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In this study, manganized soluble dietary fiber (SDF–Mn(II)) was prepared from 
tigernut meal using a microwave solid-phase synthesis method with SDF. 
Microscopic morphological and structural analyses of SDF–Mn(II) were carried out 
using scanning electron microscopy, Fourier infrared spectroscopy, UV full-band 
scanning, X-ray diffraction, a thermal analyzer, gel permeation chromatography, 
and nuclear magnetic resonance, and its in vitro hypoglycemic activity was initially 
investigated. The results of these analyses revealed that the reaction of Mn(II) with 
SDF mainly involved hydroxyl and carbonyl groups, with the Nuclear magnetic 
resonance (NMR) analysis showing that specific covalent binding was produced 
and substitution was mainly carried out at the C6 position. Moreover, compared 
with SDF, the SDF–Mn(II) complex exhibited a porous structure, red-shifted, and 
color-enhancing effects on the UV characteristic peaks, significantly increased 
crystallinity and decreased molecular weight, and improved thermal stability; in 
addition, SDF–Mn(II) afforded significantly enhanced inhibition of α-amylase and 
α-glucosidase and possesses good in vitro digestive enzyme inhibition activity.
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1. Introduction

Tigernuts (Cyperus esculentus L.) are widely distributed throughout the world, mainly as a snack 
in tropical and Mediterranean regions. They are often used in the food industry for the production 
of flavored beverages (1, 2). They have the ability to tolerate drought and sandy and acidic 
environments and are now widely grown in the northern regions of China (3), where they are 
cultivated with great ability and high yield. Because of its high oil content and ease of cultivation, it 
has potential value for the development of edible oil resources in China. Tigernut meal, a by-product 
of the processing of tigernuts, is rich in dietary fiber and a good source of high-quality dietary fiber.

The intake of dietary fiber is inversely proportional to the level of blood glucose values, and 
many studies have shown that a moderate intake of dietary fiber can prevent the development 
of diabetes and alleviate the manifestations of the disease, to some extent, in these patients (4). 
Dietary fiber lowers blood glucose mainly by improving insulin resistance, regulating disorders 
of glucolipid metabolism, improving oxidative stress and the inflammatory response, and 
regulating the intestinal flora; furthermore, it stabilizes postprandial blood glucose by inhibiting 
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the activity of digestive enzymes and delaying glucose absorption in 
the intestine (5).

Manganese is an essential trace element that is mainly taken up 
through food and water, digested and absorbed through the 
gastrointestinal tract, and transported to mitochondria-rich organs 
(especially the liver, pancreas, and pituitary gland), where it exerts its 
biological effects (6). Manganese is involved in the synthesis and 
activation of various enzymes in the body, aids in glucose and lipid 
metabolism, regulates endocrine disorders, and improves immune 
function (7). Manganese supplementation also increases insulin 
secretion, improves glucose tolerance under conditions of dietary stress, 
and prevents type II diabetes and its complications (8). A moderate 
intake of organic trace elements can improve animal productivity and 
immunity, with the advantage of being able to reduce antagonistic effects 
among trace elements (9). Previous studies have shown that heavy metals 
can denature enzymes, resulting in a decrease in enzymatic activity (10).

α-amylase and α-glucosidase are important enzymes in the 
catabolism of starch, glycogen, and disaccharides in the gastrointestinal 
tract. Because of the reduced rate of intestinal carbohydrate 
metabolism, inhibition of the activity of these enzymes is commonly 
used to control blood glucose levels (11). α-Glucosidase plays an 
important role in the regulation of postprandial blood glucose levels 
in humans (12), and its inhibitors block postprandial hyperglycemia 
and are commonly used to prevent or treat type II diabetes (13). 
α-amylase acts as a catalyst in reactions involving α-1,4-glycosidic 
bonds, to hydrolyze branched-chain starch, straight-chain starch 
glycogen, and many maltodextrins, thus acting as a catalyst in the 
reactions responsible for starch digestion (14).

