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Background: Chronic kidney disease (CKD) is often accompanied by alterations 
in the metabolic profile of the body, yet the causative role of these metabolic 
changes in the onset of CKD remains a subject of ongoing debate. This study 
investigates the causative links between metabolites and CKD by leveraging the 
results of genomewide association study (GWAS) from 486 blood metabolites, 
employing bulk two-sample Mendelian randomization (MR) analyses. Building 
on the metabolites that exhibit a causal relationship with CKD, we  delve 
deeper using enrichment analysis to identify the metabolic pathways that may 
contribute to the development and progression of CKD.

Methods: In conducting the Mendelian randomization analysis, we  treated 
the GWAS data for 486 metabolic traits as exposure variables while using 
GWAS data for estimated glomerular filtration rate based on serum creatinine 
(eGFRcrea), microalbuminuria, and the urinary albumin-to-creatinine ratio 
(UACR) sourced from the CKDGen consortium as the outcome variables. 
Inverse-variance weighting (IVW) analysis was used to identify metabolites with 
a causal relationship to outcome. Using Bonferroni correction, metabolites with 
more robust causal relationships are screened. Additionally, the IVW-positive 
results were supplemented with the weighted median, MR-Egger, weighted 
mode, and simple mode. Furthermore, we performed sensitivity analyses using 
the Cochran Q test, MR-Egger intercept test, MR-PRESSO, and leave-one-out 
(LOO) test. Pathway enrichment analysis was conducted using two databases, 
KEGG and SMPDB, for eligible metabolites.

Results: During the batch Mendelian randomization (MR) analyses, upon 
completion of the inverse-variance weighted (IVW) approach, sensitivity analysis, 
and directional consistency checks, 78 metabolites were found to meet the 
criteria. The following four metabolites satisfy Bonferroni correction: mannose, 
N-acetylornithine, glycine, and bilirubin (Z, Z), and mannose is causally related 
to all outcomes of CKD. By pathway enrichment analysis, we  identified eight 
metabolic pathways that contribute to CKD occurrence and progression.

Conclusion: Based on the present analysis, mannose met Bonferroni correction 
and had causal associations with CKD, eGFRcrea, microalbuminuria, and UACR. 
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As a potential target for CKD diagnosis and treatment, mannose is believed to 
play an important role in the occurrence and development of CKD.
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1 Introduction

Chronic kidney disease (CKD) results from a variety of etiologies, 
characterized by reduced renal function as a clinical manifestation and 
renal fibrosis as a pathologic feature (1, 2). According to the latest 
KDIGO Guidelines, the most widely recognized indicator of kidney 
damage is the marker of kidney damage or GFR > 60 mL/min/1.73 m2 
for >3 months (3). According to the most recent epidemiological study 
on CKD on a global scale, approximately 700 million people suffer from 
CKD worldwide as of 2017 (4). Around the world, CKD has increased 
in incidence and mortality in recent years (5, 6), and CKD is predicted 
to become the fifth leading cause of death worldwide by 2040 (7). As 
CKD progresses, kidney function will gradually and irreversibly decline. 
CKD progresses to kidney failure when the glomerular filtration rate 
[GFR] < 15 mL/min/1.73 m2 (8). In the stage of kidney failure, there are 
only two treatment options left: dialysis and kidney transplantation (9). 
In a previous study of 228,552 patients with kidney failure, based on 
standardized mortality, kidney transplantation was associated with a 
survival advantage over dialysis (10). Patients who undergo surgery or 
under dialysis face a substantial financial burden as well as risks 
associated with the procedure (11). Therefore, early identification of risk 
factors and prevention of CKD are particularly important.

Metabolomics is a research method that analyzes metabolites 
(usually small molecules with a molecular weight < 1,000 Daltons) 
produced by various biological processes in a target sample (12). Levels 
of metabolite products are genetically determined and interact with 
environmental factors to ultimately create differences between 
individuals (13, 14). Patients with CKD, especially those who progress 
to kidney failure, are affected by the disease itself and subsequent 
interventions and suffer from metabolic disturbances, such as elevated 
lipids, abnormally hypercatabolic catabolism, and iron metabolism 
disorder (15–17). In recent years, more and more researchers have tried 
to explore the mechanisms of CKD progression and new diagnostic and 
therapeutic targets through the study of metabolites in patients’ 
biospecimens (18–20).

