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Background: The DIETFITS trial reported no significant difference in 12-month 
weight loss between a healthy low-fat and healthy low-carbohydrate diet. 
Participants were instructed to restrict fat or carbohydrates to levels consistent 
with a ketogenic or ultra low-fat diet for 2   months and to subsequently increase 
intakes until they achieved a comfortable maintenance level.

Objective: To compare 3- and 12-month changes in body weight and 
cardiometabolic risk factors between a subsample of participants who reported 
3-month fat or carbohydrates intakes consistent with either a ketogenic-like diet 
(KLD) or ultra low-fat diet (ULF).

Design: 3-month and 12-month weight and risk factor outcomes were compared 
between KLD (n  =  18) and ULF (n  =  21) sub-groups of DIETFITS participants 
(selected from n  =  609, healthy overweight/obese, aged 18–50   years).

Results: Less than 10% of DIETFITS participants met KLD or ULF criteria at 3-months. 
Both groups achieved similar weight loss and insulin resistance improvements at 
3-months and maintained them at 12- months. Significant differences at 3-months 
included a transient ~12% increase in LDL cholesterol (LDL-C) for KLD with a 
concomitant greater reduction in log(TG/HDL), a measure of LDL-C’s atherogenic 
potential. The latter was maintained at 12-months, despite substantial diet recidivism 
for both groups, whereas LDL-C levels were similar for ULF at baseline and 12-months. 
KLD participants achieved and maintained the greatest reductions in added sugars 
and refined grains at 3- months and 12-months, whereas ULF participants reported 
a 50% increase in refined grains intake from baseline to 12-months.

Conclusion: Among the ~10% of study participants that achieved the most 
extreme restriction of dietary fat vs. carbohydrate after 3   months, weight loss and 
improvement in insulin sensitivity were substantial and similar between groups. At 
12   months, after considerable dietary recidivism, the few significant differences in 
diet quality and blood lipid parameters tended to favor KLD over ULF.
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1. Introduction

The consumption of added sugars and refined carbohydrates has 
significantly grown in the past five decades with a concomitant increase 
in the global rates of obesity, diabetes and cardiovascular disease 
(CVD) (1, 2). While a substantial reduction in added sugars and 
refined carbohydrate intake has become a priority in current public 
health guidelines (3), there is still little consensus on the optimal ratios 
of carbohydrates and fats for promoting weight loss and optimizing 
CVD risk factors. Multiple diets promoting reduction of added sugar 
and refined grain consumption with varying ranges of carbohydrate 
and fat content have been associated with significant improvements in 
body weight and cardiovascular disease (CVD) risk factors (4). At one 
extreme is the ketogenic diet, which restricts net carbohydrates to 
≤20–50 g per day (5–13), and at the opposite end of the spectrum are 
ultra low-fat diets like the Ornish and Pritikin diets, which recommends 
a drastic reduction of fat to <10% of total daily calories (14–16).

Several randomized clinical trials (RCTs) have compared weight 
loss and chronic disease factors on low-carbohydrate (LC) and low-fat 
diets (LF), with a preponderance of studies reporting greater benefits 
for LC at 6-months but not at 12-months (17–20). However, these 
studies displayed a high variability in the definitions of “low-carb” and 
“low-fat” and in the reporting of adherence to these two dietary 
approaches (21, 22). We recently reported that there was no significant 
difference in 12-month weight loss among 609 healthy subjects with 
overweight/obesity assigned to a Healthy Low Carbohydrate diet 
(HLC) or Healthy Low Fat diet (HLF) (23). However, both diets 
minimized added sugar and refined grains and, hence, reduced overall 
carbohydrate consumption from baseline (23). In addition, with such 
a large study population, variability in both adherence and weight loss 
success was substantial. Following the main publication of our 
findings, we received many queries regarding the outcomes for the 
subset of participants in the study that had been most adherent and 
achieved the greatest dietary changes from their baseline diets for both 
intervention diets. This analysis is a response to those queries.

