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Introduction: The implications of maternal overnutrition on offspring metabolic

and neuroimmune development are well-known. Increasing evidence now

suggests that maternal obesity and poor dietary habits during pregnancy and

lactation can increase the risk of central and peripheral metabolic dysregulation

in the offspring, but the mechanisms are not sufficiently established. Furthermore,

despite many studies addressing preventive measures targeted at the mother, very

few propose practical approaches to treat the damages when they are already

installed.

Methods: Here we investigated the potential of cannabidiol (CBD) treatment

to attenuate the effects of maternal obesity induced by a cafeteria diet on

hypothalamic inflammation and the peripheral metabolic profile of the offspring

in Wistar rats.

Results: We have observed that maternal obesity induced a range of

metabolic imbalances in the offspring in a sex-dependant manner, with higher

deposition of visceral white adipose tissue, increased plasma fasting glucose

and lipopolysaccharides (LPS) levels in both sexes, but the increase in serum

cholesterol and triglycerides only occurred in females, while the increase in

plasma insulin and the homeostatic model assessment index (HOMA-IR) was

only observed in male offspring. We also found an overexpression of the pro-

inflammatory cytokines tumor necrosis factor-alpha (TNFα), interleukin (IL) 6,

and interleukin (IL) 1β in the hypothalamus, a trademark of neuroinflammation.

Interestingly, the expression of GFAP, a marker for astrogliosis, was reduced in

the offspring of obese mothers, indicating an adaptive mechanism to in utero

neuroinflammation. Treatment with 50 mg/kg CBD oil by oral gavage was able to

reduce white adipose tissue and revert insulin resistance in males, reduce plasma

triglycerides in females, and attenuate plasma LPS levels and overexpression of

TNFα and IL6 in the hypothalamus of both sexes.

Discussion: Together, these results indicate an intricate interplay between

peripheral and central counterparts in both the pathogenicity of maternal obesity

and the therapeutic effects of CBD. In this context, the impairment of internal
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hypothalamic circuitry caused by neuroinflammation runs in tandem with the

disruptions of important metabolic processes, which can be attenuated by CBD

treatment in both ends.
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maternal obesity, neuroinflammation, cannabidiol, hypothalamus, insulin resistance

1. Introduction

Maternal malnourishment before and during pregnancy is a
growing worldwide concern known to bear several implications for
fetal development that lead to long-term consequences on offspring
health and well-being (1, 2). Interestingly, since the pioneering
studies on the effects of the perinatal environment, such as the
Developmental Origin of Health and Disease (DOHaD) theory, the
context transitioned from the lack of nutrients due to hunger and
starvation to excess due to the global obesity pandemic (3). In fact,
globalization and urbanization have gradually led to an increase
in the consumption of “junk food” (i.e., ultra-processed, rich in
fats, and sugar) associated with the reduction of physical activity,
a phenomenon called “nutritional transition” (4, 5). In this context,
it is important to highlight that obesity and the consumption of
mentioned “junk food” most often co-occur, making it difficult
to discriminate the effects of obesity and its metabolic profile
per se from those related to nutritional aspects of the foods
consumed (6).

A broad range of studies has demonstrated that an abnormal
inflammatory milieu during in utero development triggers the
so-called “early-life programming” of the offspring metabolism
(3, 7). A number of potential pathways underlying the effects
of maternal obesity include increased sustained inflammation,
changes in lipid transport and storage, dysregulation of glucose
metabolism, and modifications to the microbiome, which triggers
increased translocation of lipopolysaccharides (LPS) to the
bloodstream and circulating levels of pro-inflammatory cytokines
(8–10). These inflammatory mediators are able to cross the
placental barrier and create a harmful environment for developing
fetal tissues (11, 12). Other than that, the increased insulin
resistance, glucose levels, and lipids, with a potentially elevated
supply of nutrients to the developing fetus, contribute to
setting persistent changes in the offspring’s energy balance,
appetite regulation, lipid and glucose homeostasis, and gut
dysbiosis. Overall, as a result, maternal obesity substantially
raises the risk of offspring obesity, insulin resistance, type
2 diabetes, high blood pressure, and adverse lipid profile
(7, 10, 13).

The hypothalamus is the predominant brain area that
controls energy balance by integrating information from the
body and initiating appropriate behavioral, humoral, and
neural outputs. Current evidence indicates hypothalamic
inflammation as a likely mechanism for the dysregulation of
the homeostatic control of energy balance, which might lead
to an increased susceptibility to metabolic alterations and
obesity in the offspring (14, 15). Abnormal insulin signaling
during neurodevelopment leads to malformation of neural

projections that affect hypothalamic function and plasticity,
resulting in altered energy homeostasis in the offspring (16, 17).
These effects can also be attributed to enhanced activation of
resident immune cells, such as astrocytes and microglia, with
the consequent secretion of inflammatory cytokines, such as
tumor necrosis factor-alpha (TNFα), interleukin (IL)-6, and
IL-1β (18).

The extent to which changes in the offspring’s habits and
resolutive approaches throughout life can modify the effects
of perinatal maternal obesity is yet not known, but a few
anti-inflammatory approaches seem to exert positive effects.
The endocannabinoid system has been extensively studied in
the context of obesity and inflammation, showing a close
relationship with energy metabolism and the feeding circuitry (19).
Cannabidiol (CBD) is a non-psychotropic terpenophenol isolated
from Cannabis sativa with anti-inflammatory and antioxidant
effects discussed to be beneficial for diverse immunological
states (20). It has been suggested that the hydroxyl groups of
the phenol ring in CBD structure interfere with free radical
chain reactions, which confers CBD its antioxidant activity (20,
21). Furthermore, the modulation of endocannabinoid signaling
via downregulation of CB1 receptor activity and upregulation
of CB2 receptor activity results in reduced reactive oxygen
species (ROS) production and reduced pro-inflammatory signaling
(22, 23).