Using whole genome sequencing data, Mendelian randomization 
(MR) can be used to examine the causal relationship between exposure 
and outcome in disease etiology studies (21). This research method 
using innate genotype as the instrumental variable (IVs), imitating the 
RCT study in methodology, makes the final conclusion more reliable 
and greatly reduces the possibility of reverse causality (22, 23). Because 
of the above advantages of MR Analysis, more and more researchers are 
choosing to explore the etiology of diseases based on previous GWAS 
results. Based on the MR analysis, Ponte et al. investigated the causal 
relationship between uromodulin, blood pressure, and chronic kidney 
diseases (24). MR analysis by Kjaergaard et al. found that obesity affects 
kidney function and proteinuria caused by diabetes type 2 (25). With 
the establishment of an atlas of genetically determined metabotypes 

(GDMs) (26), we can investigate the causal relationship between blood 
metabolites and CKD through MR analysis.

In this study, as exposure factors, we used 486 blood metabolites, 
and CKD as well as its related test indicators as outcome factors, and 
then, MR analysis was conducted to determine which metabolites 
were causally associated with CKD. In order to identify the pathways 
that may cause CKD, an enrichment analysis of metabolic pathways 
was performed based on the positive results of the MR analysis. The 
results of this study provide a new target and direction for the 
screening of future CKD patients as well as early intervention and 
even treatment to delay the progression of the disease.

2 Materials and methods

2.1 Study design and data source

The MR analyses we  perform follow the three assumptions 
underlying MR: (1) There is a strong association between IVs and 
exposures; (2) IVs are independent of confounding factors; (3) IVs 
affect outcomes only via exposures and are not directly related to 
outcome; the specific hypotheses regarding the MR analysis of this 
study are detailed in Supplementary Figure 1, while the overview of 
the research process for this study can be  found in the flowchart 
(Supplementary Figure 2).

A previous GWAS analysis of 486 metabolites in human blood 
was used to assess exposure in this study (26), and then, we investigated 
the consequential impacts of each metabolite on CKD and 
CKD-related indicators using two-sample MR. A total of 7,824 
Europeans were included in the metabolite GWAS study, including 
1768 from the KORA F4 study in Germany and 6,056 from the UK 
Twin Study; specific GWAS results can be  downloaded at 
metabolomics GWAS server.1 Apart from 107 metabolites of unknown 
function, the remaining 486 metabolites were organized into eight 
groups, namely: amino acid, carbohydrate, cofactors and vitamin, 
energy, lipid, nucleotide, peptide, and xenobiotic metabolism.

GWAS results for CKD, eGFR based on serum creatinine 
(eGFRcrea), microalbuminuria, and urinary albumin-to-creatinine 
ratio (UACR) obtained from the CKDGen Consortium, 
downloaded from the IEU OpenGWAS project,2 which are all 
European-ancestry samples. CKD and eGFRcrea were derived from 
the previous studies of Pattaro et  al. (27). There were 117,165 
samples in the CKD study (ncase = 12,385; ncontrol = 104,780) and 

1 https://metabolomics.helmholtz-muenchen.de/gwas/

2 https://gwas.mrcieu.ac.uk/
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133,814 samples in the eGFRcrea study. Microalbuminuria and 
UACR come from previous studies by Teumer et al. (28). The study 
of UACR contains 54,450 samples, and the study of 
microalbuminuria contains 54,116 samples.

2.2 The selection of instrumental variables

Considering that the number of metabolite-related SNPs in the 
blood is not optimistic, we chose p < 10−5 as the screening criteria for 
strongly associated IVs with exposure factors. We then set the linkage 
disequilibrium parameter (R2 > 0.1 and within 500 kb) to ensure that 
the IVs are independent. Our next step was to eliminate weaker IVs 
by using F > 10 as the standard, and the specific F value was obtained 
using the following formula:
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Previous similar studies have explained the specific formula (29). 
Following removal of the IVs directly associated with the outcome 
(p = 1 × 10 5), we  queried the IVs associated with confounders 
(hypertension, diabetes, kidney disease, and obesity) with Phenoscann. 
The harmonise_data function in the TwoSampleMR package is then 
used to perform data harmonization to ensure that the effect allele 
belongs to the same allele. Finally, we conducted MR analysis between 
metabolites with IVs greater than two and our outcome time.