In order to explore the potential health impacts of diets with greater 
differentiation in relative carbohydrate and fat content, in this secondary 
analysis of the DIETFITS study we selected the participants from the 
HLC group who reported achieving the greatest carbohydrate 
restriction - a dietary pattern that resembled a ketogenic diet (ketogenic-
like diet, KLD), and the participants from the HLF group who reported 
achieving the greatest fat restriction - a dietary pattern that resembled an 
ultra low-fat diet (ultra low-fat, ULF). The 3-month intermediate time 
point was used for selecting these subsets because this was when 
participant enthusiasm and engagement was assessed to be highest; at 
the end of the 12-month protocol very few individuals from the original 
n = 609 DIETFITS participants reported dietary patterns that resembled 
KLD or ULF. Changes in weight and chronic disease risk factors were 
contrasted between these two selected subgroups at the 3-month time 
point, and then longer-term dietary pattern adherence was examined at 
12-months, along with weight and risk factor comparisons.

2. Subjects and methods

2.1. Design and participants

The original trial, Diet Intervention Examining The Factors 
Interacting with Treatment Success (DIETFITS), was a single-site, 

parallel-group, randomized trial of 609 men (n = 263) and women 
(n = 346) with overweight or obesity conducted at the Stanford 
Prevention Research Center from January 2013 to May 2016 and 
designed to whether baseline genetic or cardiometabolic factors would 
explain differential weight loss for those assigned to either a HLC or a 
HLF diet (23).The detailed primary study protocol has been reported 
elsewhere (24). Participants were generally healthy women and men, 
aged 18–50 years, with body mass index (BMI) 28–40 kg/m2. The 
dietary protocol consisted of two phases, Limbo and Titrate, whose 
goal was to help participants achieve the lowest intake of fat or 
carbohydrates they could realistically maintain beyond the end of the 
trial. During the first eight weeks of Limbo phase, participants were 
instructed to cut back on fat or carbohydrate intake progressively until 
they achieved a daily intake of no more than 20 g of carbohydrate 
(HLC) or fat (HLF), which is consistent with a ketogenic or ultra 
low-fat dietary pattern, respectively. During the Titrate phase, 
participants were instructed to increase their fat or carbohydrate 
intake slowly, by 5–15 g each week, until they achieved a comfortable 
maintenance level. In this phase participants were instructed to strive 
for the lowest intake of fat or carbohydrates they could realistically 
maintain for the 12-month intervention period, and even beyond the 
end of the trial should they experience positive benefits from their diet 
assignment. Emphasis on diet Quality was a common feature of both 
intervention arms. All subjects were instructed to (1) maximize 
vegetable intake; (2) minimize added sugars, refined grains, and trans 
fats; and (3) focus on minimally-processed whole foods, prepared at 
home when possible.

2.2. Dietary assessment

Dietary intake was recorded using unannounced 24-h multiple-
pass recall interviews. Diet recalls were collected using Nutrition Data 
System for Research (NDS-R, University of Minnesota), a computer-
based dietary analysis program designed for the collection and 
analyses of 24-h dietary recalls. Nutrient profiles are compiled using 
data provided by the NDSR software and sourced from the NCC Food 
and Nutrient Database (25). Data from 3 dietary recalls for each time 
point (baseline, 3-, 12-months), 2 on weekdays and 1 on a weekend 
day, were averaged and used to determine overall dietary intake for 
each time point. Six-month data were available, but not included in 
this analysis.

2.3. Anthropometric and laboratory 
measures

Anthropometric measures and blood samples were captured at 
baseline, 3-, and 12- months. Body weight was recorded without shoes 
to the nearest 0.1 kg using a calibrated Scale-tronix clinical scale. 
Height was measured to the nearest 0.1 cm using a Seca wall-mounted 
stadiometer. All measurements were taken by a nurse at the Stanford 
Clinical & Translational Research Unit (CTRU) at each time point. All 
clinic visits started between 7:00 and 9:30 am, with participants in a 
fasted state for at least 10–12 h. Blood samples were taken at baseline, 
3, 6 and 12 months via venipuncture by trained nurses or phlebotomists. 
Blood was collected into purple top EDTA vacutainer tubes. Samples 
were processed, aliquoted, and frozen directly by the CTRU lab after 
being drawn. Samples were stored in a − 80° freezer until the time of 
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processing for analysis. Lipids were assessed at all four times points 
(i.e., baseline, 3, 6, and 12 months) from a fasting blood sample. Plasma 
triglycerides, total- and HDL-cholesterol were measured by enzymatic 
endpoint analysis on a clinical chemistry analyzer (Liasys 330). 
LDL-cholesterol was calculated using the Friedewald equation. 
Triglyceride and cholesterol measurements are standardized through 
the CDC-NHLBI lipid standardization program. Insulin levels were 
assessed by radioimmunoassay by the Core Laboratory for Clinical 
Studies Washington University School of Medicine, St. Louis, Missouri. 
Glucose levels were analyzed using a Beckman Glucose Analyzer II 
(BGA II) by electrochemical technique. Insulin resistance status was 
determined by calculating the Homeostasis Model Assessment of 
Insulin Resistance (HOMA-IR) as described previously (26). 6-month 
data were available, but not included in this analysis.