Besides the endocannabinoid receptors CB1 and CB2, CBD is
also known to interact with other systems and receptors relevant to
metabolic homeostasis, such as the G protein-coupled receptor 55
(GPR55), Transient Receptor Potential Vanilloid (TRVP) channel
and nuclear peroxisome proliferator-activated receptors (PPARs)
(24–27). This broad spectrum of communication among systems
translates into modulatory roles in diverse metabolic aspects
throughout the entire body, from lipid metabolism and storage
in the liver to mitochondrial activity and energy expenditure in
the adipose tissue (28, 29). Furthermore, CBD was also shown to
interact with glucose metabolism by improving glucose tolerance
(30, 31), the brain-gut axis by mitigating microbiome dysbiosis
(30, 32, 33), and hypothalamic anorexigenic neuromodulators (34).
In this sense, beyond directly improving a range of physiological
aspects related to obesity, modulation of the endocannabinoid
system seems to also be effective on tempering eating behaviors,
such as high-fat and high-sucrose food intake (35), hyperphagia
(36), sucrose self-administration (37) and binge eating (38), which
sets the stage for it as a potential intervention on maternal obesity-
related metabolic dysfunctions.

Here, we investigated the effects of CBD treatment on maternal
obesity-induced hypothalamic inflammation and metabolic
outcomes on the early-adulthood of the offspring.
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2. Materials and methods

2.1. Animals

Eighteen female Wistar rats (3-weeks-old) were obtained from
the animal facility of the Federal University of Health Sciences
of Porto Alegre (UFCSPA). The animals were group-housed (3
animals per cage) under standard laboratory conditions at a
controlled temperature (23 ± 1◦C) and 12-h light:dark cycle. This
study was approved by UFCSPA Institutional Animal Care and
Use Committee under protocol N◦ 751/21. All experiments were
designed and performed to minimize the number and suffering of
subjects, following the international laws that regulate the care of
laboratory animals.

2.2. Experimental groups and diet

Three-week-old female breeders (N = 9) were placed on either
control diet (CT) composed by standard chow (Nuvilab R© CR-
1 Nuvital

R©

, Curitiba, PR, Brazil) (3.4 kcal/g, 63% carbohydrates,
26% protein, and 11% fat) or a Cafeteria Diet (CAF) composed
by standard chow plus bacon mortadella (Perdigão

R©

), strawberry
wafers (Isabela

R©

), chocolate cookies (Isabela
R©

), pizza-flavored
crackers (Parati

R©

), white chocolate (Harald
R©

), sausage (Alibem
R©

),
and orange-flavored soda (Sukita

R©

) (4.3 kcal/g, 43% carbohydrates,
14% protein, and 43% fat) with water ad libitum. CAF group was
fed with three menus with different combinations among the foods
mentioned interchanged every 2 days, to maintain novelty and
stimulate consumption. CAF was chosen as an obesogenic diet
since it mimics the Western dietary habits in a more translational
manner than regular high-fat and/or high-sugar diets, once CAF
provides the variety of textures, options and palatability that
contribute to hedonic eating and are not present on manufactured
chows (39, 40). The diets were maintained for 12 weeks prior
to and during mating with a 3-months-old male, throughout
gestation, lactation, and until weaning. Dam weight and the weight
of consumed diets were recorded weekly. Day of parturition was
considered postnatal day zero (PND0).

To reduce the impact of litter effects, litters were adjusted
to seven to nine pups per dam with an equal proportion of
males to females when possible. All offspring were weaned at
PND21, placed on standard chow and weighed weekly. Litters
were divided equally among treatment groups and by sex, which
created four groups per sex: CT mother + Vehicle (CT-Veh), CT
mother + Cannabidiol (CT-CBD), CAF mother + Vehicle (CAF-
Veh), and CAF mother + Cannabidiol (CAF-CBD).

Treatment started at the same day of weaning (PND21) and
consisted of CBD oil diluted in corn oil for a dose of 50 mg/kg
(Prati-Donaduzzi R©, Toledo, PR, Brazil) or corn oil (vehicle), both
in a volume of 1 mL/kg by oral gavage. The treatment was
administered 7 days a week for 3 weeks (Figure 1). Treatment dose
and duration were chosen based on previous studies on different
cognitive-assessment models with oral administration of CBD (41–
45). Furthermore, we have performed a pilot study assessing doses
of 2,5 mg/kg, 10 mg/kg, and 50 mg/kg, to which 50 mg/kg showed
most significant positive results (data not shown).

2.3. Tissue processing

At the end of the 3 weeks of treatment, on PND42, animals
were euthanized by decapitation. The gonadal visceral adipose
tissue was weighed, truncal blood was centrifuged, and plasma was
separated. The brain was dissected immediately and all tissues were
snap-frozen in liquid nitrogen and stored in −80◦C for further
processing and analysis.

2.4. Biochemical analysis

Fasting plasma levels of glucose, total cholesterol and
triglycerides were quantified using enzymatic colorimetric kits
(Labtest, Lagoa Santa, Brazil). Insulin levels in the plasma were
determined by enzyme-linked immunosorbent assay (ELISA)
(Insulin ELISA kit, Cat# RAB0904; Sigma-Aldrich, St. Louis, MO,
USA). Subsequently, the homeostatic model assessment (HOMA-
IR) index was calculated to determine insulin resistance through
the following formula: glucose (mg/dL) × insulin (uU/mL)/22.5.

