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In the present era of climate change, underutilized crops such as rice beans 
and adzuki beans are gaining prominence to ensure food security due to their 
inherent potential to withstand extreme conditions and high nutritional value. 
These legumes are bestowed with higher nutritional attributes such as protein, 
fiber, vitamins, and minerals than other major legumes of the Vigna family. With 
the typical nutrient evaluation methods being expensive and time-consuming, 
non-invasive techniques such as near infrared reflectance spectroscopy (NIRS) 
combined with chemometrics have emerged as a better alternative. The present 
study aims to develop a combined NIRS prediction model for rice bean and adzuki 
bean flour samples to estimate total starch, protein, fat, sugars, phytate, dietary 
fiber, anthocyanin, minerals, and RGB value. We  chose 20 morphometrically 
diverse accessions in each crop, of which fifteen were selected as the training set 
and five for validation of the NIRS prediction model. Each trait required a unique 
combination of derivatives, gaps, smoothening, and scatter correction techniques. 
The best-fit models were selected based on high RSQ and RPD values. High RSQ 
values of >0.9 were achieved for most of the studied parameters, indicating high-
accuracy models except for minerals, fat, and phenol, which obtained RSQ <0.6 
for the validation set. The generated models would facilitate the rapid nutritional 
exploitation of underutilized pulses such as adzuki and rice beans, showcasing 
their considerable potential to be functional foods for health promotion.
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1 Introduction

Pulses are a profound source of protein, including essential amino 
acids, vitamins, minerals such as potassium and magnesium, and 
antioxidants. The carbohydrates in pulses include various key 
oligosaccharides, resistant starch, and dietary fiber, which are of great 
importance in promoting overall intestinal health (1). India is among 
the largest pulse producers in the world, covering approximately 29% 
of the world’s area under pulse production. It is also one of the largest 
pulse consumers, accounting for 19% of the world’s population. 
Chickpeas, pigeon peas, and mung beans are some of the major pulses 
grown in India (2). However, several pulse crops are yet to be explored 
and utilized to their full potential. These underutilized pulses, or 
“orphan crops,” are promising options due to their adaptability under 
adverse climatic conditions and resistance to pests and diseases (3). 
Underutilized pulses possess limited economic importance and lack 
formal seed distribution due to their growth under specific 
agroecological conditions but are of traditional importance to tribal 
communities. Cowpea, moth bean, horse gram, adzuki bean, and rice 
bean are some of the commonly underutilized pulse crops.

Rice bean and adzuki bean exhibit close similarity in pod and 
seed characteristics due to their similar evolutionary patterns (4). 
Adzuki bean is primarily cultivated in China, which is also considered 
its center of origin and harbors the largest collection of adzuki bean 
germplasm in the world. Apart from Chin, adzuki bean is largely 
grown in Japan and Korea as one of the important pulse crops (5). 
Along with its high protein, fiber, and carbohydrate content, adzuki 
bean is a good source of vitamins, such as thiamine, riboflavin, and 
niacin, and contains sufficient amounts of minerals, such as Fe, K, 
and Zn (6).

Rice bean is majorly grown in southern China, Nepal, northeast 
India, Bhutan, Indonesia, and Thailand. It is believed to have been 
domesticated from the wild cross-fertile type Vigna umbellate var. 
gracilis (7). Rice bean contains high protein content and is rich in 
tryptophan, methionine, and lysine. Additionally, the protein 
digestibility of rice beans is reportedly higher than that of many other 
pulses. Genomic studies indicate that apart from research on insect 
resistance and aluminum toxicity, not many studies have been done 
on rice beans to examine other nutritional qualities and traits (8).

To date, many advanced analytical techniques have been proposed 
and used for grain quality analysis, of which spectroscopy and 
computer vision are the most common non-invasive techniques. 
Spectroscopic techniques, including near infrared reflectance 
spectroscopy (NIRS), have been widely applied in the agricultural field 
to replace the time-consuming conventional analytical methods 
(9–11). The technique is based on the differential absorption of near-
infrared wavelengths by molecules containing –C–H, –C–O–H, and 
–C–N–H bonds, which are the major NIR bands in biological 
materials. NIRS avoids the need for sample preparation and is 
non-destructive, rapid, economical, and time- and resource-saving.