2.3 MR analysis

All data analysis was based on R (version 4.1.1). First, based on 
the inverse-variance weighted (IVW) method, the Wald ratio of IVs 
was systematically evaluated using p < 0.05 as the screening condition. 
The TwoSampleMR package (version 0.5.7) was used to screen and 
analyze metabolites associated with CKD and its related indicators. 
Further analyses were conducted only on metabolites whose results 
were in the same direction as those obtained by all five methods 
(inverse-variance weighted, weighted median, MR-Egger, weighted 
mode, and simple mode). In order to evaluate heterogeneity and 
pleiotropy of IVs, Cochran’s Q test and MR-Egger intercept analysis 
were conducted, respectively, and those metabolites that passed the 
IVW test but had pleiotropy (p < 0.05) were excluded. Utilize 
MR-PRESSO (version 1.0) to identify and remove outlier SNP in IVs. 
By using the leave-one-out (LOO) analysis, we  ensured that MR 
Results would not be impacted by any single SNP. The above analysis 
was conducted with CKD, eGFRcrea, UACR, and microalbuminuria 
as the outcomes, and then, we  intersected the eligible results to 
examine the core metabolites contributing to CKD progression. 
Bonferroni correction was used to identify metabolites with obvious 
causal relationships, as the process of metabolite screening involved 
multiple MR analyses.

2.4 Enrichment analysis of metabolic 
pathway

The enrichment analysis of metabolic pathways was applied to the 
metabolites that have causal relationship with CKD, eGFRcrea, UACR, 
and microalbuminuria, which meet all the conditions for the above 
MR analysis, using MetaboAnalyst 5.0.3 To further explore the 
metabolic pathways associated with CKD, two databases were 
employed, KEGG and SMPDB.

2.5 Validation of MR results

To further validate our conclusions, we  used the new GWAS 
database for validation. First, we extracted GWAS data for metabolites 
that met the Bonferroni correction in the MR results from a GWAS 
library containing 1,091 metabolites and 309 metabolite ratios as a 
validation of the exposure to MR analysis. We then used the GWAS 
results with study accession ID GCST008059 in the catalog database as 
a validation of the end of the MR analysis. The study included GWAS 
data of eGFR with 567,460 European-ancestry individuals. The criteria 
and steps for screening subsequent IVs were exactly the same as before.

3 Result

3.1 Preparation of IVs

In a series of screenings with a strong correlation to a metabolite 
but no correlation to CKD, LD analysis, and screening with F > 10, 
8,167 SNPS met the criteria. As a result of searching Phenoscann, 
screening and deleting SNPS strongly associated with confounders, 
Supplementary Table 1 contained 8,147 SNPS for further MR analysis. 
Supplementary Table 2 shows SNPS associated with confounders and 
deleted. Finally, we removed blood metabolites with IVs less than 
three for subsequent MR analysis.

3.2 MR analysis

As the first step, we screened metabolites with p-values less than 
0.05 in IVW analysis with CKD, eGFRcrea, microalbuminuria, and 
UACR as outcomes. In total, 116 metabolites were investigated, 
including 62 known substances and 54 unknown substances, which 
were visualized as heatmaps (Figure  1A). One hundred sixteen 
metabolites were then analyzed by four subsequent MR analyses 
(weighted median, MR-Egger, weighted mode, and simple mode). 
Supplementary Table 3 shows metabolites in the same direction as the 
screening results from the five methods. Seventy-eight metabolites 
that met the criteria, and their IVW analysis results are listed in 
Table 1, as well as their heterogeneity and pleiotropy test results in 
Supplementary Table  4. Following that, we  intersected the four 
outcomes and drew the Venn diagram (Figure 1B). In addition to 
being causally related to all four outcomes, mannose is a risk factor for 

3 https://www.metaboanalyst.ca/
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CKD, while being negatively correlated with the increase in eGFRcrea, 
UACR, and microalbuminuria. Four metabolites that are eligible for 
analysis after Bonferroni correction: mannose, N-acetylornithine, 
glycine, and bilirubin (Z, Z). This scatterplot shows the effects of these 
four metabolites on eGFRcrea changes in five different MR methods 
(Figure 2). Based on the LOO method (Figure 3), no single SNP would 
impact the MR Results of the four metabolites tested.

3.3 Analysis of metabolic pathway 
enrichment

The results of MR Analysis were enriched with the KEGG and 
SMPDB databases, resulting in eight meaningful pathways in Table 2. 

Caffeine metabolism, glycine serine and threonine metabolism, 
glycine and serine metabolism, glyoxylate and dicarboxylate 
metabolism, methionine metabolism, porphyrin and chlorophyll 
metabolism, porphyrin metabolism, and primary bile acid 
biosynthesis may be potential factors leading to the occurrence and 
even progression of CKD.