2.4. Diet group criteria and outcome 
analysis

KLD and ULF subjects were selected at 3-months, as this was the 
timepoint with the highest reported restriction of carbohydrates or fat, 
and the most complete weight and cardiometabolic data (i.e., least 
drop-out). Out of 549 subjects with intake data at 3-months, 
we conservatively excluded those who reported <1,200 kcal per day 
due to underreporting concerns (n = 128/549 subjects excluded, 23%). 
For KLD, the threshold of net carbohydrates (carbohydrates minus 
fiber) was set at <30 g per day, based on the recommended range of 
20-50 g used in previous studies (27). This resulted in the inclusion of 
18/205 subjects in KLD from the HLC group. For ULF the cutoff of fat 
intake was initially defined as <10% of daily calories from fat based on 
original recommendations of the Ornish diet (28). However, since 
only 5 of 216 subjects met the <10% fat cutoff, this was increased to 
15% (about 20 g/day) that resulted in the identification of 21 ULF 
subjects, a number reasonably comparable to the KLD group.

2.5. Statistics

The primary aim of this study was to test whether changes in 
baseline to 3-month outcomes [weight, HDL-C, triglycerides, log(TG/
HDL-C), LDL-C, and HOMA-IR] were different among the two study 
population subgroups; KLD and ULF. Baseline demographic, 
anthropometric and cardiometabolic variables data are presented 
using basic descriptive data. Patterns of nutrition intake at baseline, 
3- and 12-months were also summarized descriptively using means 
and standard errors by diet and timepoint.

Linear mixed effects models (29) with fixed effects for diet, time 
(baseline, 3-, or 12-months), and all diet by time interactions, and a 
random intercept for participant were used to test all primary study 
hypotheses to account for the correlated nature of within participant 
changes while using all available data. The models allowed estimation 
of within-diet baseline to 3-month changes and also comparisons 
(using two-sided Wald tests) between diets of these 3- and 12-month 
changes. No adjustments for multiple testing were made given that 
this was a hypothesis generating secondary analysis of a subset of 
participants from a large, randomized trial. All statistical tests were 
two-tailed with type 1 error assumed to be 0.05. All analyses were 
conducted using R version 4.1.2 (30).

3. Results

3.1. Baseline characteristics of the study 
population

The KLD (n = 18) and ULF (n = 21) groups included participants 
exclusively from the HLC and HLF arms, respectively. There were no 
significant between-group differences in baseline demographic or 
anthropometric data and laboratory measurements (Table 1). Baseline 
daily intake of total calories, fats, protein and added sugars and refined 
grains was also similar between groups (Table 2). The ULF group 
reported a marginally significantly greater baseline daily intake of total 
carbohydrates compared to the KLD group (KLD: 250.4 ± 18.3; ULF: 
292.4 ± 17.7 grams; p = 0.047). However, baseline daily intake of net 
carbohydrates (total carbohydrates minus fiber) was similar between 
the two groups.

3.2. Intake of macronutrient, added sugars, 
and refined carbohydrates

All groups reported similar reductions in caloric intake at 
3-months relative to baseline. As expected, and by design, there were 
significant between group differences in the intake of macronutrients 

TABLE 1 Baseline demographics and cardiometabolic variables for KLD 
and OLD.