The NIR spectrum is linked to the specific secondary 
characteristics of the samples, and the prediction models are built by 
developing regression equations between the spectral absorbance and 
laboratory analytical values (12). Before regression, the pre-processing 
of spectral data is of utmost importance to minimize the undesired 
variable effects, which are detrimental and interfere with quantitative 
analysis, leading to inaccurate results. These variations generally arise 
due to light scattering in the NIR region, resulting in non-linearity. An 

augmented pre-processing method can be  used to correct the 
scattering effects of light by applying various pre-processing 
techniques, including derivatization, SNV (standard normal variate), 
normalization, detrending (DT), and MSC (multiplicative scatter 
correction). This can help enhance the validation of results and ensure 
accurate analysis. The multiplicative and additive effects are removed 
using spectral derivatives, in which the baseline effect is removed by 
the first derivative while the second derivative removes linear effects. 
The spectra are further refined by testing constant intervals of the 
spectral wavelengths (gap), followed by denoising of the spectra by 
first and second smoothing (13).

Previously, NIRS-based prediction models have been extensively 
developed for characterizing many crops such as maize, potato, 
cassava, rice, and pulses (14–19). NIRS models are a reliable technique 
for various biochemical estimations such as moisture, dietary fiber, 
ash, fatty acids, oils, protein, and sugar content with a minimum 
sample requirement (15, 20–23). Since these biochemical attributes 
determine the functionality of adzuki and rice bean germplasm, 
NIRS-based prediction modeling can be used for proximate analysis, 
and other constituents can contribute to the selection of the best crop 
varieties with a higher content of desired biochemical and nutritional 
constituents, such as protein, oil, fiber, minerals, and vitamins, 
accelerating the process of developing high-yielding varieties through 
breeding. Therefore, the present study aimed to develop combined 
prediction models for various biochemical parameters in adzuki and 
rice beans. Multiple chemometric combinations were used to build 
and select the best-fit model for each biochemical trait based on the 
comparison of lab analytical values and the NIRS spectra. The 
developed models would be useful for the screening and analysis of 
large samples of adzuki and rice beans.

2 Materials and method

2.1 Sample collection and preparation

Twenty indigenous and exotic accessions of rice bean and adzuki 
bean each (totaling 40) representing different shapes, sizes, and 
colors were collected from the ICAR-NBPGR Regional Station based 
in Shimla, Himachal Pradesh (India), accommodating 
morphological variability in both the pulses (Figure 1). The required 
quantity of the samples was ground, homogenized, and sieved 
through a 1 mm sieve on Foss Cyclotec™ 1093 Sample Mill (FOSS 
Analytical, Denmark) equipped with a grinding steel ring (Foss Mat: 
10010233) to avoid any contamination while obtaining the flour of 
each sample. They were subsequently subjected to NIRS and wet lab 
analysis for biochemical parameters, namely total starch, protein, oil, 
dietary fiber, phenolics, sugars, antioxidant capacity, anthocyanin, 
and phytic acid.

2.2 Spectra acquisition

The homogenized samples were kept at room temperature (25°C) 
and were scanned on a FOSS NIRS 6500 spectrophotometer (Infrasoft 
International LLC, Port Matilda, PA, United States) to obtain the 
reflectance spectra. The reference cell (100% white mica) was scanned 
before each sample scan to ensure accuracy. Then, 5 g of the ground 
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sample was loaded in the ring cup with a quartz window (internal 
diameter of 3.8 cm) and pressed slightly with a circular cardboard 
backing to ensure uniform packing. Each sample was scanned 32 
times at 400–2,490 nm at 2 nm intervals, and an average spectrum 
was recorded for further analysis. The spectra were expressed as Log 
(1/R), where R is the respective reflectance. Post scanning, the 
moisture content of samples was estimated to be  9.2%–12.2% 
(average 11.2%) by AOAC 2005 method 934.01 (24).