3.4 Validation of MR results

To verify the stability of our MR analysis results, we used two new 
GWAS data for validation. We extracted GWAS data for the metabolites 
of mannose, N-acetylornithine, glycine, and bilirubin (Z, Z) in a new 
metabolite database. N-acetylornithine in the 486 metabolites database 

FIGURE 1

Heatmaps and Venn diagram visualizing IVW analysis results for CKD, eGFRcrea, microalbuminuria, and UACR. (A) Heatmaps showing the p-values of 
the IVW analysis and the direction of the result. (B) Venn diagram showing the intersection of all positive MR results. CKD, Chronic Kidney Disease; 
eGFRcrea, eGFR based on serum creatinine; UACR, urinary albumin-to-creatinine ratio.
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TABLE 1 The IVW results of metabolites were consistent with the sensitivity analysis in the same direction of the five MR analysis results.

CKD Microalbuminuria eGFRcrea Urinary albumin-
to-creatinine ratio

OR(95%CI) P OR(95%CI) P OR(95%CI) P OR(95%CI) P

Malate 0.45(0.21,0.98) 0.0438 – – – – – –

4-acetamidobutanoate 2.16(1.29,3.63) 0.0035 – – – – – –

Glycerate 0.46(0.22,1) 0.0496 – – – – – –

Citrulline 2.3(1.32,4.01) 0.0031 – – – – – –

Myristoleate (14:1n5) 2.04(1.26,3.29) 0.0036 – – – – – –

X-01911 0.64(0.5,0.83) 0.0005 – – – – – –

X-11787 0.4(0.21,0.74) 0.0036 – – – – – –

2-methoxyacetaminophen sulfate 0.96(0.94,0.99) 0.0027 – – – – – –

X-12040 1.11(1.02,1.21) 0.0153 – – – – – –

Lathosterol 0.67(0.5,0.91) 0.0095 – – – – – –

X-12189 1.13(1.02,1.24) 0.0134 – – – – – –

X-10346 1.22(1.01,1.48) 0.0389 – – – – – –

X-12524 0.3(0.11,0.82) 0.0185 – – 1.09(1.02,1.16) 0.0081 – –

X-12833 1.1(1,1.22) 0.0422 – – – – – –

X-13549 0.38(0.15,0.98) 0.0459 – – – – – –

Hydroxyisovaleroyl carnitine 0.44(0.21,0.95) 0.037 – – – – – –

Caffeine – – 1.42(1.04,1.93) 0.0279 – – – –

Allantoin – – 0.65(0.43,0.96) 0.0297 – – – –

Gamma-glutamyltyrosine – – 0.4(0.2,0.8) 0.0093 – – – –

Scyllo-Inositol – – 1.94(1.03,3.67) 0.0415 – – – –

X-11792 – – 0.73(0.59,0.91) 0.0046 – – – –

X-11845 – – 1.23(1.01,1.49) 0.0414 – – – –

X-12063 – – 0.82(0.68,1) 0.0458 – – – –

p-acetamidophenylglucuronide – – 0.96(0.93,0.99) 0.0181 – – – –

Isobutyrylcarnitine – – 0.67(0.46,0.97) 0.0354 – – – –

X-12100–hydroxytryptophan – – 2.36(1.15,4.81) 0.0189 – – – –

X-12188 – – 1.23(1.03,1.46) 0.023 – – – –

Bradykinin, des-arg(9) – – 0.81(0.7,0.94) 0.0066 – – – –

Stearate (18:0) 1.91(1.08,3.39) 0.0264 – – 0.95(0.92,0.99) 0.0129 – –

Urate – – – – 0.93(0.89,0.98) 0.0095 – –

Acetylphosphate – – – – 1.07(1,1.14) 0.0365 – –

N-acetylornithine – – – – 0.96(0.96,0.97) 2.54E-19 – –

X-04357 – – – – 0.95(0.91,0.99) 0.0099 – –

X-05426 – – – – 0.97(0.94,0.99) 0.0082 – –

X-08402 – – – – 1.03(1.01,1.06) 0.0028 – –

1-linoleoylglycerol (1-monolinolein) – – – – 0.98(0.97,1) 0.0479 – –

Hexanoylcarnitine – – – – 0.98(0.96,0.99) 0.0096 – –