KLD ULF p-valuea

n=18 n=21

Diet

Healthy Low Carb 18 (100.0%) 0 (0.0%) <0.0001

Healthy Low Fat 0 (0.0%) 21 (100.0%)

Sex

Female 9 (50.0%) 7 (33.3%) 0.60

Male 9 (50.0%) 14 (66.7%)

Age (years) 42.0 (±6.8) 41.2 (±5.6) 0.50

Weight (kg) 103.8 (±14.3) 102.8 (±15.6) 0.32

Race/ethnicity

White 16 (88.9%) 14 (66.7%) 0.26

Hispanic 2 (11.1%) 3 (14.3%)

Asian 0 (0.0%) 3 (14.3%)

Other 0 (0.0%) 1 (4.8%)

HDL 47.4 (±10.7) 47.0 (±8.8) 0.35

LDL 121.0 (±33.1) 109.4 (±27.7) 0.53

Triglycerides 219.1 (±29.1) 137.0 (±67.6) 0.22

Log(TG/HDL ratio) 1.2 (±0.9) 1.0 (±0.4) 0.44

HOMA-IR 4.7 (±2.5) 4.3 (±3.6) 0.88

DXA percent fat 36.5 (±6.5) 34.1 (±5.8) 0.55

Missing 6 (33.3%) 9 (42.9%)

BMI (kg/m2) 35.0 (±2.7) 33.3 (±3.2) 0.065

aWilcoxon rank-sum for continuous variables, e.g., age, and Fisher’s exact test for categorical 
variables, e.g. race.
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(Table 2 and Figures 1A,B). Although all DIETFITS participants were 
instructed to minimize added sugars and refined carbohydrates, their 
reduction was significantly greater for KLD than ULF at 3-months with 
an average difference in daily intake of ~20 g of added sugars and ~ 80 g 

FIGURE 1

Macronutrient, added sugar, and refined grains intake for KLD and 
ULF. (A): Mean intake (Kcal/day; ± standard error of mean) of protein 
(black), carbohydrates (gray), and fat (white) for KLD and ULF at 
baseline, 3 months, and 12 months. (B): Mean intake (grams/day; ± 
standard error of mean) of total sugar, added sugars, and refined 
grains for KLD and ULF at baseline, 3 months, and 12 months. p-
values for null hypothesis that nutrition variables are equivalent 
between diets at a given timepoint; from a linear mixed effects 
model including fixed effects for time, diet, and time*diet interaction, 
and a random effect for study participant.

KLD ULF p-valuea

n=18 n=21

12 Months 6.0 (±2.1) 17.6 (±2.7) <0.01

Total sugars (g)

Baseline 93.6 (±8.6) 105.6 (±11.1) 0.73

3 Months 16.5 (±2.3) 94.7 (±6.0) <0.001

12 Months 35.2 (±5.1) 95.3 (±11.1) <0.001

ap-values for null hypothesis that nutrition variables are equivalent between diets at a given 
timepoint; from a linear mixed effects model including fixed effects for time, diet, and 
time*diet interaction, and a random effect for study participant.
bMean (±standard error of mean).

TABLE 2 (Continued)TABLE 2 Nutrition variables for KLD and ULF at baseline, 3 months, and 
12 months.

KLD ULF p-valuea

n=18 n=21

Calories (kcal/day)

Baseline 2265 (±133)b 2392 (±136) 0.42

3 Months 1482 (±63) 1543 (±45) 0.70

12 Months 1665 (±118) 1938 (±145) 0.13

Carbohydrates (g/day)

Baseline 250 (±18) 292 (±18) 0.05

3 Months 38 (±4) 264 (±8) <0.0001

12 Months 96 (±14) 264 (±20) <0.0001

Net carb (g/day)

Baseline 226 (±17) 265 (±17) 0.05

3 Months 16 (±7) 227.3 (±7) <0.0001

12 Months 77 (±12) 236 (±19) <0.0001

Fat (g/day)

Baseline 97 (±7) 86.2 (±6.5) 0.23

3 Months 100 (±6.0) 20 (±1.1) <0.0001

12 Months 90.3 (±9.3) 51.9 (±5.8) <0.0001

Protein (g/day)

Baseline 91 (±5) 100 (±4) 0.33

3 Months 110 (±7) 84 (±6) 0.01

12 Months 109 (±11) 98 (±6) 0.28

Added sugars (g/day)

Baseline 54 (±8) 45 (±7) 0.25

3 Months 3 (±1) 23 (±4) 0.01

12 Months 10 (±3.4) 32 (±5) 0.01

Refined grains (g/day)

Baseline 93 (±18.1) 114 (±24) 0.47

3 Months 3 (±1) 81 (±22) <0.01

12 Months 41(±13) 166 (±30) <0.001

Fat (%)

Baseline 37.2 (±1.1) 31.3 (±1.3) <0.01

3 Months 58.6 (±1.9) 11.1 (±0.5) <0.001

12 Months 46.9 (±2.8) 22.4 (±1.3) <0.001

Carbohydrates (%)

