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Integrative polygenic analysis of 
the protective effects of fatty acid 
metabolism on disease as 
modified by obesity
Courtney Astore  and Greg Gibson *
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Atlanta, GA, United States

Dysregulation of fatty acid metabolites can play a crucial role in the progression 
of complex diseases, such as cardiovascular disease, digestive diseases, and 
metabolic diseases. Metabolites can have either protective or risk effects on 
a disease; however, the details of such associations remain contentious. In 
this study, we demonstrate an integrative PheWAS approach to establish high 
confidence, causally suggestive of metabolite–disease associations for three 
fatty acid metabolites, namely, omega-3 fatty acids, omega-6 fatty acids, 
and docosahexaenoic acid, for 1,254 disease endpoints. Metabolite–disease 
associations were established if there was a concordant direction of effect 
and significance for metabolite level and genetic risk score for the metabolite. 
There was enrichment for metabolite associations with diseases of the 
respiratory system for omega-3 fatty acids, diseases of the circulatory system 
and endocrine system for omega-6 fatty acids, and diseases of the digestive 
system for docosahexaenoic acid. Upon performing Mendelian randomization 
on a subset of the outcomes, we  identified 3, 6, and 15 significant diseases 
associated with omega-3 fatty acids, omega-6 fatty acids, and docosahexaenoic 
acid, respectively. We then demonstrate a class of prevalence-risk relationships 
indicative of (de)canalization of disease under high and low fatty acid metabolite 
levels. Finally, we show that the interaction between the metabolites and obesity 
demonstrates that the degree of protection afforded by fatty acid metabolites 
is strongly modulated by underlying metabolic health. This study evaluated the 
disease architectures of three polyunsaturated fatty acids (PUFAs), which were 
validated by several PheWAS modes of support. Our results not only highlight 
specific diseases associated with each metabolite but also disease group 
enrichments. In addition, we demonstrate an integrative PheWAS methodology 
that can be applied to other components of the human metabolome or other 
traits of interest. The results of this study can be  used as an atlas to cross-
compare genetic with non-genetic disease associations for the three PUFAs 
investigated. The findings can be explored through our R shiny app at https://
pufa.biosci.gatech.edu.
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1 Introduction

The human body contains thousands of circulating metabolites 
that are critical for maintaining homeostasis across several vital 
pathways. Because metabolites serve as mediators supporting energy 
metabolism for metabolic pathways, they can be evaluated as possible 
biomarkers and therapeutic targets of disease (1, 2). Additionally, 
metabolites can also be referred to as endophenotypes, which serve as 
intermediate phenotypes affected by environmental exposures that 
influence the risk of diseases (3). Although it is evident that 
dysregulation of metabolites can yield disease, comprehensive 
significant exposure-outcome associations are yet to be evaluated.

Essential polyunsaturated fatty acids (PUFAs) have long been 
investigated for their roles in development and disease progression. It 
is generally acknowledged that omega-3 fatty acids, particularly 
α-linolenic (ALA), eicosapentanoic (EPA), and docosahexanoic 
(DHA) acids, are anti-inflammatory and, to some extent, protective 
with respect to multiple classes of disease, including autoimmune, 
cardiovascular, neuropsychiatric disease, and cancer (4–7). However, 
recent meta-analyses of the effects of dietary supplementation have 
failed to find significant replicated benefits (8–10). Consequently, 
support for widespread adoption by healthy individuals is lacking, and 
conversely, there is some concern that they may be harmful in excess, 
for example, inducing gastrointestinal bleeding or atrial fibrillation (cf. 
11, 12). Alternatively, it is also clear that Western diets have recently 
greatly elevated the ratio of omega-6 to omega-3 PUFAs, and since the 
former increases the production of inflammatory cytokines of the 
prostaglandin and eicosanoid families, a detrimental effect of modern 
diet is implicated. Plant oils are a primary source of ALA, which can 
be elongated in the body to generate DHA, which is also enriched in 
certain fish oils. PUFAs also indirectly regulate disease risk through 
modulation of the gut microbiome (13, 14), which, in turn, influences 
immune and mental health.