Glycochenodeoxycholate – – – – 0.99(0.98,1) 0.0303 – –

Bilirubin (E,E) – – – – 0.98(0.97,0.99) 0.0014 – –

C-glycosyltryptophan – – – – 0.92(0.86,0.98) 0.0103 – –

X-11491 – – – – 1.01(1,1.03) 0.0491 – –

X-11530 – – – – 0.98(0.96,0.99) 0.0094 – –

X-11552 – – – – 0.98(0.96,1) 0.0191 0.84(0.71,0.99) 0.0324

(Continued)
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corresponds to N-alpha-acetylornithine and N-delta-acetylornithine in 
the new metabolite database. Specific MR analysis results can be seen in 
Table  3. It can be  seen that the value of ps calculated by IVW for 
mannose, N-delta-acetylornithine, and glycine were 1.86E-08, 4.94E-36, 
and 3.13E-45, respectively, and all showed a strong causal relationship 
with eGFR. However, bilirubin (Z, Z) did not perform well in the new 
dataset with a value of p of 0.950196 for IVW.

4 Discussion

The integration of GWAS findings of CKD, along with three 
indicators associated with the severity of CKD and a total of 486 
blood metabolites, was conducted in this research, and then, the 
outcome of MR analysis, which was performed and conducted in 
batches, involved CKD and its associated test indicators, while the 

TABLE 1 (Continued)

CKD Microalbuminuria eGFRcrea Urinary albumin-
to-creatinine ratio

OR(95%CI) P OR(95%CI) P OR(95%CI) P OR(95%CI) P

X-12244–N-acetylcarnosine – – – – 0.95(0.92,0.99) 0.0061 – –

X-12441–12-hydroxyeicosatetraenoate 

(12-HETE)

– – – – 1.01(1,1.02) 0.0305 – –

Bilirubin (E,Z or Z,E) 1.31(1.04,1.65) 0.0225 – – 0.98(0.97,0.99) 0.0031 – –

1-arachidonoylglycerophosphoinositol – – – – 1.03(1,1.06) 0.021 – –

X-12696 – – – – 1.03(1.01,1.06) 0.0025 – –

X-12704 – – – – 0.97(0.96,0.99) 0.0088 – –

X-12712 – – – – 0.99(0.99,1) 0.0476 – –

X-13069 – – – – 1.03(1.01,1.06) 0.002 – –

X-13429 – – – – 1.01(1,1.02) 0.0334 – –

X-13435 – – – – 1.03(1,1.06) 0.0245 – –

X-13859 0.66(0.44,0.99) 0.0455 – – 1.03(1,1.05) 0.0313 – –

X-14189–leucylalanine – – – – 0.99(0.97,1) 0.0393 – –

X-14304–leucylalanine – – – – 0.98(0.97,1) 0.0142 – –

X-14473 0.62(0.43,0.89) 0.0096 – – 1.04(1.02,1.06) 0.0002 – –

Octadecanedioate – – – – 1.03(1.01,1.06) 0.0184 – –

2-hydroxyglutarate – – – – 1.04(1.01,1.09) 0.0269 – –

Arachidonate (20:4n6) – – – – – – 1.34(1.06,1.7) 0.0149

X-02269 – – – – – – 0.88(0.79,0.98) 0.0149

X-11469 – – – – – – 0.91(0.83,1) 0.0483

X-11478 – – – – – – 0.83(0.7,0.97) 0.0203

Salicyluric glucuronide – – – – – – 0.93(0.87,0.98) 0.0136

X-12116 – – – – – – 0.81(0.69,0.94) 0.0062

X-12253 – – – – – – 0.84(0.71,1) 0.0457

X-12442–5,8-tetradecadienoate – – – – – – 1.18(1.02,1.36) 0.0272

1-methylxanthine – – – – – – 1.12(1,1.26) 0.0451

X-13671 – – – – – – 0.64(0.49,0.85) 0.0016

1-myristoylglycerophosphocholine – – – – – – 0.76(0.59,0.97) 0.0297

Glycine 1.76(1.06,2.94) 0.0297 – – 0.93(0.91,0.96) 1.55E-06 – –

Biliverdin – – 0.76(0.59,0.98) 0.0362 0.98(0.96,0.99) 0.0003 0.91(0.83,0.99) 0.022