2.5. LPS quantification

Plasma (150 µL) was hydrolyzed with 75 µL of NaCl 150 mM
and 300 µL of HCl 8M and then incubated for 4 h at 90◦C.
Afterward, 3 mL of hexane were added, and samples were
centrifuged at 3,500 rpm for 10 min. The upper organic phase was
withdrawn, and the residue was reconstituted in 50 µL of methanol,
transferred to a vial, and an aliquot of 3 µL was injected into
the analytical system. A Nexera-i LC-2040C Plus system coupled
to a LCMS-8045 triple quadrupole mass spectrometer (Shimadzu,
Kyoto, Japan) was used for the analysis.

2.6. RT-qPCR

Total RNA was isolated from the hypothalamus using TRIzol R©

(Invitrogen, Brazil) according to the manufacturer’s instructions.
The quantification of total RNA was done by spectrometry
BioSpec-nano

R©

(Shimazu, Kioto, Japan) at 260 and 280 nm.
For cDNA synthesis, 1,000 ng of RNA were reverse transcribed
according to the manufacturer’s instructions (GoScript Reverse
Transcription Kit, Promega, Brazil). To conduct real time
quantitative polymerase chain reaction (RT-qPCR), cDNA was
added to a reaction mix (10 µL final volume) containing 100 nM
gene-specific primers and universal SYBR green supermix (Applied
Biosystems, Thermo Fisher Scientific CA, USA). All samples were
run in duplicate and were analyzed on an QuantStudio Real-Time
PCR instrument (Applied Biosystems, Thermo Fisher Scientific
CA, USA) for quantitative monitoring of PCR product formation.
Relative gene expression was normalized to β-Actin controls
and assessed using the 2-11CT method. Primer sequences are
as follows: β-Actin: F: TATGCCAACACAGTGCTGTCTGG;
β-Actin: R: TACTCCTGCTTGCTGATCCACAT; Iba1: F: GCAAG
GATTTGCAGGGAGGA; Iba1: R: CGTCTTGAAGGCCTCCAG
TT; GFAP: F: CGAAGAAAACCGCATCACCA; GFAP: R: CC
GCATCTCCACCGTCTTTA; TNFα: F: TGGCGTGTTCATCCG

Frontiers in Nutrition 03 frontiersin.org

https://doi.org/10.3389/fnut.2023.1150189
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-10-1150189 March 4, 2023 Time: 14:43 # 4

Rodrigues et al. 10.3389/fnut.2023.1150189

FIGURE 1

Experimental design. CT, control chow-fed dam; CAF, cafeteria diet-fed dam; Veh, offspring treated with vehicle (corn oil); CBD, offspring treated
with cannabidiol (50 mg/kg); PND, post-natal day.

TTCTCTACC; TNFα: R: CCCGCAATCCAGGCCACTACTT;
IL6: F: GACCAAGACCATCCAACTCATC; IL6: R: GCTTAG
GCATAGCACACTAGG; IL1β: F: TGAGGCTGACAGACCCCAA
AAGAT; IL1β: R: GCTCCACGGGCAAGACATAGGTAG.

2.7. Data analysis and statistics

Data were analyzed using Graphpad Prism 9 statistical software
(GraphPad Software, San Diego, CA, USA). Two-way ANOVA
with a Bonferroni post hoc analysis was performed within sexes.
The main effects were: maternal diet and CBD treatment. The
interaction between these two factors was also analyzed. The results
were expressed as the mean ± standard error of the mean (SEM).
Outliers were removed using the ROUT test, and statistically
significant differences were considered at p < 0.05.

3. Results

3.1. Cafeteria diet induces obesity in
female Wistar rats after 9 weeks of diet

The dams from both CT and CAF groups were weighed every
week throughout the experiment to assess the impact of the diets
on weight gain. Repeated measures two-way ANOVA has shown a
significant diet effect (F1,16 = 8.705; p = 0.0094). From the 9th week
of diet, CAF-fed female Wistar rats presented significantly higher
body weight than the CT group (p = 0.0349), which persisted until
mating in the 12th week (p = 0.0062). Despite no differences in
body weight being shown during most of gestational and lactational

FIGURE 2

Dams’ body weight throughout the experiment. Cafeteria diet-fed
(CAF) dams presented significantly higher body weight when
compared to control diet (CT) from the 9th week of diet, which was
consistent until mating (12th week of diet) and after weaning of the
offspring (19th week of diet). Data are presented as mean ± SEM.
n = 9/group. *p < 0.05 **p < 0.01.

time, except for the 15th week (p = 0.0298), the difference became
significant again right after weaning of the offspring on the 19th
week (p = 0.0012) (Figure 2).

3.2. Cafeteria-induced maternal obesity
increases visceral white adipose tissue
deposits even though it does not affect
offspring total body weight

The offspring was weighed weekly from weaning (PND21) to
euthanasia (PND42) to determine weight gain in early-life and
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throughout treatment and visceral white adipose tissue (WAT)
was weighed at euthanasia. No groups showed any differences in
weight gain related to neither maternal diet nor CBD treatment
(Figure 3A), however, both male and female offspring of CAF-
fed dams, presented an increase in WAT (maternal diet effect:
F1,32 = 17.02; p = 0.0002 and F1,31 = 24.92; p < 0.0001 respectively).
Indeed, untreated male offspring of obese dams (CAF-Veh) showed
heavier visceral WAT when compared to the offspring of control
dams (CT-Veh) (p = 0.0005). Also, both female CAF-Veh and
CAF-CBD had more visceral fat than CT ones (p = 0.0008 and
p = 0.0084). However, CBD treatment was able to reduce the
deposition of visceral fat on male CAF-CBD when compared to
CAF-Veh (p = 0.0256) (Figure 3B).