2.3 Analysis of samples

Whole grains were evaluated for RGB value based on color 
comparison with the RHS color chart. All the adzuki and rice bean 
accessions were evaluated in the laboratory for total protein (AOAC 
2001.11) (25). The total dietary fiber was estimated by using a 
Megazyme kit (K-TDFR-100A, Wicklow, Ireland) (AOAC method 
985.29) (26). Total soluble sugars (27), starch (28), anthocyanin (29), 
and minerals were calculated using the Varian Fast Sequential AAS220 
as per AOAC 985.35 method (30), while standard methods were 
followed for estimating phytate, phenols and antioxidant potential 
using Megazyme K-PHYT kit for phytates (31), Folin Ciocalteau 
reagent for total phenols (32), and CUPRAC and FRAP methods for 

antioxidant potential (33, 34). The total oil content was estimated in 
completely moisture-free, dehulled grain using pulsed NMR 
spectroscopy, which is based on the relaxation of protons when kept 
in an external magnetic field. Newport Analyzer Oxford 4000 and the 
standard operating protocol mentioned in the United  States 
Department of Agriculture NMR Handbook were used (35).

2.4 Quality control

All the estimations were carried out in triplicate to ensure the 
reproducibility of the results. Suitable standards and reagent blanks 
were used to ensure accuracy during method validation and recovery 
checks for protein and TDF, using ASFRM-Rice-2 from PT-8 obtained 
from INMU, Thailand. For starch method validation, total starch 
control kit (K-TSCK) flours such as wheat starch and high amylose 
maize starch were used. The pulsed NMR-based total oil estimation 
method was validated using ISO10565:1998 and ISO10632:2000 
standards for oilseed and their defatted residues. The instrument was 
calibrated three times for rice bean oil before the estimation to ensure 
the accuracy of the instrument. Oat flour control powder included in 
the Megazyme assay kit was used as a standard for the validation of 
the phytic acid estimation method.

FIGURE 1

Morphologically diverse accessions of adzuki and rice beans.

https://doi.org/10.3389/fnut.2023.1224955
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


 John et al. 10.3389/fnut.2023.1224955

Frontiers in Nutrition 04 frontiersin.org

2.5 Development of calibration equations

Out of the total 40 samples (20 each) of adzuki and rice beans, 30 
(15 each) were used to develop the calibration (training) set, while the 
remaining 10 samples (5 each) were used in the validation (testing) set 
using the random selection method. Ensuring equal variability in both 
the calibration and validation sets justified the use of less number of 
samples for model development (36, 37). The calibration equations 
were developed on full-length spectra using the global equations 
program of Win ISI III project manager software version 1.50. Various 
combinations of pre-processing methods were used to optimize and 
extract the information from spectral data of adzuki and rice beans. 
The spectra were treated with many scatter correction methods, such 
as derivatization, SNV, WMSC, and SNV-DT.

The optimization of the calibration model was done by applying 
the 1st, 2nd, 3rd, and 4th derivatives combined with binning at 
different intervals of 4, 6, 8, 10, 12, 14, and 16 and smoothening by 
taking a moving average of 2, 4, and 6 points for each parameter under 
study. Following the spectral data pretreatment, laboratory and spectral 
data were regressed using the modified partial least-squares (mPLS) 
method, and the coefficient of regression (RSQ) was calculated. Each 
developed equation was tested on the validation set, and the best-fit 
calibration equation based on high RSQ showing a strong correlation 
between predicted and laboratory values was selected.

2.6 Statistical analyses

The statistical analyses were done to evaluate the coefficient of 
determination (RSQ), standard deviation (SD), standard error of 
calibration (SEC), standard error of prediction (SEP), ratio of 
performance deviation (RPD), bias and mean, using Win ISI® III 
Project Manager software version 1.50 in cross-validation. The scatter 
plots were developed using MS Excel, while the histograms were 
developed using Jamovi statistical package version 2.4.1 (38). The 
comparison of means of various parameters was statistically tested 
using a paired sample t-test at a 95% confidence level using 
IBM®SPSS® Modeler version 17 (39, 40).

3 Results and discussion

3.1 NIRS spectra

The raw average spectrum of the combined 40 adzuki and rice 
bean accessions is given in Figure 2. The spectra consist of multiple 
overlapping bands with 7 major peaks at 1,194 nm related to C–H 
stretch second overtone, 1,499 nm due to O–H stretch second 
overtone, 1,730 nm due to C–H stretch first overtone, 1,964 nm due to 
O–H first overtone corresponding to moisture, and at 2,124, 2,310, 
and 2,345 nm due to C–H combinations or amide C–O stretch 
combination tones, respectively (41).