X-11799 – – 1.38(1.06,1.8) 0.0156 – – 1.11(1.02,1.2) 0.0109

X-11876 – – 0.56(0.33,0.96) 0.0356 – – 0.83(0.7,0.98) 0.0283

X-12206 – – 3.37(1.45,7.83) 0.0048 – – 1.58(1.17,2.13) 0.003

Bilirubin (Z,Z) – – – – 0.98(0.97,0.99) 0.0001 0.92(0.87,0.97) 0.0035

Betaine 0.48(0.28,0.81) 0.0062 – – 1.05(1,1.1) 0.0377 0.78(0.62,0.99) 0.0396

Mannose 1.81(1.05,3.11) 0.0329 0.3(0.15,0.6) 0.0007 0.93(0.9,0.96) 3.84E-05 0.79(0.64,0.97) 0.0228
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exposure consisted of 486 metabolites. In light of the high frequency 
of MR analysis and the large number of meaningful metabolites, 
Bonferroni should be used to correct and screen metabolites with 
high confidence, which play a key role in the occurrence and 
progression of CKD. Finally, four metabolites with significant 
causal relationships with eGFRcrea were identified: mannose, 
N-acetylornithine, glycine, and bilirubin (Z, Z). As mannose is 
causally related to all four outcomes in this study, we conclude that 
it is an important factor contributing to the onset and 
progression of CKD.

Mannose, like glucose, is also a hexose involved in human energy 
metabolism and other complex metabolic processes (30). Due to the 
fact that the GWAS data we used as a variable are only related to blood 
mannose content, and mannose is involved in numerous metabolic 
activities, it is impossible to identify the primary factors leading to the 

change in blood mannose content. In light of this, we discuss the 
following biological processes involved in mannose in relation to 
CKD. As a carbohydrate, mannose is a source of energy in the body. 
Despite not being the body’s primary energy source, mannose can 
influence its energy metabolism. Researchers have found that 
mannose-6-phosphate produced by hexokinase can affect glucose 
absorption by cells and then affect energy metabolism (31). Under low 
mannose conditions, individuals with low phosphomannose 
isomerase (PMI) expression often showed inhibited glucose 
metabolism (31). In a previous review, individuals lacking PMI were 
more likely to suffer from digestive tract-related diseases and to 
develop diseases such as liver fibrosis, diabetes, and developmental 
delays (32). It is speculated that the high level of mannose in the blood 
may inhibit the energy metabolism of the kidney, resulting in 
decreased kidney function and even kidney fibrosis in CKD patients.

FIGURE 2

Scatter plots of the four metabolites that conform to the Bonferroni correction show causal relationships with eGFRcrea. (A) Mannose, (B) glycine, 
(C) bilirubin (Z, Z), (D) N-acetylornithine.
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In addition to energy metabolism, mannose-related compounds 
are also involved in complement activation pathways in the 
immune system. The mannose-binding lectin (MBL) pathway is 
one of the three known pathways that activate the complement 
system (33). In response to an interaction between MBL and the 
carbohydrate motif of the bacteria, mannose-binding agglutinin 
serine protease (MASP) cleaves C4 and C2 to produce C3 
convertase C4b2b. C4b2b catalyzes the conversion of C3 into C3a 
and C3b and combines with C3b to form C4b2bC3b, which 
catalyzes the formation of C5b, thus promoting the formation of 
membrane attack complex (MAC) (34–36). The complement 
system and related immune-related products play a crucial role in 
glomerulonephritis progression, including IgA nephropathy 
(IgAN), membranous nephropathy (MN), focal segmental 

glomerular sclerosis (FSGS), lupus nephritis (LN), and 
antineutrophil cytoplasmic autoantibody-associated vasculitis 
(AAV) (37). According to a previous study of kidney biopsy 
specimens from MN patients, complement activation in the kidneys 
of MN patients is mainly dependent on the MBL pathway or bypass 
pathway, rather than the classic pathway (38). The risk of renal 
failure increased as C3 levels in kidney biopsy samples increased in 
a previous study using multivariate logistic regression (39). After 
all, many factors can affect the concentration level of mannose in 
the blood, whether it comes from oral intake or endogenous 
production. Whether it is from the perspective of energy 
metabolism or immune complement activation, the results of MR 
analysis can only be  inferred from the existing studies, and the 
specific mechanism needs to be explored by subsequent experiments.