These data suggest a complex energy-balance disruption
on the offspring of obese mothers, with an increase in the
accumulation of visceral fat while maintaining total body weight.
Also, CBD treatment seems to exert a positive effect in a sex-
dependent manner.

3.3. Female offspring lipid profile is more
affected by CAF-induced maternal
obesity with partial effects of cannabidiol
treatment

Plasma cholesterol and triglyceride levels were assessed in
order to evaluate the biochemical profile of the offspring. On
female offspring, there was a maternal diet effect (F1,31 = 11.29;
p = 0.0023) and an interaction between diet and CBD treatment
(F1,31 = 6.027; p = 0.0208) on total cholesterol levels. CAF-CBD
had higher levels of plasma cholesterol than CT-CBD (P = 0.0008)
(Figure 4A). Regarding triglycerides, there was a maternal diet
effect (F1,32 = 4.997; p = 0.0325). CAF-Veh presented higher
levels of triglycerides when compared to CT-Veh (P = 0.0166),
while CAF-CBD showed lower levels when compared to CAF-Veh
(P = 0.0395) (Figure 4B). There were no significant differences
among male groups.

Together, these data suggest that CAF-induced maternal
obesity affects lipid metabolism in the offspring in a sex dependent
manner, with apparently more severe effects in females. However,
even though CBD treatment did not exert any effects on
total cholesterol, it was able to revert the increased triglyceride
levels in females.

3.4. Cannabidiol treatment reverts insulin
resistance caused by maternal obesity in
male offspring

Plasma levels of fasting glucose and insulin were evaluated,
and the HOMA-IR was determined in order to assess glucose
metabolism and insulin resistance in the offspring. In male
offspring we found a maternal diet effect on glucose levels
(F1,33 = 10.60; p = 0.0026). CAF-Veh had higher fasting glucose
than CT-Veh (p = 0.0072), with no effect of CBD (Figure 5A).
On insulin, there was an interaction between maternal diet and
CBD treatment (F1,34 = 4.916; p = 0.0334). CAF-Veh showed

higher insulin levels than CT-Veh (p = 0.0458), while CAF-CBD
had lower insulin levels than CAF-Veh (p = 0.0354) (Figure 5B).
Consequently, on the HOMA-IR there was an interaction between
maternal diet and CBD treatment (F1,32 = 7.674; p = 0.0093). CAF-
Veh showed an increased HOMA-IR when compared to CT-Veh
(p = 0.0068), while CAF-CBD had a lower index than CAF-Veh
(p = 0.0029) (Figure 5C).

In female offspring, fasting glucose levels showed a maternal
diet effect (F1,30 = 15.30; p = 0.0005). Both female CAF-Veh and
CAF-CBD showed higher levels of plasma glucose when compared
to their CT (p = 0.0377 and p = 0.0099) (Figure 5A). However, we
did not find differences regarding insulin levels (Figure 5B) and
HOMA-IR (Figure 5C) in female offspring.

These findings suggest that CAF-induced maternal obesity
affects glucose metabolism and promotes insulin resistance in
the offspring in a sex-dependent manner. Opposed to what was
observed in lipid metabolism, glucose disturbances appear to be
more severe in males. On the other hand, CBD treatment was able
to reduce plasma insulin in male offspring of obese dams to control
levels, which led to an improved HOMA-IR in this group as well.

3.5. Cannabidiol treatment reverts
LPS-induced endotoxemia caused by
maternal obesity

Plasma levels of LPS were measured to evaluate metabolic
endotoxemia. In male offspring, we found a maternal diet effect
(F1,28 = 7.215; p = 0.0120). Male CAF-Veh showed a higher
concentration of LPS than CT-Veh (p = 0.0148), while CAF-
CBD had lower levels when compared to CAF-Veh (p = 0.0470)
(Figure 6). In female offspring, there were maternal diet
(F1,28 = 32.46; p < 0.0001) and treatment (F1,28 = 15.81; p = 0.0004)
effects and an interaction between both (F1,28 = 14.88; p = 0.0006).
Female CAF-Veh presented higher levels of plasma LPS than CT-
Veh (P < 0.0001), while CAF-CBD had lower levels than CAF-Veh
(p < 0.0001) (Figure 6). Thus, CBD treatment seems to be effective
to reduce plasma levels of LPS in the offspring of obese dams.

3.6. Cannabidiol treatment rescues
hypothalamic neuroinflammation
resulted from maternal obesity

Real time quantitative polymerase chain reaction (RT-qPCR)
was conducted to evaluate gene expression of TNFα, IL6, IL1β,
GFAP, and IBA-1 in the hypothalamus.