Tigernut meal is a by-product of the processing of tigernuts, and 
there is no report on the inhibition of in vitro enzyme activity by 
chelation of SDF from tigernut meal with metal ions. In this study, the 
method of solid-state microwave synthesis is adopted, an SDF–Mn(II) 
complex was prepared by introducing Mn2+ (which is a factor that can 
increase insulin secretion) onto SDF (which has an anti-glycemic effect) 
using the latter as the raw material. The particle morphology, structural 
characterization, relative molecular mass, and thermal properties of SDF 
and SDF–Mn(II) were determined using scanning electron microscopy, 
Fourier transform infrared spectroscopy, ultraviolet spectroscopy, X-ray 
diffraction, NMR, gel permeation chromatography, and a thermal 
analyzer; moreover, their in vitro digestive-enzyme inhibitory activities 
were investigated to provide a new direction for controlling blood 
glucose levels and slowing down blood glucose elevation.

2. Materials and methods

2.1. Materials

Commercially available tigernut meal was used. α-amylase 
(enzymatic activity, 50 U/mg) and α-glucosidase (enzymatic activity, 
40–80 U/mg) were purchased from Sigma, United States. Manganese 
chloride was from Tianjin Damao Chemical Reagent Factory. The 
remaining chemicals and reagents were of analytical grade.

2.2. Extraction of SDF from tigernut meal

The preparation of SDF from defatted tigernut meal was carried 
out according to the method of Shen et  al. (15), with slight 

modification. The SDF was extracted from the supernatant by 
centrifugation, concentrated by rotary evaporation, subjected to 
alcoholic sedimentation in 95% ethanol for 12 h, and freeze dried after 
centrifugation for 8 h. The purified SDF was obtained by dialysis and 
deproteinization (16).

2.3. Synthesis of SDF–Mn(II) complexes

SDF–Mn(II) was synthesized according to the method of Xu 
Lockping (17). SDF and MnCl2 were weighed according to the mass 
ratio of 1:0.8, followed by the addition of 150% (relative to the mass of 
SDF) anhydrous ethanol; the solution was mixed well and placed in a 
microwave solid-phase synthesis extractor (Xianghu Technology 
Development Co., Ltd., Beijing, China), with the microwave time set 
to 3 min and its power set to 210 W for the coordination reaction. The 
precipitate was dried in a hot-air drying oven (55°C) to a constant 
weight, to obtain SDF–Mn(II).

2.4. Determination of manganese content 
and fit rate in SDF–Mn(II)

The obtained samples were dissolved and the content of 
manganese (II) was determined using a spectrophotometric 
method (540 nm) (18). The equation of the manganese standard 
curve was as follows: y = 0.0343x + 0.002, with a linear correlation 
coefficient of R2 = 0.9998, where y is the manganese content and x 
is the absorbance in μg/g. The manganese content of the SDF–
Mn(II) prepared in this experiment was 71.89 μg/g, with a fit ratio 
of 41.60%.

2.5. Scanning electron microscopy (SEM) 
analysis

The microstructure of SDF and SDF–Mn(II) was observed using 
SEM (Type-SU1510 Hitachi microscope; HITACHI Inc., Japan) (19). 
The samples were dried and processed, and a specific amount was 
collected and bonded using conductive tape; the samples were then 
gold-plated and observed.

2.6. Fourier transform infrared (FT-IR) 
spectroscopy

FT-IR (Tensor 27 instrument; Bruker Daltonics Inc., Bremen, 
Germany) was used for the determination the sample (20). The sample 
was mixed with potassium bromide powder in the ratio of 1:100 and 
fully ground in a mortar, to homogenize the mixture, which was then 
poured into a compression device and finally scanned on the machine 
(4,000–400 cm−1).

2.7. UV spectroscopy

This experiment was performed using an ultraviolet generalizable 
spectrophotometer (T6 series; Yuan Analysis Instrument Co., Ltd., 
Shanghai, China). The sample solution was prepared at a mass 
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concentration of 2 mg/ml, and distilled water was used as a blank 
control. The sample to be measured was aspirated using a syringe, 
filtered through a pinhole filter, and scanned in the wavelength range 
of 190–400 nm with a scan interval of 1 nm (21).

