenolic compounds are disposed 
inside the nanostructures to indicate determined applications since 
polyphenol-carbohydrate interactions can preserve chemical 
properties and stabilize the molecular structure (251). Moreover, 
pectin-polyphenolic interactions are influenced by these two 
compounds’ high structural variability and complexity (252, 253). 
Considerable scientific evidence indicates that polyphenol-
carbohydrate interaction, especially with pectin, can preserve the 
properties of the polyphenols maintaining their chemical structure, 
inhibiting the degradation, and preserving the antioxidant action 
(101). Polyphenolic compounds and complex polysaccharides have a 
natural affinity and can bind via non-covalent and covalent 
interactions (107). Due to its characteristics, pectin has been used as 

TABLE 2 (Continued)

Encapsulating 
material

Phenolic 
compound

Method Size 
(nm)

Zeta 
potential 

(mV)

Encapsulation 
efficiency (%)

Purpose Reference

Chitosan - 

β-Lactoglobulin

Anthocyanin Ionic gelation 580.4 +49.6 77.4 Storage stability and 

oxidant stability during in 

vitro simulated digestion

(233)

Zein–Carboxymethyl 

cellulose

Quercetin and 

Resveratrol

Antisolvent 

Precipitation

217 −33.6 to −45.6 25,1 Thermal stability and 

orally administered

(234)

WPI, Whey Protein Isolate; WPC, Whey Protein Concentrate.
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a carrier to protect and deliver unstable bioactive compounds 
(209, 219).

Pectins are a class of polysaccharides composed of long 
chains of galacturonic acids widely distributed in nature (187, 
254). Pectin is formed by heterogeneous non-starch 
polysaccharide complexes, originating from the structure of the 
cell walls of plant tissues and being considered an essential 
dietary fiber in the human diet (255). Pectins are formed by 
homogalacturonans (HG), type I  (RG-I), and type II (RG-II) 
rhamnogalacturonans, in addition to xylogalacturonans and 
apiogalacturonans. Homogalacturonans are formed by linear 
structures of [→ α-1,4-D-galacturonic acid →], with variation in 
the degree of acetyl- and methyl esterification and may contain 
xylose (xylogalacturonan) (207, 256). Due to the possibility of 
ionization of galacturonic acids, pectins have good solubility in 
water. When galacturonic acid residues are esterified by methyl 
or acetyl groups, the solubility characteristics are modified 
according to the degree of methylation (high degree of 
methoxylation >50%, low degree <50%) (257). These compounds 
can produce highly viscous gels (depending on the degree of 
methoxylation and ligands), so they are used as an emulsifier 
and/or thickener (258). At neutral pH, the carboxylic acid (pKa 
pH ~3.6) has a net negative charge interacting with cationic 
molecules (proteins and polysaccharides) to form nanocomplexes 
(8). Pectins have the property of interacting with certain types of 
proteins at variable pH, stabilizing the nanostructures formed in 
acid or neutral dispersions (8, 213).

Due to their resistance to stomachal pH and human enzymes, 
pectins can protect and control the release of bioactive compounds, 
as they can reach (in their intact form) distal portions of the 
intestine, maintaining the functionality of different bioactive 
compounds nanoencapsulated in their structure (58, 136). In the 
intestine, pectins are fermented by microorganisms from intestinal 
microbiota. This fermentation process produces short-chain fatty 
acids with beneficial systemic effects and provides better absorption 
of nutrients and bioactive compounds (259). Due to its 
characteristics, pectin is a biomaterial suitable for forming 
nanocapsules for physical–chemical protection, increased 
absorption, and bioavailability of different active compounds. 
Using polyphenolic compounds as nanocarriers is an innovative 
alternative for designing new smart foods (23, 219).

Although the mechanism is not fully understood, it is known that 
polysaccharides, especially dietary fibers, can transport phenolic 
compounds in the gastrointestinal tract and protect them from the 
intestinal microbiota. The presence of these compounds in the 
intestinal lumen causes changes in intestinal bacteria composition 
through pectin fermentation (108, 260, 261). A recent study by Zhang 
et al. (261) aimed to evaluate the release and activity of polyphenols 
bound to soluble dietary fiber (wheat bran) in a simulated in vitro 
digestion and colonic fermentation system. The authors concluded 
that there was an influence on the bioaccessibility of fiber-bound 
polyphenols after colonic fermentation. There was a stimulation of the 
growth of beneficial bacteria after fermentation, indicating the 
potential prebiotic effect of the system.