3.2 Biochemical estimation

The results of biochemical analyses for the generation of reference 
values are given in Tables 1A–D. All the values are expressed as 

mean ± SD. The moisture content ranged from 7.83% to 12.3% with 
mean ± standard deviation as 10.4 ± 1.37; protein, 19%–25% 
(22 ± 1.28); TDF, 11.1%–26.4% (17.4 ± 3.29); fat, 0.68%–4.47% 
(1.96 ± 0.958); ash, 1.32%–4.4% (2.8 ± 0.768); sugar, 2.76%–6.81% 
(4.89 ± 0.947); starch, 30.7%–47.3% (41.1 ± 3.75); phytate, 0.394%–
1.88% (0.929 ± 0.346); phenol, 0.178%–0.68% (0.349 ± 0.101); 
anthocyanin, 0.117–18.7 (2.59 ± 4.43); FRAP, 0.62–5.06 GAE g/100 g 
(2.5 ± 1.16); and CUPRAC, 3.15–9.38 GAE g/100 g (6.01 ± 1.71). The 
mineral estimation for rice and adzuki beans ranged from 13.8 to 
77.5 ppm (45.4 ± 17.6) for Fe, 1.92–9.79 ppm (4.69 ± 1.92) for Cu, and 
20.3–38.5 ppm (28 ± 4.59) for Zn. The RGB value ranged from 54 to 
253 (166 ± 64.7) for red, 41–236 (133 ± 73) for green, and 54–201 
(111 ± 54) for blue. The results agreed with those reported by Shi et al. 
(42), Agarwal and Chauhan (43), and Sharma et  al. (44). The 
variability of the data sets used for calibration is illustrated in the 
form of histograms in Figure 3. All the traits did not follow normal 
distribution, which is a desirable attribute in the case of prediction 
modeling for germplasm screening (16).

3.3 Calibration and validation

The calibration and validation statistics are presented in Tables 2, 
3, respectively. Scanning or analytical errors produce abrupt results 
for every trait; therefore, all the calibration equations were developed 
by removing 0–6 outliers during internal cross-validation (Table 2). 
Moreover, the removal of outliers in the validation step is a general 
practice to enhance external RSQ values. However, in our study, 
we  achieved validation results without removing any outliers 
(Figure  4). The calibration models for different traits based on 
multiple chemometrics combinations resulted in calibration 
equations with varied levels of performance. The SD, SEC, SEP, and 
RPD values determined the usefulness of the NIR model. The 
calibration equation with an RPD value above 3 was considered 
highly useful, while the values lower than 2 depicted acceptable to 
poor model performance (45).

3.3.1 Dietary fiber and protein
In the present study, the best-fit model for dietary fiber was 

obtained using the 3rd derivative with a gap of 6 and simultaneous 
smoothening by taking a moving average of 6 data points. The 
mathematical treatment of 3,6,6,1 showed the highest RSQ value of 
0.941 with RPD 2.6 using the mPLS method. The NIRS models for 
dietary fiber have seldom been reported in various crops, including 
pulses (46, 47). One of the earlier studies had reported the NIRS-based 
prediction model for dietary fiber with an acceptable RSQ value of 
0.77 in chickpeas (48). The variability for dietary fiber content in our 
study ranged from 12.1%–26%, allowing a wide range of data for easy 
signal detection and model building. The development of a high-
accuracy NIRS-based prediction model would prove to be rapid and 
cost-effective, considering the time and use of costly enzymes in the 
estimation process.

For protein, the best RSQ value of 0.941 was observed using the 
2nd derivative with a gap and smoothing of 4 in treatment 2,4,4,1 
with a very high RPD of 4.4. Previous works have also reported 
models using 1st and 2nd derivatives along with SNV-DT, SNV, and 
MSC (49, 50) and obtained RSQ values of 0.8 and RPD values of 
2.3–2.4, indicating good model accuracy. The protein content in our 
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samples ranged between 19% and 25%. This wide range in protein 
content, coupled with the highly polar behavior of amide bonds, 
allowed better learning even from a relatively small sample set, 
resulting in a high-accuracy model. Compared to both the above-
mentioned studies, our results showed very high RSQ (0.952) and 
RPD (4.4) values, indicating higher reliability and applicability of the 
prediction model.

3.3.2 Starch, sugar, and fat
Among different combinations tested, the regression equation with 

math treatment 3,6,6,1 using SNV-DT gave the best-fit model for 
starch with an RSQ value of 0.962 and RPD value of 2.7. The RSQ value 
of 0.962 with low error is achieved due to the wide range of variability 
of 30%–44.9% in training data, and precision in prediction is indicated 
by the RPD value. Therefore, the results based on the statistical values 

FIGURE 2

Combined NIRS spectra of 40 adzuki and rice bean germplasms.

