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Introduction

The health emergency resulting from the COVID-19 pandemic has come to an end, as
announced by the World Health Organization (WHO) on 5 May this year. Three years
after the onset of this health emergency, the WHO said that although the emergency
phase is over, the pandemic is not over. However, the sequelae caused by the SARS-CoV-2
virus continue, the fact that patients experience symptoms after recovery from acute
infection is not unexpected and is associated with an increased risk of post-infectious
sequelae, known as persistent COVID or post-acute sequelae of COVID-19. These sequelae
may present with various long-lasting symptoms in the absence of active infection,
these symptoms include: the presence of musculoskeletal pain, aging fatigue, mood
disturbance, and neurocognitive difficulties (1–4). Currently, persistent COVID does not
have effective validated treatments; it is a multifactorial pathology, in which the literature
mentions some causes, such as persistence of SARS-CoV-2 reservoirs in body tissues
(5, 6); immune dysregulation with or without reactivation of the underlying pathogens
(7, 8), the emergence of the Epstein-Barr virus or the human herpesvirus-6 (9–12),
microbiota conditions derived from the SARS-CoV-2 attack (6, 13–15), autoimmunity
(6, 16–18), microvascular blood coagulation with endothelial dysfunction (6, 19–21)
as well as dysfunctional signaling in the brainstem and/or vagus nerve (6, 22, 23),
this combined with risk factors such as type 2 diabetes mellitus, sex (mainly female),
ethnicity (of Latino origin), socioeconomic factors (low income), exposure to COVID-19
reinfection, the presence of specific antibodies, connective tissue disorders, and attention
deficit hyperactivity disorder, however, one third of people with persistent COVID have
no preexisting conditions identified (23). Redox abnormalities that occur in persistent
COVID are due to functional instability of the mitochondria in addition to alterations
in the oxidative stress pathways (24, 25), not leaving aside the presence of a chronic
hyperinflammatory condition (26). A lifestyle that involves a lower intake of ultraprocessed
and processed foods, daily exercise, and the inclusion of nutritional supplements rich
in carotenoids, omega 3, or flavonoids can help in the treatment of persistent COVID.
Specifically, flavonoids are a group of natural polyphenolic substances naturally present in
different flowers, fruits, vegetables, seeds, and beverages derived from plants such as tea and
red wine, which are considered responsible for their characteristic color (27). Quercetin
belongs to the classification of flavonoids, and its beneficial functions are associated
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with its chemical structure, which gives it antioxidant properties.
Quercetin neutralizes free radicals such as superoxide anions,
nitric oxide, and peroxynitrites (see Figure 1) (28, 29). It can
inhibit enzymes such as xanthine oxidase, lipoxygenase, and
NADPH oxidase, preventing cell death; in addition, it increases the
production of endogenous antioxidants (30, 31). Derived from the
antioxidant, anti-inflammatory, hypoglycemic and hypolipidemic
properties of Quercetin, it is a good alternative for the treatment of
Type 2 diabetes mellitus (T2DM). By reducing the concentration of
glucose levels in the blood, it preserves the function of islet cells,
increases the number of pancreatic β-cells, reduces dyslipidemia,
increases insulin level and reduces damage from oxidative stress
(increases the activity of catalase and heme oxygenase enzymes)
(32, 33). Evidence of quercetin administration in diabetic mice
for 10 days at 10–15 mg/kg shows a reduction in peripheral
blood glucose and triglyceride levels, as well as increased enzyme
activity of hexokinase and glucokinase (34). Mahadev et al. (35)
recommends that the consumption of Quercetin (15–100 mg/kg)
should be for a period of 14–70 days to be considered as a
potential alternative in the treatment of T2DM. Quercetin has
been shown to bring health benefits with respect to age-related
diseases, such as neurodegenerative diseases, age-related macular
degeneration, bone metabolism diseases, cardiovascular diseases,
cancer, as well as having anti-inflammatory and hepatoprotective
functions (33, 36–42).

Oxidative stress in persistent COVID

The oxidative stress that occurs in COVID-19 is related to the
cytokine storm, the coagulation mechanism, and the exacerbation
of hypoxia; elevated inflammatory and oxidative state in the
pathology triggers mitochondrial oxidative stress and dysfunction,

FIGURE 1

Oxidative damage and role of quercetin.

which contributes to dysbiosis or imbalance of the balance
of the intestinal microbiota, increasing the inflammatory and
oxidative response (43–45). Viral infections alter the antioxidant
mechanisms, generating a pro-oxidant action, leading to an
unbalanced oxidative-antioxidant state and consequent oxidative
cell damage (45). Viral infection through SARS-CoV-2 allows
the innate immune system to identify infection through pattern
recognition receptors (PRRs); these involve toll-like receptors
(TLRs), which trigger a pro-oxidant response of macrophages,
resulting in activation of the TNF-α and NADPH-oxidase in
leukocytes, as well as mediating the production of reactive oxygen
species (ROS) (46). In subjects with persistent COVID, the
hyperinflammatory state involves systemic disturbances in the host,
such as iron dysregulation that manifests itself as hyperferritinemia
associated with disease severity, which induces ROS production
promoting oxidative stress (47). The enzyme nitric oxide synthase
induces in neutrophils the production of oxygen free radicals
capable of combining with nitric oxide (NO) to generate the
compound peroxynitrite; neutrophilia generates an excess of ROS
that exacerbates the host’s immunopathological response, resulting
in more severe disease (46, 47).