Baseline 43.5 (±1.9) 48.4 (±1.7) 0.07

3 Months 9.8 (±1.3) 66.4 (±1.8) <0.001

12 Months 22.7 (±3.2) 53.4 (±1.8 <0.001

Protein (%)

Baseline 16.7 (±0.9) 17.2 (±0.7) 0.76

3 Months 30.9 (±1.4) 21.0 (±1.4) <0.001

12 Months 27.3 (±2.1) 21.1 (±1.2) <0.01

Sugar (%calories)

Baseline 22.6 (±2.9) 18.0 (±2.4) 0.21

3 Months 2.0 (±0.5) 16.2 (±3.4) <0.001

(Continued)
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of refined grains between KLD vs. ULF. As presented in Table 2, net 
carbohydrate intake (g/day) was significantly lower for KLD vs. ULF 
(KLD: 15.5 ± 7.2; ULF: 227.3 ± 6.5; p = <0.001), whereas fat intake was 
significantly lower for ULF vs. KLD (KLD: 99.7 ± 6.0; ULF: 19.9 ± 1.1; 
p = <0.001). Protein intake (g/day) was significantly higher for KLD 
compared to ULF (KLD = 110.1 ± 7.1 g; ULF = 83.5 ± 5.9 g; p = <0.001).

The pattern of statistical differences between the two groups 
persisted at 12-months, although the reported intakes of carbohydrates 
and fat increased for KLD and ULF, respectively. For KLD, the reported 
net carbohydrate intakes increased ~60 g/day reaching ~80 g/day, 
whereas fat intakes remained relatively stable around 90 g/day. For ULF, 
the reported fat intakes increased ~30 g/day reaching 50 g/day, whereas 
carbohydrate intakes remained relatively stable at around 230 g/day. At 
12-month the reported intakes of refined grains increased for both KLD 
and ULF from 3-months. However, they remained >50% lower than at 
baseline for KLD, whereas they were almost 50% higher than at baseline 
for ULF. The reported 12-month added sugars intake was higher than 
at 3-months but lower than at baseline for both groups.

3.3. Changes in weight, blood lipids, and 
insulin resistance

At 3-months, weight loss was similar between KLD and ULF 
(Table 3). LDL-C decreased by ~3% for ULF, whereas it increased by 
~12% for KLD with a significant between-group difference [KLD: 
14.9 mg/dL (3.4, 26.4); ULF: −2.9 mg/dL (−13.8, 8.0); p = 0.03]. On the 
other hand, compared to ULF, KLD resulted in a significantly greater 
reduction in the log(TG/HDL-C) also known as atherogenic index of 
plasma (AIP), a measure of the atherogenic potential of an individual’s 

LDL profile [KLD: −0.53 (−0.77, −0.28); ULF: −0.13 (−0.36, 0.11); 
p = 0.02]. Both KLD and ULF resulted in a similar ~30% reduction in 
insulin resistance (HOMA-IR) from baseline that persisted at 
12-months with no significant between-group difference.

At 12-months, when substantial dietary recidivism was reported 
by both the KLD and ULF groups, LDL-C and weight loss were 
similar for KLD and ULF, whereas KLD maintained significantly 
greater improvements in log(TG/HDL) compared to ULF [KLD: 
−0.62 (−0.87, −0.37); ULF: −0.09 (−0.32, 0.15); p = 0.003 (Table 4)]. 
Overall, at 12-months both KLD and ULF lost ~10 kg of body weight 
and experienced a ~ 30% reduction in insulin resistance, whereas TG 
and HDL changed similarly and only modestly in the ULF groups at 
12-months.

4. Discussion

In this secondary analysis of the DIETFITS study we examined 
3-month and 12-month changes in weight loss and CVD risk factors 
among the <10% of participants who reported consuming a very-low 
carbohydrate ketogenic-like diet (KLD) or an ultra low-fat diet (ULF) 
at 3-months. Compared to ULF, KLD resulted in a transient but 
significantly greater increase in LDL-C at 3-months with a 
concomitant significantly greater reduction in the log(TG/HDL). At 
12-months, LDL-C was similar for KLD and ULF, whereas KLD 
maintained significantly greater improvements in log(TG/HDL) 
compared to ULF. In terms of diet quality, refined grain intake was 
reduced significantly more for KLD than ULF at both 3-months. At 
12-months the consumption of refined grains remained less than 50% 
of baseline levels for KLD, whereas it increased almost 50% from 

TABLE 3 Baseline to 3-month changes in clinical variables for KLD and ULF.