TABLE 1 Descriptive statistics of 40 rice bean and adzuki bean germplasm with (A) proximate composition, (B) antioxidants, anthocyanins, and 
phytates, (C) Mineral composition, and (D) RGB values.

A Moisture Protein TDF Fat Ash Sugar Starch

N 40 40 40 40 40 40 40

Mean ± SD 10.4 ± 1.37 22 ± 1.28 17.4 ± 3.29 1.96 ± 0.958 2.81 ± 0.768 4.89 ± 0.947 41.1 ± 3.75

Range (%) 7.83–12.3 19–25 11.1–26.4 0.68–4.47 1.32–4.4 2.76–6.81 30.7–47.3

B Phytate Phenol Anthocyanin FRAP CUPRAC

N 40 40 40 40 40

Mean ± SD 0.929 ± 0.346 0.349 ± 0.101 2.59 ± 4.43 2.5 ± 1.16 6.01 ± 1.92

Range (%) 0.394–1.88 0.178–0.68 0.117–18.7 0.62–5.06 3.15–9.38

C Fe Cu Zn Mg

N 40 40 40 40

Mean ± SD 45.4 ± 17.6 4.69 ± 1.92 28 ± 4.59 1,767 ± 1,612

Range (%) 13.8–77.5 1.92–9.79 20.3–38.5 884–11,162

D Red Green Blue

N 40 40 40

Mean ± SD 166 133 111

Range (%) 54–253 41–236 54–201
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suggest good model performance for screening and quantitative 
analysis of total starch content in pulses. Limited mathematical models 
for starch are reported in pulses to date, including common bean (RSQ 
0.5, RSQ 0.88), faba bean (RSQ 0.93), and pea (RSQ 0.80) (50–53).

The high-accuracy prediction model for sugar was observed using 
the mathematical treatment of 3,6,6,1 using scatter correction by the 
SNV-DT method. A high correlation between the predicted and 
laboratory values of the validation set was obtained, indicated by an 
RSQ value of 0.931; however, the model qualifies only for use in 
screening as a low RPD value of 1.09 was obtained. Previously, a 
prediction model for sugar had been developed and reported based on 
an NIRS study of 733 chickpea germplasms with a correlation coefficient 
of 0.87, which is comparable to the result of the present study (54).

The fat content in rice and adzuki bean accessions ranged from 
0.68% to 4.47%. The developed prediction model for fat in the present 
study with an RSQ value of 0.583 and RPD value of 1.1 was obtained 
with treatment 3,6,6,1. The model statistics indicate that a positive 
correlation exists between spectra and actual fat content. In addition, 
a RPD value of >1 indicates the model usage for preliminary screening 

purposes (55). Many models have been reported for predicting fat 
with varying degrees of RSQ values in different leguminous crops, 
such as soybean (0.4), common bean (0.77), and chickpea (0.9) (54, 
56, 57). The lower RSQ in our study is due to the limited sample size 
and low range of variability in fat content. The overall lower 
concentration of fat in each accession is another possible reason for 
the low RSQ values.

3.3.3 Phenol, CUPRAC, FRAP, and anthocyanin
The best model for phenol was identified after model validation 

with treatment 3, 10,10,2 coupled with WMSC scatter correction, 
giving an RSQ value of 0.571 and RPD of 1.3. Very low RSQ values 
were obtained by using the gap <10 and with 1st, 2nd, and 4th order 
derivatives using the SNV-DT scatter correction method (data not 
shown). The combinations of derivatives and gaps by applying WMSC 
also failed to give the desired results of higher RSQ for high model 
accuracy. The narrow range of 0.19%–0.47% of phenols recorded for 
the reference dataset was not sufficient for improved statistical values. 
Therefore, the model lacked usability with respect to accuracy and 

FIGURE 3 (Continued)
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reliability. However, previously, the SNV method has proved to 
be  useful in building the prediction model for phenol using 60 
different genotypes of mung bean with RSQ = 0.987, suggesting high 
accuracy (58). The mPLS and PLS methods have been previously used 
for developing prediction models for phenolics and anthocyanin in 
various crop plants with acceptable RSQ values (59, 60).