2.8. X-ray diffraction (XRD) pattern analysis

Measurements were performed using an X-ray diffractometer 
(Type D/MAX2000V, Neo-Confucianism Manufacturing Company, 
Japan). The dried and delicate samples were uniformly dispersed in 
the plate frame and compacted, so that the sample surface was 
smooth and flat, and the sample frame was fixed and tested. The 
diffraction test conditions were as follows: tube current, 40 mA; tube 
voltage, 40 kV; Cu target wavelength, 1.5406 Å; Co target wavelength, 
1.79026 Å; scan rate, 7°/min; and measurement range, 2θ from 5° to 
70° (22).

2.9. Molecular weight determination

A narrowly distributed polyethylene glycol (PEO) was used as the 
standard curve for the relative calibration method and as the standard 
sample group in the detection using a differential refractive index 
detector (RID-20, Shimadzu, Japan). The precipitate was washed twice 
with anhydrous ethanol, air dried, dissolved by adding a solution of 
0.1 mol/l NaNO3 and 0.06% NaN3, reacted at 121°C for 20 min, and 
centrifuged at 5000 r/min for 10 min; subsequently, 20 μl of the sample 
was collected. The detection conditions were as follows: flow rate, 
0.6 ml/min, and column temperature, 35°C.

2.10. Nuclear magnetic resonance (NMR) 
measurements

The samples were dissolved in D2O and shaken well to achieve 
complete dissolution, followed by 1D-NMR (1H-NMR, 13C-NMR) 
measurements using a 600 MHz NMR instrument (Bruker AVANCE 
III, Brooke, Inc., Germany) (23).

2.11. Thermal stability analysis

These measurements were performed using a thermogravimetric 
analyzer (TGA 550; TA Instruments, New Castle, DE, United States) 
(24). A 20.0 mg sample was placed in an alumina crucible and heated 
in the temperature range of 25°C–600°C at a rate of 10°C/min under 
a nitrogen atmosphere, to obtain TGA and DSC curves.

2.12. In vitro enzymatic activity inhibition 
study

2.12.1. Inhibition of α-glucosidase by SDF and 
SDF–Mn(II)

α-Glucosidase was diluted with 0.1 mol/l (pH = 6.8) phosphate-
buffered solution to 1 U/ml. For the assay, 50 μl of the sample solution 
and 50 μl of the pNPG solution were simultaneously added to a 

96-well plate. Incubate at 37°C for 10 min, and then 100 μl of the 
α-glucosidase solution was added and incubated for 45 min at 
37°C. The reaction was terminated by adding 50 μl of Na2CO3 solution 
at a concentration of 0.2 mol/l. The absorbance at 405 nm was 
measured using an enzyme standardizer for the calculation of the 
enzyme inhibition rate (25).

2.12.2. Inhibition of α-amylase by SDF and  
SDF–Mn(II)

A buffer solution was used to prepare porcine α-amylase at a 
concentration of 2 U/ml. The sample solution at different 
concentration gradients was mixed with 40 μl of α-amylase and 
incubated at 37°C for 30 min. A 40 μl of soluble starch was then 
added and incubated for 10 min, followed by the addition of 160 μl 
of DNS and boiling for 5 min, for color development. The 
absorbance of the inhibited group was measured at 540 nm; control, 
background, and blank groups were also used in this 
experiment (26).

2.12.3. Data statistics and analysis
Data were processed using the SPSS 22 software, and the 

statistical analysis of the data was performed using the Excel 2019 
software, whereas plotting was performed using the Origin 96 
software. Three groups of parallel experiments were set up for 
all experiments.

3. Results

3.1. SEM analysis

The results of the SEM analysis of SDF and SDF–Mn(II) are 
reported in Figure 1. From the figure, we can clearly see that SDF 
is in the form of a sheet structure, with a dense structure and 
fewer holes. However, SDF-Mn (II) structure presents a cellular 

FIGURE 1

The SEM diagram of SDF (A), SDF-Mn(II) (B).
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structure with obvious fragmentation trend, which increases the 
relative surface area and may lead to changes in its physical and 
chemical properties. After microwave treatment, the internal 
structure, morphology, and polymerization mode were altered, 
and the wrapped groups were exposed, which laid the structural 
foundation for the full completion of the subsequent 
chelation reaction.