In male offspring, the gene expression of TNFα showed a
maternal diet (F1,27 = 4.939; p = 0.0348) and CBD treatment
(F1,27 = 6.035; p = 0.0207) effects, and also an interaction
between both factors (F1,27 = 16.34; p = 0.0004). Male CAF-
Veh showed higher levels of TNFα mRNA than CT-Veh
(p = 0.0002), while CAF-CBD had lower levels than CAF-Veh
(p = 0.0001) (Figure 7A). Regarding IL6 gene expression, there
was an interaction between maternal diet and CBD treatment
(F1,26 = 20.20; p = 0.0001). Male CAF-Veh showed higher levels
of IL6 mRNA than CT-Veh (p = 0.0054), while CAF-CBD had
lower levels than CAF-Veh (p = 0.0003) (Figure 7B). Regarding
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FIGURE 3

Offspring’s body weight and visceral white adipose tissue (WAT). Neither male nor female offspring showed influences of maternal diet or
cannabidiol (CBD) treatment in weight at weaning (PND21) and the following 3 weeks of treatment (A). Maternal diet increased visceral fat deposit in
both male and female cafeteria diet (CAF)-Veh offspring with CBD effect only in males (B). Data are presented as mean ± SEM. n = 8–10/group.
∗p < 0.05 ∗∗p < 0.01 ∗∗∗p < 0.001.

IL1β expression, there was a maternal diet effect (F1,26 = 4.919;
p = 0.0355), with no differences among groups on the post-hoc
test (Figure 7C). Regarding GFAP expression, there were maternal
diet (F1,27 = 6.816; p = 0.0146) and CBD treatment (F1,27 = 7.402;
p = 0.0113) effects. CAF-Veh presented much lower levels of GFAP
mRNA than CT-Veh (p = 0.0055), while CT-CBD had lower levels
than CT-Veh as well (p = 0.0045) (Figure 7D). There were no
differences in IBA-1 expression (Figure 7E).

In female offspring, there was an interaction between maternal
diet and CBD treatment (F1,28 = 4.250; p = 0.0486) regarding the
gene expression of TNFα. Female CAF-Veh presented higher levels
of TNFα mRNA than CT-Veh (p = 0.0156), while CAF-CBD had
lower levels than CAF-Veh (p = 0.0351) (Figure 7A). Regarding
IL6 expression, there was a maternal diet effect (F1,28 = 5.637;
p = 0.0247), a treatment effect (F1,28 = 6.014; p = 0.0207) and an
interaction (F1,28 = 6.057; p = 0.0203). CAF-Veh presented higher
levels of IL6 mRNA than CT-Veh (p = 0.0039), while CAF-CBD
had lower levels than CAF-Veh (p = 0.0034) (Figure 7B). There
was a maternal diet effect (F1,25 = 15.62; p = 0.0006) on IL1β gene
expression. Both CAF-Veh and CAF-CBD showed higher levels of
IL1β mRNA than their CT (p = 0.0150 and p = 0.0255), with no

effect of CBD treatment (Figure 7C). Regarding GFAP expression,
there was an interaction between maternal diet and CBD treatment
(F1,27 = 8.541; p = 0.0069). CAF-Veh showed lower levels of GFAP
mRNA than CT-Veh (p = 0.0123), while CT-CBD had lower levels
than CT-Veh as well (p = 0.0068) (Figure 7D). No differences were
found in IBA-1 expression among groups (Figure 7E).

These findings indicate that maternal obesity leads to
hypothalamic inflammation in the offspring. Nonetheless,
treatment with CBD reduced the gene expression of the
proinflammatory cytokines.

4. Discussion

Genetic and epidemiological studies provide evidence
supporting the contribution of a transgenerational background
of parental obesity to the development of obesity itself and
further metabolic risks in the offspring (13, 46–48). Other than
understanding the underlying mechanisms through which parental
obesity takes its toll on the offspring’s health, an increasing body of
research has been raising resolutive approaches. However, most of
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FIGURE 4

Offspring’s plasma levels of total cholesterol and triglycerides. Female cafeteria diet (CAF)-cannabidiol (CBD) presented higher levels of plasma
cholesterol than control diet (CT)-CBD (A). Maternal diet increased triglyceride levels in females, but CBD treatment was able to revert this effect (B).
No differences were seen in males. Data are presented as mean ± SEM. n = 8–10/group. ∗p < 0.05 ∗∗∗p < 0.001.

them rely on preventive measures targeted at the pre-conception
and/or gestational period (49). Here, to address the problem once
the damage is already set, we investigated the effects of CBD
treatment on the offspring as a way to attenuate the negative
outcomes of maternal obesity.

An increasing number of studies have addressed the pleiotropic
role of the endocannabinoid system on metabolic regulation at
the central and peripheral levels. Endocannabinoid regulation of
metabolism is extremely relevant to the central nervous system
(CNS), especially in the hypothalamus where it plays a pivotal
role on energy balance and feeding behaviors, contributing not
only for the pathogenicity of obesity but also the development
of eating disorders (34, 36–38, 50, 51). Nonetheless its receptors
are also expressed in peripheral organs such as the adipose tissue,
liver, skeletal muscle, pancreas, kidney, and gastrointestinal tract
(52), hence its particularly promising modulation in the context
of obesity and metabolic disorders (53, 54). Here, we show that
CBD treatment is able to revert a number of metabolic dysfunctions
and neuroinflammation arising from maternal consumption of
CAF during pregnancy and lactation, including higher visceral

adiposity, insulin resistance, endotoxemia, and overexpression of
inflammatory markers in the hypothalamus of the offspring.