The models for the estimation of antioxidative capacity by 
CUPRAC and FRAP were built using treatments 3,7,7,2 and 3,6,6,1 
with WMSC. The RSQ value for antioxidative capacity by CUPRAC 
(values ranging from 3.1% to 9.38%) under treatment 3,7,7,2 was 
0.958 with an RPD of 2, while by FRAP (values ranging from 0.62% 
to 5.06%), best RSQ value was observed under treatment 3,6,6,1 with 
0.963 and RPD value of 1.8.

The variability range of 0.08%–1.6% was observed among 40 
different genotypes for anthocyanin content. The highest RPD value 
of 1.8 was observed for anthocyanin, with a good RSQ value of 0.960 
under treatment 3,6,6,1. However, the reason for the low RPD value 
can be attributed to the lower anthocyanin concentration in adzuki 
and rice beans. Based on the RSQ value and other statistical 
parameters (Supplementary Tables S2, S3; validation), the model 

shows good prediction accuracy for screening pulse germplasm. 
Spectroscopy-based prediction models for various phytochemicals, 
including phenols and individual antioxidants, have been found (60, 
61), but no literature was traced for estimating the total anthocyanin 
content in adzuki and rice beans through NIRS modeling. This may 
be the first report on a NIRS-based prediction model for anthocyanin 
in pulses with high accuracy and reliability.

3.3.4 Phytate, minerals, and ash
Treatment 3,7,7,2 gave the best RSQ of 0.945 for phytate with an 

RPD value of 4.8 by the mPLS method. In the case of phytate 
calibration, the gaps were increased to 7 with subsequent smoothing 
of 7 and 2 in combination with the 3rd derivative using WMSC. The 
variability range for phytate in different accessions of adzuki and rice 
beans varied between 0.39%–1.88%, which allowed less error and 
increased reliability of the regression model based on RSQ and RPD 
within the given range of data set. An RPD value of 4.8 has not yet 
been reported for phytate models in pulses. The high coefficients of 
determinations for phytate validation were possible to achieve because 
of the highly polar behavior of the phytate molecule. Apart from its 

FIGURE 3

Histograms of all the nutritional parameters depicting the variability of the reference set.
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limited beneficial role as stored phosphorus, phytate is one of the 
major antinutrient factors present in pulses, thus limiting their 
nutritional availability. Estimation of phytate in pulses would allow the 
selection of the pulse varieties with lower phytate content, making 
them preferable over others. Our model promises high accuracy for 
prediction purposes, as evidenced by the high RSQ along with 
significantly high RPD. A previous study developed a prediction 
model for phytate in common bean with an RSQ value of 0.88 using 
the 1st derivative by the PLS method (60). However, in our study, 

we have tried higher-order derivatives for enhanced feature extraction, 
gaps, and smoothing, which altogether performed excellent spectral 
refinement, making the currently developed model more applicable 
than the previously reported models.

The 3rd derivative, along with gap and smoothening of 6, 1, gave 
the best correlation values for Fe with RSQ = 0.257 and RPD = 1.6. 
Among all the possible combinations, treatment 3,7,7,2 gave the best 
RSQ = 0.487 with RPD = 2.6 for Cu, and for Zn, 2,4,4,1 gave RSQ 
=0.454 with RPD = 1.6 indicating the best combinations of derivative, 

TABLE 2 Calibration model statistics for different parameters in the combined model for adzuki and rice bean genotypes by mPLS methods.

Parameters Treatment SEC SEPC SD RSQ No. of outliers

Protein 2,441 0.2154 0.197 1.218 0.974 1

Dietary fiber 3,661 1.48 1.358 3.196 0.821 2

Sugar 3,661 0.7249 0.555 0.674 0.337 6

Starch 3,661 1.56 1.521 3.686 0.83 2

Phytate 3,772 0.1172 0.113 0.331 0.884 1

Fat 3,661 0.795 0.685 1.064 0.602 2

CUPRAC 3,772 0.9102 0.869 1.888 0.788 1

Phenol 310,102 0.0707 0.059 0.114 0.731 1

FRAP 3,661 0.227 0.213 1.23 0.97 0

Anthocyanin 3,661 0.7623 0.803 5.024 0.974 0

Cu 3,772 0.871 0.821 1.806 0.793 2

Fe 3,661 11.89 9.72 17.14 0.678 3

Zn 2,441 3.94 3.532 4.379 0.35 4

Ash 2,441 0.3533 0.341 0.669 0.741 1

Red 3,661 14.02 24.98 70.23 0.874 0

Green 3,661 6.96 8.795 75.334 0.987 0

Blue 3,661 16.42 15.256 55.451 0.924 0

TABLE 3 Validation model statistics for parameters in the combined model for adzuki and rice bean genotypes by mPLS method.