FIGURE 3

LOO analysis of four metabolites conforming to the Bonferroni correction. (A) Mannose, (B) glycine, (C) bilirubin (Z, Z), (D) N-acetylornithine. LOO 
analysis: leave-one-out analysis.
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To substantiate the existing findings, we  conducted additional 
Mendelian randomization (MR) analyses by utilizing an alternative 
metabolite GWAS repository as the exposure and a separate eGFR 
GWAS dataset as the outcome. The results reinforced the statistical 
robustness of mannose, N-delta-acetylornithine, and glycine, each 
demonstrating strong significance. However, bilirubin (Z, Z) failed to 
reach statistical significance in these subsequent analyses. N-delta-
acetylornithine is a metabolic product synthesized by a liver- and 
kidney-specific N-acetyltransferase during its role in biotransformation 
and detoxification metabolism, involving the generation of thiol groups 
(40). Previous research has also identified an association between 
elevated circulating levels of N-delta-acetylornithine and kidney failure 
(41). Glycine is the simplest and most stable amino acid constituent of 
proteins in the human body, participating in numerous physiological 
and biochemical processes. However, there is no direct literature report 
correlating serum glycine levels with renal function in humans, offering 
a novel direction for future research endeavors.

MR analysis with microalbuminuria and UACR as the outcome 
were both enriched in the pathway for caffeine metabolism in the 
subsequent enrichment analysis. Furthermore, a previous study also 
found a causal link between coffee consumption and CKD using MR 
analysis, which took CKD GWAS data of CKDGen as the outcome 
and coffee consumption GWAS data of UK Biobank as the exposure 
(42). Despite using metabolite-related GWAS data as exposure, which 
is unrelated to the exposure data used by Kennedy et al., the same 
conclusion is reached, which is sufficient to demonstrate the 
methodological superiority of MR analysis. In addition, pathway 
enrichment analyses for metabolites with significant MR positive 
findings, using CKD, eGFRcrea, and UACR as outcomes, consistently 
highlighted porphyrin metabolism as a pathway of interest, regardless 
of whether the KEGG or the SMPDB was employed as the database. 
In the human body, hemochrome (ferroprotoporphyrin) is the most 
common porphyrin, involved in the formation of a range of proteins 
related to REDOX reactions, such as hemoglobin, myoglobin, 
cytochrome P-450 and mitochondrial cytochrome in muscle cells, and 

other hemoproteins in liver cells (43). A common complication of 
CKD is anemia, which requires iron supplementation and 
erythropoiesis-stimulating agents (ESAs) and even blood transfusions 
(17, 44). Patients with CKD will suffer from iron metabolism disorders 
from both the disease and subsequent treatments, and a previous 
study found that a significant number of dialysis patients had 
abnormal iron metabolisms (45). Catalytically active free iron can 
generate toxic reactive oxygen species (ROS), which can damage cells 
and their proteins (46). It is now accepted that kidney fibrosis is 
formed as a result of the healing response of the body (47). ROS is a 
recognized fibrosis-promoting molecule that promotes mesangial and 
fibroblast activation and tubular epithelial-to-mesenchymal cell 
transformation (EMT) (48). The final result is a large amount of 
extracellular matrix (ECM) deposition, leading to the destruction of 
the normal structure of the kidney and the loss of kidney function (49).

Additional metabolic pathways identified through enrichment 
analysis predominantly focus on primary bile acid synthesis and 
associated metabolite processing, which includes the metabolism of 
compounds such as glycine, serine, threonine, methionine, 
pyruvate, and dicarboxylic acids. Interestingly, glycine, serine, 
threonine, and methionine are all involved in the synthesis of 
one-carbon units, which are biologically active molecules. The 
primary source of one-carbon units is the carbon skeleton oxidation 
of amino acids, notably glycine, and both threonine and serine can 
be converted into glycine, thereby generating one-carbon units. The 
methyl group within the methionine molecule also constitutes a 
one-carbon unit. With the involvement of ATP, methionine is 
converted to S-adenosylmethionine (SAM), which is known as 
active methionine. Acting as a reactive methyl donor (50, 51). 
One-carbon units predominantly contribute to cellular proliferation 
through the biosynthesis of purines and deoxythymidine 
monophosphate (dTMP) (52). The proliferation and activation of 
early immune cells consequently affect renal function, while the 
excessive proliferation of fibroblasts during the chronic progression 
phase is a common pathological hallmark of chronic kidney disease 

TABLE 2 Results of pathway enrichment analysis.