Besides obesity itself, the consumption of a diet rich in saturated
fats and carbohydrates is also associated with the development
of metainflammation, a chronic and self-sustained state of low-
grade inflammation (55). In this study, we demonstrated that both
male and female offspring of obese mothers had higher visceral
WAT deposits and fasting glucose levels, followed by elevated
plasma cholesterol and triglycerides levels in females and insulin in
males. Previous studies with different models of maternal obesity
have established that both the gestation and the lactation-suckling
periods are critical for WAT development, impacting epigenetic
regulation of key genes for energy metabolism–such as dopamine
and opioid genes related to food behavior (56) and hypothalamic
nutrient sensors (46)–and altering long-term adiposity set points
(57, 58). In a model of maternal high-fat diet (HFD), the offspring
of obese mothers showed an increased expression and activity of
stearoyl-CoA desaturase-1 (SCD1), a key enzyme of fatty acid (FA)
metabolism. SCD1 converts saturated FAs, such as palmitate and
stearate, to monounsaturated FAs, the predominant substrates for
triglyceride synthesis (59). It is important to highlight that CAF,
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FIGURE 5

Plasma levels of glucose and insulin and calculated homeostatic model assessment (HOMA-IR) index of the offspring. Maternal obesity increased
fasting glucose levels in both male and female offspring with no cannabidiol (CBD) effect (A). Maternal obesity increased levels of plasma insulin in
males, but CBD treatment was able to revert this damage (B). Male cafeteria (CAF)-vehicle (Veh) presented an elevated HOMA-IR index, which was
alleviated by CBD treatment (C). Data are presented as mean ± SEM. n = 8–10/group. ∗p < 0.05 ∗∗∗p < 0.01.

which closely mimics the Western urban eating patterns, is not
only high in sugar but also saturated fats, with palmitate being the
most predominant FA, hence the prominent impact of this dietary
pattern on lipid profile (60, 61).

Interestingly, no effect of maternal obesity was found on total
body weight, even though WAT deposition was altered. This
finding could be due to a diminished muscle mass that may have
compensated for the heavier adiposity. In previous studies, both
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FIGURE 6

Plasma levels of lipopolysaccharides (LPS) of the offspring. Maternal obesity increased circulating LPS in both males and females, but cannabidiol
(CBD) treatment was able to decrease its levels. Data are presented as mean ± SEM. n = 8–10/group. ∗p < 0.05 ∗∗∗∗p < 0.0001.

3- and 12-weeks old pups from CAF-fed mothers showed equal or
lower body weight and lean mass but greater fat accumulation than
controls, which has been described as the thin-outside-fat-inside
phenotype (62, 63). Also, since in our study the offspring were fed a
normal diet after weaning, we were able to show that the metabolic
impairments observed were independent of the offspring’s own
diet. However, in previous studies, when offspring of CAF-fed
dams were given CAF after weaning, there was no increase in
body weight at puberty (4 weeks of life), but animals had higher
weight at adulthood (16 weeks of life), and no difference in visceral
adiposity was reported in male offspring. Thus, differences in body
composition seem to be dependent on the post-weaning diet as well
as the sex of the offspring (64, 65).

Cannabidiol (CBD) treatment was able to mitigate most of
the metabolic dysfunctions caused by maternal obesity, reducing
visceral fat content and IR in males, plasma triglyceride levels
in females, and plasma LPS in both sexes. CB1 receptor
activation is generally considered a powerful orexigenic signal;
thus, the endocannabinoid system’s inhibition is beneficial for
treating obesity and related metabolic diseases. Since CBD is an
allosteric modulator of CB1 receptors, inhibiting its activation
by endogenous ligands or exogenous agonists might trace the
pathway through which CBD attenuates peripheral disturbances
arising from maternal obesity (66). CB1-KO mice maintained on
a normocaloric, standard diet have been shown to have a decreased
body weight gain over time, which was associated with increased
energy expenditure and elevated β(3)-adrenergic receptor and
uncoupling protein-1 (UCP1) mRNA levels in the brown adipose
tissue, suggestive of enhanced peripheral sympathetic activation
and thermogenesis (66).

Diets high in saturated FAs, such as the Western diet, increase
the uptake and storage of sphingolipids and their essential fractions,
such as ceramide, sphingosine, sphinganine, and sphingomyelin.
Interestingly, previous data suggest that phytocannabinoids and
other agonists of CB1 or CB2 receptors can modulate sphingolipid
concentrations in specific organs under the increased availability
of FAs in the diet. CBD significantly lowered the concentration

of sphingolipids in the adipose tissue (67), the skeletal muscle
(31), and the brain by increasing catabolism, inhibiting salvage
and/or de novo synthesis, which restores the tissue’s insulin
sensitivity and, therefore, attenuates IR (68). Other than that, other
mechanisms are proposed for the beneficial effects of CBD on
metabolic disorders in peripheral organs, such as the protective
effect of CBD on adipose-derived stem cells against endoplasmic
reticulum stress and its complications related to IR and diabetes
(69) and attenuation of oxidative stress and inflammatory response,
associated with an improved n-6/n-3 polyunsaturated fatty acids
(PUFAs) ratio in the white and red skeletal muscle (70), indicating
a narrow relationship between the endocannabinoid system and
hormonal and energetic balance.

It is worth noting that the sexual dimorphisms observed in
this study regarding glucose metabolism and IR corroborate with
what has been demonstrated in different models of obesity and
maternal obesity (71). Female sex hormones play a fundamental
role in dimorphic insulin signaling since estrogens increase
insulin sensitivity in metabolic tissues and upregulate insulin
transcription in pancreatic beta cells as well as GLUT4 synthesis
in adipose tissue and muscle (72). Female mice fed an HFD showed
reduced susceptibility to developing obesity-induced IR and WAT
inflammation when compared to HFD-fed males. Meanwhile,
HFD-fed males treated with estradiol presented the same protective
effect as females, indicating that the dimorphic effects of obesity
on IR may be due to estrogen-mediated reductions in WAT
inflammation (73). Furthermore, a recent study has shown that
an androgen-driven gut microbiome may also be responsible for
the increased susceptibility to IR in males since gut microbiome
depletion abolishes sex-biased glucose metabolism in HFD-fed
mice (74).