3.2. FT-IR analysis

The Fourier transform infrared spectra of SDF and SDF–Mn(II) are 
shown in Figure 2A. SDF showed a characteristic absorption peak of 
O-H at 3,384 cm−1 (27), while the O-H characteristic absorption peak in 
the absorption spectrum of SDF-Mn(II) was red-shifted to 3,422 cm−1. 
The intensity of the SDF-Mn(II) absorption peak becomes weaker, which 
may be due to the chelation reaction consuming part of the O-H in 
SDF. The absorption peak detected at 2,940 cm−1 may be attributed to the 
C-H stretching vibration of the -CH2 group (28). In turn, the peak near 
1,764 cm−1 in the SDF–Mn(II) spectrum may be  attributed to the 
stretching vibration of the carbonyl group, which is not present in SDF 
(29); thus, the carbonyl group may be involved in the chelation reaction. 
SDF has a strong absorption peak near 1,654 cm−1 for the carboxyl group 
(30). The peak here in SDF-Mn(II) was not significantly shifted, but the 
peak strength weakened，indicating that the carboxyl group may 
be involved in the chelation reaction. The presence of an absorption peak 
near 1,449 cm−1 indicated the existence of a pyranoside functional group 
(31). The appearance of the absorption peak at 1,129 cm−1 was mainly 
attributed to the coupling valence vibration of the C=O bond and the 
deformation vibration of the C–H bond (32). Most of the characteristic 
peaks of SDF did not significantly change between before and after the 
modification, indicating that the basic skeleton of SDF remained 
unchanged. Finally, the IR spectrograms showed that the hydroxyl and 
carbonyl groups were mainly involved in the chelation reaction.

3.3. UV spectroscopy

The UV spectra of SDF and SDF–Mn(II) are provided in 
Figure 2B. There was no obvious absorption peak between 260 and 
280 nm, indicating a negligible amount of protein in the sample (33). It 
can be seen from the figure that SDF shows a strong absorption peak at 
216 nm, while SDF-Mn(II) shows a strong absorption peak at 236 nm. 
SDF–Mn(II) is a complex comprising several components. Mn2+ is an 
oxidation state transition metal ion with a half-full d orbital (an electron 
acceptor), and SDF is an organic compound with a conjugated 
π-electron system (an electron donor). Therefore, SDF–Mn(II) belongs 
to the spectral ligand-to-metal charge transfer, a process equivalent to 
the reduction of metals. With the enhancement of the metal cation 
reduction ability, the wavelength shifts toward the long wave direction, 
producing a red-shift effect. In turn, with the enhancement of the cation 
oxidation ability, the color deepens, producing a color-enhancing effect. 
Because the main chromogenic group present in SDF is the carbonyl 
group and the co-color group is the hydroxyl group (34), as can be seen 
from the figure, the absorption of SDF-Mn(II) in the UV region is 
significantly higher than that of SDF, thus indicating that mainly the 
carbonyl and hydroxyl groups are involved in the coordination reaction, 
which results in a change in the UV absorption intensity. It may also 
be due to the conjugation of several chromogenic groups to produce a 
new conjugated absorption band.

3.4. XRD analysis

The XRD analysis of SDF and SDF–Mn(II) is reported in 
Figure  2C. From the figure, we  can see that both SDF and 

FIGURE 2

FT-IR spectrum diagram (A), UV spectra (B), X-ray diffraction plot (C).
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SDF-Mn(II) show broad diffraction peaks, which are typical for 
polymers, and the broad peaks indicate low crystallinity in the 
structure, which may be due to the fact that the extracted SDF is 
a mixed polysaccharide (35). Which are typical of polymers; 
moreover, wide peaks indicate a lower crystallinity in the 
structure, which may be attributed to the fact that the extracted 
SDF is a mixed polysaccharide. Furthermore, the figure shows that 
the peak dispersion of SDF was lower than that of SDF–Mn(II) 
and the calculated crystallinity of SDF was 23.48%, whereas that 
of SDF–Mn(II) was 33.82%, which may be  attributed to the 
disruption of macromolecular chains after treatment, resulting in 
the higher crystallinity of SDF–Mn(II) (36, 37). The XRD results 
were very different, further confirming the formation of 
SDF–Mn(II).