Quercetin and persistent COVID

Quercetin has antioxidant, anti-inflammatory,
anticarcinogenic, and immunoprotective functions because it
promotes mitochondrial biogenesis, inhibits lipid peroxidation,
inhibits capillary permeability, and inhibits platelet aggregation;
in viral infections inhibits the binding of viral capsid proteins and
controls the production of proteases and polymerases (48, 49).
Specifically, SARS-CoV-2 inhibits enzymes involved in virus
replication (49–51). Quercetin alters the expression of 30% of
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genes encoding SARS-CoV-2 target proteins in human cells,
potentially interfering with the activities of 85% of SARS-CoV-2
proteins (52). Quercetin inhibits protein disulfide isomerase (PDI),
which is the enzyme involved in platelet-mediated thrombin
formation, thus improving the coagulation abnormalities that can
be found in subjects with persistent COVID (53). Quercetin has
been shown to be an effective inhibitor against several viruses in
vitro, such as rhinovirus serotypes, echovirus (type 7, 11, 12 and
19), coxsackievirus (A21 and B1), poliovirus (type 1 Sabin) at
a minimum inhibitory concentration of 0.03–0.5µg/ml in Hela
or WI-38 cells (54). Quercetin significantly reduces RNA and
DNA replication in herpes simplex virus 1 (HSV-1), parainfluenza
type 3, polio type 1, showing anti-infectious and anti-replicative
properties (55). Studies have shown that it inhibits HeLa cell
replication inoculated with cytomegalovirus (CMV) at a mean
inhibitory concentration of 3.2 ± 0.8µM (56); work has been
done on the replication of dengue virus type 2 (DENV-2) in Vero
cells and in which Quercetin inhibited at a mean concentration
of 35.7µg/ml, causing a DENV-2 RNA reduction of 67%. This
is attributed to the ability to block viral entry or inhibit viral
replication enzymes, such as viral polymerases (57, 58). A mixture
of Quercetin with Vitamin C can disrupt virus entry, replication,
enzymatic activity, and assembly, while seeking to strengthen the
immune response by promoting early IFN production, modulating
interleukins, promoting T-cell maturation and phagocytic activity
(58). Quercetin seeks to inhibit SARS 3CL protease by binding
to its GLN189 site, which is expressed similarly in SARS-CoV-2,
thus providing the mechanism for its experimental clinical use, in
addition to its own immunomodulatory and anti-inflammatory
actions (59, 60). It is important to mention that Quercetin can
be found in foods and beverages of vegetable origin (grapes, red
onion, broccoli, grapefruit, apples, cherries, green tea and red
wine), it represents 60%−75% of the total flavonols consumed,
its half-life in humans has been estimated to be 31–50 h, with a
peak plasma concentration half an hour after consumption and
another 8 h after 100mg ingestion (61). However, the amount of
Quercetin contained in the plant is conditioned by several factors:
(a) the part of the plant in which it is found, the majority in the
external areas; (b) the time of the year in which it develops, in
summer and with greater exposure to the sun there will be more
flavonoids, warm climates favor the synthesis of Quercetin; (c)
the more mature the fruit, the higher the Quercetin content;
(d) the process of preparation and processing of the food also
has an influence, the fact that cooking these plants can reduce
the amount of Quercetin they possess, in addition, it is also
lost by removing the skin of the fruit or vegetable. The low
bioavailability of Quercetin and its poor solubility are limitations
to its use leading to the reduction of the antioxidant power
it possesses; restricted transport across biological barriers and
transient retention are challenges to overcome, and an alternative
to the above is the use of nanotherapy. The use of conjugates and
nanocarriers based on different materials is an option to consider
for Quercetin; these nanocarriers have been used with natural
compounds such as Ginkgo Biloba as well as targeted drugs for
neurodegenerative diseases (62–64); these nanoparticles can be
organic or inorganic, organic materials (liposomes, micelles, and
polymeric nanoparticles) stand out for being compatible and

degradable in their entirety. Inorganic nanoparticles (iron oxide
nanoparticles, gold nanoparticles, and silica nanoparticles) have
smaller size, stability, higher permeability, and a controlled release
period (65–67).

Conclusion

In conclusion, we can say that the current prevalence of
persistent COVID symptoms is striking, due to oxidative stress
that plays an important role in the progression of this pathology.
The use of antioxidants for the elimination of free radicals is an
appropriate strategy, considering that in recent decades the intake
of substances with antioxidant properties, such as quercetin, has
increased; this increase in consumption can be achieved through
diet or using food supplements with higher concentrations of
the flavonoid than those naturally occurring in food. It is worth
mentioning the role played by quercetin in the reduction of
viral load, decrease in the release of pro-inflammatory cytokines,
reduction of ROS, decrease in mucus production, with respect
to the above we can say that it increases the resistance of the
respiratory tract; moreover, quercetin has not yet shown any
harmful effects in humans at a maximum dose of 1,500mg
per day.
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