A growing body of evidence suggests that males are more
sensitive to intrauterine hyperglycemia as well; hence both animal
and human studies show the same pattern of higher risk for
obesity and IR in male offspring of obese/diabetic mothers.
In a model of maternal high-sucrose diet (HSD), female HSD
offspring were shown to be more glucose intolerant, while male
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FIGURE 7

Relative gene expression of tumor necrosis factor-alpha (TNFα),
interleukin 6 (IL6), interleukin 1β (IL1β), glial fibrillary acidic protein
(GFAP), and ionized calcium-binding adapter molecule 1 (IBA1) in
the hypothalamus of the offspring. Maternal obesity increased the
expression of TNFα (A) and IL6 (B) in both males and females, with a
positive effect of cannabidiol (CBD) treatment. Maternal obesity
increased the expression of IL1β only in females, with no effect of
CBD (C). Both maternal obesity and CBD treatment decreased GFAP
expression in males and females when compared to control diet
(CT) (D). No difference was found in IBA1 expression (E). Data are
presented as mean ± SEM. n = 6–8/group. ∗p < 0.05 ∗∗p < 0.01
∗∗∗p < 0.001.

counterparts were more insulin resistant (75). Furthermore, human
cohort and prospective studies have shown a strong correlation
between offspring metabolic impairments and maternal diabetes

for males but not for females (76–78). This relationship may
be explained by the fact that, during preimplantation, the male
embryo is believed to have a greater ability to adapt to the
adverse environment and, as a result, has a higher sensitivity to
programming influences (79).

In addition, our results showed that CBD effectively reverted
the increase in plasma LPS levels in both male and female CAF
offspring. Obesogenic diets change the gut microbiota composition
by altering the Firmicutes: Bacteroidetes ratio, the two most
detected bacterial phyla in rodents as well as humans. In normal-
weight animals this relation is characterized by a high ratio
of Bacteroidetes to Firmicutes, while the opposite is found in
obese counterparts (80, 81). It has been proposed that Firmicutes
bacteria are more effective in extracting energy from food than
Bacteroidetes, thus promoting a more efficient absorption of
calories and boosting weight gain (82, 83). This imbalance resulting
from obesogenic diets can be traced back to the overabundance
of refined sugars and fats as well as the low intake of vegetables,
fruits and dietary fibers (84–87). The simultaneous collapse of the
gut barrier with increased permeability allows high levels of LPS,
Gram negative bacteria’s most potent immunogenic component, to
reach the bloodstream and initiate a diffuse inflammatory process
named endotoxemia (88). The structural components of LPS are
recognized by B cells via cluster of differentiation 14 (CD14) and
toll-like receptor 4 (TLR4), thus leading to nuclear factor kappa-B
(NFkB) activation and the release of pro-inflammatory cytokines,
such as TNFα and IL1β (89). During pregnancy, these pro-
inflammatory mediators, together with LPS itself, can interact with
the placenta and cause a range of disturbances, including immature
blood vessels, hypoxia, increased inflammation, autophagy, and
altered stress markers (90, 91). In that sense, several models of
maternal immune activation rely on prenatal exposure to LPS,
resulting in a myriad of altered physiological and neurological
outcomes in the offspring (92, 93). The data seen here indicates
that the endotoxemia caused by obesogenic diets affects not
only the pregnant mother but can be seen in the offspring later
on, independently of the offspring’s own diet. These findings
corroborate with previous studies demonstrating that maternal
obesity during gestation and/or lactation negatively impacts the
offspring’s gut microbiota (94). On the other hand, CBD has
rescued this damage on the offspring, lowering plasma LPS to
control levels. Even though we have not performed gut-specific
analysis, previous studies in different pre-clinical and clinical
models lead us to infer that the effects observed may be due
to the influence of CBD on gut microbiota composition (95–97)
and/or a protective effect on maintaining gut barrier integrity
(98–102).

Regarding the alterations provoked by maternal overnutrition
on CNS neuroinflammation, here we show that the treatment with
CBD was able to rescue hypothalamic inflammation by reducing
gene expression of TNFα and IL6 in the offspring of obese dams.
The hypothalamus is one of the main homeostatic centers of
the CNS and, therefore, needs to be effectively responsive to
fluctuations in peripheral systems. However, due to its naturally
increased permeability in order to better receive and respond
to signals coming from metabolic organs, the hypothalamus
is also one of the first brain regions to suffer with systemic
disruptions, resulting in neuroinflammation (103, 104). In the
present study, we have demonstrated molecular alterations that
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are trademarks of neuroinflammation in the hypothalamus of the
offspring born from CAF-fed dams. In both sexes, the expressions
of TNFα and IL6 were increased in CAF-Veh animals, while
the expression of IL1β was increased only in females. These
findings corroborate with previous data from a different model of
maternal obesity that demonstrates that mice born from mothers
fed a HFD diet have increased expression of these inflammatory
markers in the hypothalamus compared to the offspring of lean
parents (105).