3.5. Molecular weight analysis

The relative molecular masses of SDF and SDF–Mn(II) are 
provided in Table 1, from which it can be seen that the Mw of SDF 
was 5,776, with a dispersion coefficient of 25.72, whereas the Mw 
of SDF–Mn(II) was 2,567, with a dispersion coefficient of 4.25. 
The data included in the table revealed that the Mw and dispersion 
coefficient of SDF were increased and the molecular weight 
distribution broadened, whereas those of SDF–Mn(II) Mw were 
significantly reduced, probably because the molecular chains were 
opened after microwave treatment, resulting in a decrease in the 
molecular weight of the modified SDF; in contrast, the dispersion 
coefficient was also significantly reduced, which suggests that the 
modified SDF system is more homogeneous and simpler in 
composition (38).

3.6. NMR analysis

The SDF and SDF–Mn(II) NMR 1H spectra are shown in 
Figure 3. The chemical shifts were affected by the sugar type, bond 
type, substitution, and modifications. It was previously shown that 
the chemical shifts are lower than 5.0 × 10−6 for β-configuration 
pyranosides and higher than 5.0 × 10−6 for α-configuration 
pyranosides, which can be used to distinguish the types of sugar 
rings (39). In the range of heteroheaded hydrogen proton signals, 
SDF exhibited three peaks at 1.830, 2.293, and 3.656 × 10−6, 
indicating that it belongs to the group of β-configuration 
pyranosides (40). In contrast, SDF–Mn(II) had two signal peaks 
at 3.219 and 4.350 × 10−6, indicating that the conformation of SDF 
did not significantly change after treatment and the reduced signal 
peak of SDF–Mn(II) may be attributed to the shortening of the 

ligand relaxation time that occurs upon binding of SDF to Mn2+; 
moreover, the large width of the signal range precluded the 
detection of the signal around paramagnetic Mn2+, thus forming 
a high-spin blind region with Mn2+ as the core (41).

The SDF and SDF–Mn(II) NMR 13C spectra are provided in 
Figure 4. The signal detected at 60.208 × 10−6 was attributed to the 
C6 glycosidic bond. The spectrum of SDF–Mn(II) became more 
complex because the carbon directly attached to the electron-
absorbing group shifted to a lower field position, whereas the 
carbon indirectly attached to the electron-absorbing group shifted 
to a higher field position (42). Moreover, the signal peak of SDF–
Mn(II) detected at 60.208 × 10−6 disappeared; this may 
be attributed to the highest -OH activity at the C6 position, which 
was replaced by the Mn2+ group. The C1 signal splits if the -OH on 
C2 is substituted, and this splitting correlates well with the degree 
of substitution on the C2 atom (43). In Figure 4B, At 90–100 × 10−6, 
the signal exhibited multiple splits, which may have been caused 
by the substitution of the hydroxyl group on C2 by the Mn2+ group 
(44), because the -OH activity at the C2 position was second only 
to that at C6.

3.7. Thermal characterization

Thermal stability plays an important role in food industry 
applications (45); therefore, the thermal properties of SDF before 
and after modification were characterized using TGA and 
DSC. Figure 5A shows that the decomposition temperature of SDF 
is 161°C, while the decomposition temperature of SDF-Mn(II) is 
162°C, The two decomposition temperatures are similar, so the 
ease of dehydration is similar for both When the temperature 
increased from the decomposition temperature to 500°C, the 
weights of both samples started to significantly decrease because 
of the violent thermal degradation of the galacturonic acid chains 
in the samples, followed by decarboxylation of the acidic side 
groups in the rings and the carbon, which eventually produced 
different gaseous products, to form solid carbon (46, 47). 
Furthermore, the final residual mass of SDF (37.36%) was lower 
than that of SDF–Mn(II) (43.35%), suggesting that the thermal 
stability of SDF–Mn(II) is stronger than that of SDF. The curves 
of DSC presented in Figure 5B demonstrated that SDF had two 
exothermic peaks, at 105°C and 500°C, whereas SDF–Mn(II) 
exhibited one exothermic peak at 102°C. The appearance of two 
exothermic peaks for SDF may be related to the inhomogeneity of 
the composition, with SDF–Mn(II) becoming one peak, which 
suggests that the composition of SDF–Mn(II) is more 
homogeneous, in agreement with the results of the relative 
molecular mass analysis.