Parameters Math treatment SEP SD RPD RSQ ext. p-value

Protein 2,441 0.312 1.374 4.4 0.941 0.681

Dietary fiber 3,661 0.993 2.571 2.6 0.941 0.828

Sugar 3,661 0.719 0.663 1.09 0.931 0.344

Starch 3,661 1.241 3.339 2.7 0.962 0.534

Phytate 3,772 0.058 0.28 4.8 0.945 0.827

Fat 3,661 0.557 0.617 1.1 0.583 0.027

CUPRAC 3,772 0.777 1.521 2.0 0.958 0.029

Phenol 310102 0.048 0.064 1.3 0.571 0.036

FRAP 3,661 0.972 1.72 1.8 0.963 0.087

Anthocyanin 3,661 0.791 1.39 1.8 0.960 0.893

Cu 3,772 0.48 1.256 2.6 0.469 0.243

Fe 3,661 9.816 15.99 1.6 0.257 0.366

Zn 2,441 1.875 3.092 1.6 0.454 0.335

Ash 2,441 0.44 0.534 1.2 0.965 0.065

Red 4,661 15.018 54.167 3.6 0.931 0.025

Green 4,661 23.044 66.48 2.61 0.895 0.103

Blue 4,661 14.601 48.185 2.92 0.917 0.119
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gap, and smoothening. For scatter correction, SNV-DT was employed 
for Fe, while for Cu and Zn, WMSC gave the best-fit results. Although 
the combined model for rice and adzuki beans for these elements has 
not been reported so far, the present study shows low model accuracy 
for Fe as well as for Cu with comparatively poor RSQ values using the 
mPLS method. An important reason behind the failure of developing 
calibration for microelements could be due to the poor absorption of 
energy by minerals in the NIR region because they are present in 
bound form with organic molecules rather than in a free form, which 
can result in poor absorption (57).

The best model for ash content was built using the 2nd derivative 
with a gap and smoothing of 4 with the treatment 2,4,4,1. The RSQ 
value for validation was 0.654, and the RPD value was 1.2 using the 
mPLS method with WMSC for scatter correction. The ash content 
among all the tested accessions was between 1.32% and 4.40%. 
Previous studies on soybean and chickpea genotypes reported RSQ 
values of 0.6 and 0.7 for the prediction model of ash content, which is 
comparable to the results of the present study (Ferreira et al., 2013; 
Flinn et al., 1998). The RSQ and RPD in the case of ash content are 
obtained for individual minerals. The NIRS works on stretching and 
bending of bonds, which is not possible for mineral ions as they exist 
in combination with organic molecules with an indirect relationship. 
The lower RSQ of ash is indicative of the existence of the non-polar/
non-organic nature of ash on sample combustion, due to which the 
bending and stretching of bonds do not apply values (62).

3.3.5 RGB values based on the RHS chart
The identification and quantification of color is important as it is 

not only related to consumer preferences but is an indication of the 

absence or presence of certain phytochemicals such as anthocyanins, 
carotenoids, and phenols. A quantification of these attributes is useful 
to maintain uniformity of seed lots for color, quality control of 
processed foods, and ascertaining the price. The mPLS-based 
prediction model using treatment 4,6,6,1 was developed on whole 
grain spectra for RGB values based on the RHS color chart and RSQ 
values of 0.931, 0.895, and 0.917 for red, green, and blue colors, 
respectively, were obtained with an RPD range of 2.92–3.6.

While only limited pre-processing methods have been used and 
reported in previous studies (15), we tested various combinations of 
chemometric parameters with four different derivatives to develop the 
best-fit model for all parameters. The spectral resolution was enhanced 
by removing noise on the application, mostly by the 2nd and 3rd-order 
derivatives for tested parameters. The effect of related co-variates on 
each other was minimized or eliminated by adjusting the data points 
by using the required gap, while the background noise was further 
lowered using smoothing. Merely increasing the derivative was not 
sufficient to obtain the required model accuracy; hence, the data 
points were lowered to find more refined information and develop 
the model.