KLD ULF p-valuea

Weight (kg)a -9.8 (-12.8, -6.8) -8.7 (-11.6, -5.8) 0.59

HDL (mg/dl) 1.7 (-1.8, 5.1) -3.0 (-6.4, 0.3) 0.05

LDL (mg/dl) 14.9 (3.4, 26.4) -2.9 (-13.8, 7.9) 0.03

Trig (mg/dl) -108.6 (-184.8, -32.4) -25.1 (-97.8, 47.6) 0.12

Log (TG/HDL ratio) -0.53 (-0.77, -0.28) -0.13 (-0.36, 0.11) 0.02

HOMA-IR -1.4 (-2.3, -0.4) -1.4 (-2.3, -0.4) 0.98

Sugar (%calories) -20.6 (-25.9, -15.2) -1.84 (-6.8, 3.1) <0.001

Total sugars (g) -77.1 (-97.1, -57.1) -11.0 (-29.5, 7.5) <0.001

ap-values, estimates, and 95% confidence intervals from a linear mixed effects model including fixed effects for time, diet, and time*diet interaction, and a random effect for study participant.

TABLE 4 Baseline to 12-month changes in clinical variables for KLD and ULF.

KLD ULF p-value

Weight (kg)a -9.9 (-12.9, -6.9) -10.5 (-13.3, -7.6) 0.78

HDL (mg/dl) 4.9 (1.3, 8.5) 0.1 (-3.3, 3.5) 0.05

LDL (mg/dl) 5.0 (-6.7, 16.7) -3.3 (-14.1, 7.6) 0.31

Trig (mg/dl) -113.7 (-191.2, -36.2) -13.0 (-85.7, 59.7) 0.06

Log TG/HDL ratio -0.62 (-0.87, -0.37) -0.09 (-0.32, 0.15) <0.01

HOMA-IR -1.3 (-2.3, -0.30) -1.6 (-2.5, -0.6) 0.67

Sugar (%calories) -16.6 (-22.2, -11.1) -1.1 (-6.2, 4.0) <0.001

Total sugars (g) -57.9 (-78.6, -37.1) -10.8 (-29.9, 8.4) 0.001

ap-values, estimates, and 95% confidence intervals from a linear mixed effects model including fixed effects for time, diet, and time*diet interaction, and a random effect for study participant.
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baseline for ULF, possibly due to compensatory mechanisms for the 
decreased intake of calories from fat. Both groups substantially 
reduced added sugars, although these reductions were significantly 
greater for KLD compared to ULF at both 3-months and 12-months; 
KLD and ULF reported consuming ~80% and ~ 30% less added sugar 
than at baseline, respectively.

Our analysis provides a snapshot of the DIETFITS participants 
assigned to HLC or HLF that most successfully restricted dietary 
carbohydrates or fat, respectively, at 3-months. Participants were 
instructed to consume <20 g of carbohydrates or fat for the HLC or 
HLF, respectively, during the first 2 months of Limbo phase, and to 
subsequently increase intakes until they achieved their lowest level of 
intake that they could realistically maintain in the long term. 
Following these instructions, few subjects assigned to either diet arm 
achieved and maintained at 3-months macronutrient intakes 
approximating those initial targets: <30 g/day of carbohydrates for the 
18 subjects in KLD out of 205 assigned to HLC, and < 15% of fat, 
equivalent to about 20 g/day, for the 21 subject in ULF out of 216 
assigned to HLF. These dietary patterns underscore notable parallels: 
KLD aligns with the principles of the Atkins induction diet, while ULF 
shares resemblances with well-known ultra low-fat regimens like the 
Ornish and Pritikin diets. Even these subjects who most successfully 
restricted dietary carbohydrates or fat at 3-months reported 
substantial overall recidivism toward baseline intake values of 
carbohydrates or fat by 12-months. Nevertheless, ULF maintained an 
average fat intake of ~50 g/day at 12-months, and KLD maintained an 
average intake of ~80 g/day of net carbohydrates. Compared to the 
larger DIETFITS population (23), at 12-months both KLD and ULF 
lost twice as much weight (~ −10 kg vs. ~ −5 kg) and experienced a 
two times greater improvement in insulin resistance (30% vs. 15%).