TABLE 1 Relative molecular mass of SDF, SDF-Mn(II).

Index SDF SDF–Mn(II)

Mn(Da) (2.25 ± 0.56) × 102 (6.05 ± 1.23) × 102

Mw(Da) (5.776 ± 1.21) × 103 (2.567 ± 1.57) × 103

Mw/Mn 25.72 ± 0.23 4.25 ± 0.44

Mn, Number Average Molecular Weight; Mw, Weight Average Molecular Weight.
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FIGURE 3

SDF (A), SDF-Mn(II) (B) NMR 1H diagram.

FIGURE 4

SDF (A), SDF-Mn(II) (B) NMR 13C diagram.
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3.8. Inhibitory effect of SDF and SDF–Mn(II) 
on enzymatic activity in vitro

SDF has inhibitory activity against sugar hydrolases, including 
α-amylase and α-glucosidase; thus, it has the potential to replace 
commercial hypoglycemic drugs, such as acarbose and voglibose (48). 
The inhibition of α-amylase by SDF occurs via binding interactions 
between SDF and the active site of the enzymes as a result of hydrogen 
bonding and hydrophobic forces (44). The structure of SDF 
determines, to a large extent, its binding affinity to the enzymes. 
Figure  6 shows the inhibitory activities of SDF and SDF–Mn(II) 
toward α-amylase and α-glucosidase. Figure 6A shows the rate of 
inhibition of α-amylase, which gradually increases with increasing 
sample concentration (0–1.8 mg/ml); moreover, the inhibition rate of 
SDF–Mn(II) was stronger than that of SDF. When the sample 
concentration was greater than 1.2 mg/ml, the inhibitory effect no 
longer linearly increased, with the IC50 values of SDF and SDF–Mn(II) 

being 0.87 and 0.729 mg/ml, respectively. Figure 6B shows the rate of 
inhibition of α-glucosidase, which was similar to the results reported 
for α-amylase, with the SDF and SDF–Mn(II) IC50 values being 1.025 
and 0.583 mg/ml, respectively. The figure demonstrated that there was 
a significant increase in the inhibitory rate of SDF–Mn(II) for both 
enzymes (49), which may be attributed to the microwave treatment, 
as it reduced the molecular weight of SDF–Mn(II) and facilitated 
binding to the active site of the enzyme, leading to an enhanced 
inhibition (50, 51); alternatively, the manganese element was 
introduced to denature the enzyme, leading to a decrease in enzymatic 
activity. The higher inhibitory activity of SDF–Mn(II) toward 
α-amylase and α-glucosidase may delay the absorption of dietary 
carbohydrates, which may contribute to the control of postprandial 
blood glucose levels.

4. Conclusion

This study reported the structural characterization and enzyme 
activity inhibition analysis of SDF and SDF–Mn(II). The experiments 
showed that SDF–Mn(II) exhibited a porous surface structure with a 
more obvious fragmentation trend, without obvious changes in the 

FIGURE 5

Thermal characteristics analysis of SDF, SDF–Mn(II). (A) The mass loss 
of SDF and SDF-Mn (II). (B) The changes in SDF and SDF-Mn (II) DSC.

FIGURE 6

Effect of SDF and SDF-Mn(II) inhibition on α-amylase (A) and 
α-glucosidase (B).
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basic skeleton, as well as red-shifting and color-enhancing effects in 
the UV characteristic peaks, increased crystallinity, and decreased 
relative molecular mass. NMR revealed that SDF-Mn(II) mainly 
underwent a substitution reaction on C6. SDF-Mn(II) has better 
structural and thermal properties and has better inhibition of in vitro 
digestive enzymes, providing a good theoretical basis for further 
studies of SDF-Mn(II).
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