Metabolic Pathway Trait Database P

Caffeine metabolism Microalbuminuria KEGG 0.019243

Urinary albumin-to-creatinine ratio KEGG 0.031885

Glycine serine and threonine metabolism CKD KEGG 0.000678

eGFRcrea KEGG 0.017783

Glycine and serine metabolism CKD SMPDB 0.007794

Glyoxylate and dicarboxylate metabolism CKD KEGG 0.000618

Methionine metabolism CKD SMPDB 0.044153

eGFRcrea SMPDB 0.044153

Porphyrin and chlorophyll metabolism CKD KEGG 0.011986

eGFRcrea KEGG 0.000717

Urinary albumin-to-creatinine ratio KEGG 0.003494

Porphyrin metabolism CKD SMPDB 0.038069

eGFRcrea SMPDB 0.003027

Urinary albumin-to-creatinine ratio KEGG 0.011572

Primary bile acid biosynthesis eGFRcrea KEGG 0.033327
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(53, 54). Research on the association between bile acid synthesis-
related pathways and chronic kidney disease is limited, and 
bilirubin (Z, Z) lacked statistical significance in subsequent 
validation datasets.

However, our study has some limitations. The condition selection 
for SNP screening is relatively loose in order to provide sufficient 
instrumental variables for subsequent MR analysis, although 
we eliminate weaker IVs by using F > 10. Additionally, this study made 
use of a large number of two-sample MR analyses, which are 
susceptible to multiple test errors, although we corrected our results 
with Bonferroni correction. Finally, it cannot be  denied that MR 
analysis is an effective tool for the study of etiology. However, 
metabolites that have a causal relationship with CKD screened in this 
study lack further experimental verification and exploration of their 
specific mechanisms, which also needs to be  further improved in 
this study.

5 Conclusion

As a result of MR analysis, 78 metabolites were found to have 
causal relationships with CKD or its related indicators. After 
Bonferroni correction, mannose, N-acetylornithine, glycine, and 
bilirubin (Z, Z) remained robust. Eight metabolic pathways were 

identified after enrichment analysis of metabolic pathways related 
to CKD occurrence and progression. It is these metabolites and 
their subsequent metabolic pathways that can be used to identify 
high-risk patients in the early stages of CKD and take preventative 
measures or to prevent the progression of CKD later on. In addition, 
it provides direction for further research on the etiology and 
pathogenesis of CKD.
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TABLE 3 Results of validation MR analysis.

Exposure Method nSNP B SE Pval Lo_CI Up_CI OR OR_Lo_
CI95

OR_Up_
CI95

Mannose

Inverse-variance 

weighted
35 −0.007835 0.001393 1.86E-08 −0.010565 −0.005104 0.992196 0.989491 0.9949087

Mannose MR-Egger 35 −0.009861 0.003263 0.004826 −0.016257 −0.003466 0.990187 0.983875 0.9965405

Mannose Weighted median 35 −0.006214 0.00153 4.89E-05 −0.009213 −0.003215 0.993805 0.990829 0.9967902

N-alpha-

acetylornithine

Inverse-variance 

weighted
20 0.0066402 0.002759 0.016084 0.001233 0.012047 1.006662 1.001234 1.0121202

N-alpha-

acetylornithine
MR-Egger 20 0.0022917 0.006314 0.72088 −0.010084 0.014668 1.002294 0.989966 1.0147759

N-alpha-

acetylornithine
Weighted median 20 0.0012664 0.001446 0.381061 −0.001567 0.0041 1.001267 0.998434 1.0041084

N-delta-

acetylornithine

Inverse-variance 

weighted
53 −0.005601 0.000447 4.94E-36 −0.006477 −0.004725 0.994414 0.993544 0.9952858

N-delta-

acetylornithine
MR-Egger 53 −0.006901 0.000669 4.44E-14 −0.008212 −0.00559 0.993123 0.991821 0.994426

N-delta-

acetylornithine
Weighted median 53 −0.006074 0.000546 8.53E-29 −0.007143 −0.005005 0.993944 0.992882 0.9950076

Glycine

Inverse-variance 

weighted
56 −0.009993 0.000708 3.13E-45 −0.011381 −0.008606 0.990056 0.988683 0.9914313

Glycine MR-Egger 56 −0.014202 0.000991 4.84E-20 −0.016144 −0.012259 0.985899 0.983985 0.9878159

Glycine Weighted median 56 −0.011306 0.000658 4.25E-66 −0.012596 −0.010015 0.988758 0.987483 0.9900348

Bilirubin (Z, Z)

Inverse-variance 

weighted
61 −2.87E-05 0.00046 0.950196 −0.00093 0.000873 0.999971 0.99907 1.0008733

Bilirubin (Z, Z) MR-Egger 61 0.0006046 0.000753 0.425441 −0.000872 0.002081 1.000605 0.999129 1.0020831

Bilirubin (Z, Z) Weighted median 61 −0.000362 0.000538 0.501106 −0.001416 0.000692 0.999638 0.998585 1.0006927
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