The reduced data points represented as a gap indicate the 
exclusion of the effect of multi-collinearity, which is the effect of 
one latent variable on the other in the regression model. Multi-
collinearity among the variables reduces the accuracy of the 
estimated coefficient, thus lowering the accuracy of the regression 
model. Therefore, increasing the gap and thus reducing the 
interdependent effect of variables resulted in better RSQ for certain 
parameters. The effect of multi-collinearity sometimes also arises 
due to the duplication of the same variables. Therefore, to avoid 

FIGURE 4 (Continued)

https://doi.org/10.3389/fnut.2023.1224955
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


 John et al. 10.3389/fnut.2023.1224955

Frontiers in Nutrition 10 frontiersin.org

confusion, combinations of derivatives, spectral refinement, and 
gaps for removing the undesired noise and possible erroneous data 
recordings were used. In the case of some parameters such as fat, 
phenol, and ash, the lower RSQ value correlated to the use of a 
smaller sample size and the limited range of variability in data. 
Therefore, for a more reliable model with high accuracy for the 
above-mentioned parameters, there is a requirement for a large 
sample size. The model prediction accuracy and applicability are 
represented by RSQ and RPD. Higher numbers of latent variables 
result in an over-fit of the model due to their effect on each other, 
resulting in high bias, while too low numbers of variables result in 
an under-fit model with lower bias (63, 64).

In our study, the WMSC method gave better RSQ and RPD values 
for certain parameters, while best-fit models for other parameters 
were obtained using SNV-DT. In parameters with SNV-DT, the 
particle size effect, and scattering were removed using SNV, while the 
variation in baseline shift was corrected by detrending. Both SNV-DT 
and MSC (multiplicative scatter correction) have been widely used to 
reduce spectral variance due to the particle size effect. Fontaine et al. 
(65) developed and reported a prediction model for amino acids in 
cereal and sorghum genotypes where spectra were treated with 
SNV-DT and gave a more accurate model by reducing spectral noise 
for amino acids in test samples. However, the application of MSC 
enhanced the accuracy of the model for amino acids in soybean 
samples with an RSQ value of 0.91 (66).

The scatter correction by WMSC gave better RSQ values 
compared to the SNV-DT due to reduced baseline and multiplicative 

effects. Also, WMSC produces outliers in the score plots obtained 
by the spectral treatment, while SNV only induces curved structures 
of these score plots. Elimination of outliers thus gives better RSQ 
values (67). The best model with high accuracy employing all the 
parameters mentioned is thus selected based on the values of RSQ 
and RPD. Therefore, in the present study, the best model was 
selected by trial and error with applicable values of RSQ and RPD 
for each parameter under study. Based on the RSQ and RPD values, 
the models for different parameters could be used for screening of 
large samples and rapid quantification of adzuki and rice bean 
germplasms as well as other related pulses. The statistical analyses 
using SPSS showed no significant difference between predicted and 
laboratory values, with p-values higher than 0.05 indicating 
model acceptability.

4 Conclusion

The present study developed various mathematical equations that 
can be employed in screening and for the prediction of quantitative 
values for different biochemical parameters in adzuki and rice bean 
species. These combined models can also be used to anticipate the 
values of different biochemical constituents in similar pulses. The 
models can be employed for developing scanning devices to know the 
actual content of these parameters for consumer satisfaction in 
supermarkets. Thereafter, the pulses can be  assorted and labeled 
accordingly for varieties rich in specific nutrient or antinutrient factors.

FIGURE 4

Validation plots of all the developed prediction models indicating linearity with coefficient of determination (R2).
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While these combined models are truly functional for the 
prediction of many biochemical components, we  could not 
achieve the desired RSQ values for sugars and phenols. There is 
scope for refinement by including a more diverse sample set 
(location, season, etc.) for improved calibrations of such traits. 
Parameters such as phenols, phytates, and antioxidants could 
be  estimated with HPLC to generate robust reference values. 
Investigating and optimizing advanced chemometrics, non-linear 
regressions, and machine learning algorithms such as artificial 
neural networks (ANN) and inverted partial least squares (iPLS) 
could improve the modeling process. Additionally, the prediction 
models could be developed for whole grain adzuki and rice bean 
germplasms, which would completely make the process 
non-destructible.
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