Tumor necrosis factor-alpha (TNFα), IL6, and IL1β are
well-known pro-inflammatory cytokines involved in microglial
and astrocytic activation in the entire nervous tissue. However,
especially in the hypothalamus, they have a remarkable role in the
modulation of hypothalamic feeding circuits. It has been previously
demonstrated that HFD and high-carbohydrate diets stimulate
orexigenic neuropeptide Y/agouti-related peptide (NPY/AgRP)
neurons to produce advanced glycation end products, which
activate TNFα, enhancing microglia reactivity. This scenario results
in the dysfunction of anorexigenic neurons, altering the appetite-
regulatory circuits (106). In addition, Proopiomelanocortin
(POMC) neurons, which present anorexigenic activities, also
suffer a significant impact from maternal obesity (107). The
melanocortin system plays an important role on the regulation
of appetite, energy expenditure, and metabolism, therefore,
impairments in the POMC and melanocortin 4 receptor (MC4R)
pre- and post-translational processing are forerunners for the
development of obesity (108, 109). Decreased activity in POMC
cells has been shown to be associated with increased food intake
and obesity (107) and has been demonstrated in the offspring of
obese mothers (110–113). When observing the precise localization
of NPY and POMC in the hypothalamus of the offspring of
obese mothers, Ornellas and collaborators found that NPY
nerve fibers from the ARC to the periventricular nucleus and
around the third ventricle were increased, while POMC were
diminished in the same areas (105). Variations in the reactivity
and/or distribution of hypothalamic astrocytes also seem to affect
synaptic organization and POMC responsiveness to glucose,
which is associated with energy and metabolic imbalances
(114, 115).

Although endocannabinoid signaling has been implicated in
the modulation of both food intake and energy expenditure,
a complete understanding of its role in the hypothalamus is
still lacking. A recent study demonstrated that a HFD diet
in CB1 receptor-deficient mice contributes to the offspring’s
nutritional programming, resulting in increased susceptibility to
metabolic challenges both perinatally and during adulthood (116).
Additionally, maternal HFD has been shown to upregulate CB1
hypothalamic expression in the offspring, which was associated
with leptin pathway impairment and increased susceptibility to
obesity (117–119). Other than that, few studies have evaluated
cannabinoid modulation in the context of parental obesity,
however, the findings shown here are still in line with different
models that show the anti-inflammatory effects of CBD on
other neuroinflammatory conditions (95, 120–122). Elevated
hypothalamic endocannabinoid content has been associated
with higher orexigenic signaling of ghrelin (123–125) and
defective leptin signaling, observed in genetic models of obesity
such as obese Zucker rats and db/db and ob/ob mice (126,
127). These findings suggest that endocannabinoid mediators

contribute to hyperphagia and obesity, which also supports
the restorative effects of CBD treatment, once it reduces
endocannabinoid signaling, especially through CB1 receptors
(128). When it comes to inflammation, effects of CBD via
CB2 receptor are more distinguished, since this receptor is
more predominantly expressed on immune cells, including glial
cells. CB2 expression is upregulated in microglia stimulated
with pro-inflammatory cytokines, indicating a significant role
of CB2 in the regulation of neuroinflammatory states (129).
In line with this, CBD has been shown to exert a CB2-
dependant anti-inflammatory effect on microglial inflammation
(23, 130).

Astrogliosis is a very well-established marker for obesity-related
neuroinflammation (16, 131). Variations in the reactivity and/or
distribution of hypothalamic astrocytes seem to affect synaptic
organization and responsiveness to peripheral fluctuations, which
is associated with energy and metabolic imbalances (114, 115).
In animal models of obesity, gene and protein expression of the
glial fibrillary acidic protein (GFAP), an astrocyte marker, are
commonly higher in obese groups when compared to control
animals (131–134). Interestingly, we have found that GFAP gene
expression was reduced in the hypothalamus of the offspring
of obese mothers. This result may have been induced by an
adaptative reprogramming mechanism in response to the exposure
to a harmful intrauterine environment during neurodevelopment,
indicating that molecular mechanisms that rule maternal obesity-
induced neuroinflammation may differ from the ones associated
with obesity in the individual itself (135–137). Reduction in
astrocyte expression can be deleterious during neurodevelopment
since these cells play a pivotal role in synapse maturation, and
their reduced expression is related to a range of neurological
disorders (138–140). We have observed the same reduction of
GFAP expression in CBD-treated CT offspring, however, we cannot
affirm that the same detrimental effect applies. The reduction in
GFAP expression of CAF offspring is a response to a prenatal
immune challenge, while the reduction seen in CT-CBD is more
likely to be the result of the anti-inflammatory activity of CBD
(141, 142).

Regarding microglial activation, unlike previous studies (143,
144), we have not found any differences in the gene expression
of ionized calcium-binding adapter molecule 1 (IBA1) in the
hypothalamus of the offspring of obese mothers. However, the
expression of IBA1 is related to the proliferation and distribution of
microglial cells and not the polarization toward a pro-inflammatory
state (145). Furthermore, it has recently been described that
prenatal immune stress blunts microglia reactivity throughout life
(146), which means that the expression levels of microglial cells
may remain at control levels, but their innate reactivity to immune
stressors can be defective.

These gene expression patterns are consistent with impaired
energy and metabolic regulation in the hypothalamus, which might
have originated the peripheral deficits observed in the offspring
of obese mothers. Together, these results indicate an intricate
interplay between peripheral and central counterparts in both
the pathogenicity of maternal obesity and the modulation of the
endocannabinoid system by CBD. In this context, the impairment
of internal hypothalamic circuitry caused by neuroinflammation
runs in tandem with the disruptions of important metabolic
processes, which can be attenuated by CBD treatment in both ends.
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