Our finding that a very low-fat diet may lead to a compensatory 
increase in refined grain intake is in line with what was reported by the 
Women’s Health Initiative (WHI) Dietary Modification Trial, which 
showed that women who consumed a low-fat diet (<20% daily energy 
intake) increased intake of refined grains (+0.3 servings/d) (31). This 
suggests that, while a low fat diet has the potential to be cardioprotective 
if the total sugar intake is also kept low, more often there is a 
compensatory increase in the consumption of refined carbohydrates 
and added sugars. It is estimated that dietary carbohydrate intake 
among US adults make up 50% of our total energy intake with over 
40% of carbohydrates being of low-quality from refined grains, added 
sugars in foods and beverages, fruit juice, and potatoes (32).

Our data add to previous evidence indicating that very low-carb 
ketogenic diets can lead to a triad of higher LDL-C, higher HDL-C 
and lower TGs (5–10, 12, 13, 33–45). This triad is thought to reflect 
a shift toward an overall less atherogenic LDL profile (46, 47) — from 
TG-enriched small dense LDL particles (LDL-P, pattern B) to 
cholesterol-enriched large buoyant LDL-P (pattern A) (5, 11, 42, 48, 
49). Specifically, KLD induced a ~ 12% transient increase in LDL-C 
at 3-months with a concomitant greater decrease in log(TG/HDL), 
which is a marker of increased LDL-P size and an overall less 
atherogenic LDL profile (50). At 12-months, KLD maintained this 
greater improvement in log (TG/HDL), whereas LDL-C was similar 
for KLD and ULF.

This study has several strengths including a large parent trial 
(n = 609), comprehensive diet assessment, comprehensive set of 
cardiometabolic risk factors analyzed, and high macronutrient 
differentiation at 3-months in presence of similar caloric intake and 

reduction of added sugars and refined grain intake. Our analysis also 
has a number of important limitations. First, this was a post-hoc 
analysis that tested hypotheses that were not planned in the parent 
trial protocol. Most importantly, only a small number of subjects met 
the criteria for inclusion compared to the broader parent trial, which 
impairs the significance and generalizability of our findings. In 
addition, dietary intake data were self-reported even if collected in 
multiple pass recalls. Therefore, all the reported statistically significant 
associations or lack thereof must be  interpreted with caution. For 
example, despite non-statistically different baseline values in 
triglycerides, the physiological differences could still contribute to the 
observation that triglycerides and the atherogenic index improved in 
KLD. Finally, it is important to mention the difficulty in discerning the 
impact of diet versus weight loss on clinical outcomes and that long-
term studies on ketogenic diets are limited.

Clinicians can take away a few practical insights from this 
exploratory analysis. First, patients who successfully establish a very 
low “anchor” of carbohydrate or fat intake in the initial phase of a 
low-carb or low-fat intervention may achieve lower maintenance 
intakes and better outcomes than those who began with a higher 
anchor. Anchoring is an unconscious process whereby initial exposure 
to a number serves as a reference point or “anchor” thus influencing 
subsequent judgments (51–54). Both KLD and ULF participants 
achieved greater long-term restrictions of carbohydrates and fats, 
respectively, and greater weight loss and insulin improvements than 
the overall DIETFITS population. However, KLD and ULF dieters 
made up less than 10% of our study population, which likely reflects 
differences in personality, experience, and other socioeconomic 
factors known to affect the response to anchoring (55, 56). Second, the 
drastic reduction of dietary fat on an ultra low-fat diet may lead to a 
compensatory increase in the consumption of refined grains that 
persist even when people increase their fat intake to moderate levels 
after an initial ULF phase. In contrast, anchoring patients to a 
ketogenic diet in the first phase of a low-carb diet may lead to greater 
long-term reductions in added sugars and refined grains. Third, those 
who follow a KLD in the first 3-months of a low-carb intervention 
may experience a transient increase in LDL-C with sustained 
improvements in TG and HDL that persist even when people increase 
their carbohydrate intakes to moderate non-ketogenic levels of ~80 g/
day after an initial KLD phase. While both dietary approaches appear 
to reduce cardiometabolic risk factors, further research is needed to 
compare their effects to a Mediterranean Diet in an outcome study 
with cardiac endpoints and total mortality.
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