The natural affinity of anthocyanins and polysaccharides was 
confirmed in a study that analyzed the tendency to bind during 
the processing of blueberry pomace with different dietary fibers, 
including pectin. A strong trend for anthocyanin-polysaccharide 

binding was observed (262, 263). The interaction occurs through 
electrostatic interaction between hydroxyl groups (OH+) and the 
carboxylic acids (COOH−) of the polysaccharides, including 
pectins (264). The different binding between anthocyanin and 
pectin was investigated in a study by Fernandes et al. (252). The 
interaction between cyanidin-3-O-glycoside and four citrus 
pectic fractions was explored through analyzes such as isothermal 
titration calorimetry, nuclear magnetic resonance, and UV–
Visible spectrophotometry. The results indicated that different 
binding affinities could be correlated with changes in coloration, 
with the degree of pectin esterification being the primary 
determinant for complex formation.

Pectin-based nanostructures can be formed through different 
methods, such as spray drying, emulsion, hydrogel formation, 
liposomes, and nanocomplexes through electrostatic complexation 
and molecular self-organization. Pectin at neutral/basic pH 
predominates negative electrical charge and may interact with 
other positively charged macromolecules forming stable 
nanostructures (265, 266). Currently, pectin combined with other 
compounds (proteins, lipids, and polysaccharides) is considered a 
highly effective wall material for phenolic compounds (205). 
Stabilized polyphenolic compounds maintain color, functional 
properties, and stability in the gastrointestinal system improving 
their bioavailability (267, 268). Pectin is also considered a 
nanocarrier of polyphenolic compounds for the controlled release 
in distal parts of the colon, protecting from microbial processing 
from intestinal microbiota and promoting the absorption of intact 
molecules (200, 269).

7. Conclusion and future perspectives

Nanotechnology is a viable option to enhance the use of 
bioactive molecules from commonly wasted sources, producing 
a new product with high added value and broad applicability. 
Polyphenolic compounds benefit human health and protect 
against chronic non-communicable diseases, such as 
cardiovascular diseases, obesity, diabetes, and cancers. Using 
sustainable sources to extract phytochemicals is an effective 
strategy to reduce the accumulation of waste from the food 
industries on the environment. Fruit residues are sources of 
phenolic compounds and pectin. Pectin is an excellent 
encapsulating biomaterial for phenolic compounds aiming for 
innovative applications. Pectin-based nanostructures can protect 
compounds from molecular degradation and enable the 
development of nano-engineered foods for different purposes 
and applications. Applied nanotechnology adds economic value 
to these functional ingredients and reduces the impacts caused 
by the food industries.

As discussed in the manuscript, it is essential to understand 
that despite being potentially applicable to nanotechnology in the 
valorization of industrial waste – positively affecting the circular 
economy and as a sustainability strategy – studies are strongly 
supported and necessary to attest to in vivo safety for human 
consumption. Another relevant factor is the ingested doses. Most 
of the results were performed in the laboratory using in vitro and 
in vivo models. Nanocapsules with phenolic compounds may 
enhance their bioavailability, so they should be  carefully 
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evaluated in toxicity studies (in vitro and in vivo) and long-term 
ingestion. Also, another fundamental point that must 
be considered is the optimization for production on an industrial 
scale; from the extraction process to the elaboration of 
nanostructures, these parameters still need to be explored. This 
review provided new perspectives for possible research directions 
in nanoscience and minimizing impacts on nature, as well as 
supporting information for using different fruit peels rich in 
polyphenolic compounds to be extracted with potential benefits 
for human health. Many efforts have been made to mitigate food 
waste and protect the environment. However, innovative ideas 
with practical strategies for fully utilizing industrial by-products 
are urgently needed. Using nanoencapsulation of polyphenolic 
compounds extracted from by-products characterizes the 
circularity in food systems, promoting new functionality for 
products with no commercial value while encouraging the 
increased consumption of bioactive compounds. Dietary 
supplements and foods enriched with nanoencapsulated bioactive 
compounds are considered promising to reduce the risk of 
developing various diseases. The use of polyphenolic compounds 
within nanocapsules represents new perspectives on current 
study gaps and future directions in this field, providing enriched 
and highly specialized foods for optimal target intestinal release 
of bioactive compounds. The full use of by-products is achieved 
through technological incentive policies that support the use of 
unused parts of plants to be recovered and destined for the full 
use of their nutritional, techno-functional, and health-enhancing 
properties, resulting in economic, environmental, and public 
health benefits. The impact on the valuation of losses/waste and 
by-products of the food industry through the application of 
nanotechnology represents opportunities, trends, and innovations 
(Figure 3).
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FIGURE 3

The by-products of the food industry can be used to extract bioactive compounds to be nanoencapsulated with polysaccharides also extracted from 
by-products. Food enrichment and new dietary supplements can be done to decrease the development of non-communicable chronic diseases, thus 
increasing the value of waste material and reducing environmental and economic impacts. The figure was created by Mind the Graph (https://
mindthegraph.com) (accessed on 10 April 2023).
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