Historically, relationships between PUFAs and disease have been 
explored through correlational disease-specific studies, asking 
whether there is a mean difference between the abundance of a 
specific metabolite and the condition. Such studies do not allow 
inference of causation, since correlations may be due to confounders, 
with which the metabolite is itself correlated, or differences may arise 
after the onset of the pathology. Genetic associations bring us a step 
closer to causation, as a difference in mean polygenic score that 
predicts metabolite abundance between cases and controls should not 
be  influenced by confounding exposures. Even more directly, 
Mendelian randomization (MR) studies have recently attracted much 
attention, as they evaluate the genetic effect of modifiable exposure, 
such as metabolites, on an outcome (15–17). MR tests the hypothesis 
that there is a correlation between the effect size of genetic variants on 
metabolite levels and the effect size of those variants on disease. There 
are assumptions about MR genetic instruments, including that they 
must be associated with the exposure trait, that they are not associated 
with the outcome trait via another mechanism, and that the 
association with the outcome occurs only through exposure. Rejection 
of the null that there is no such correlation, after correction for 
possible influences of pleiotropy, provides strong evidence that the 
metabolite is causally implicated in disease risk or prevention.

To date, several dozen studies have used MR to evaluate the role 
of PUFAs in a variety of diseases. We and others used more than two 
dozen genetic instruments associated with omega-3 fatty acids (ω3FA) 

at genome-wide significance levels, to establish that ω3FA protected 
against the onset of inflammatory bowel disease (15, 18, 19). Since a 
high ratio of ω6 to ω3 was found to elevate risk, this analysis provided 
further evidence for the anti-inflammatory benefits of ω3FA, and this 
conclusion also applies to protection against atopic dermatitis (20) and 
severe COVID-19 (21). Similarly, MR has shown that ALA, but not 
EPA or DHA, is protective against ischemic stroke (22), as well as 
certain types of cancer (23, 24) (esophageal, colorectal, and lung) but 
not others (reproductive, nervous system, or blood), and has also 
questioned whether ω3FA protect against major depression, 
schizophrenia, or anorexia nervosa (25–27) or various cardiovascular 
disease endpoints (28). Conversely, it has also been suggested that 
ω3FA may be a risk factor for epilepsy (29). Given widespread beliefs 
that ω3FA provides protection against many diseases, there is a 
pressing need for a well-powered genetic evaluation of causality.

Large-scale biobank studies provide an opportunity to perform 
such evaluations in a relatively unbiased manner (30). Here, we utilize 
the UK Biobank cohort study of over 500,000 United  Kingdom 
residents to evaluate PUFA-disease associations with over 1,300 
diseases. We restrict our analyses to white British (European ancestry) 
subjects to avoid complications of population stratification, and after 
quality control, we  identified over 190,000 individuals with ω3FA, 
ω6FA, and DHA abundance data and whole genome genotypes and 
used four approaches to evaluate metabolite-disease associations: 
direct measurements, polygenic risk score (PRS) association, MR, and 
PRS-by-obesity interactions. Hereafter, we use PRS-d to refer to the 
polygenic risk score for a disease and PGS-m to refer to the polygenic 
score for a metabolite. We find that the three PUFA measures are all 
overwhelmingly protective for upward of 170 different conditions but 
with differing enrichments for respiratory, endocrine/metabolic, and 
gastroenterological diseases. Furthermore, genetic mediation of 
protection shows unexpectedly high modulation by obesity status, 
which sometimes overwhelms the genetics and sometimes exacerbates 
it differently for waist-to-hip ratio (WHR) and body mass index (BMI) 
stratification. We interpret these findings in the context of canalization 
of the evolved risk of disease (31, 32).

2 Materials and methods

2.1 Study cohort

Participants were ascertained from the UK Biobank (UKB), a 
cohort study of approximately 500,000 individuals from the 
United Kingdom and multiple ancestries, although predominantly 
European ancestry. For this analysis, previously imputed genotype and 
phenotype data were utilized. Analysis of the UKB data was performed 
under the approval of project number 17984.

The imputed genotype data, released in May 2017, covering 96 
million variants, were extracted and filtered for bi-allelic variants, 
imputation score > 0.9, MAF > 1%, Hardy–Weinberg equilibrium value 
of p >10−10, and missing rate < 5%. This resulted in approximately 8 
million SNPs observed in 487,409 individuals.

Individual-level phenotype data, covering clinical outcomes, 
quantitative measurements, and touch-screen responses, were 
extracted from the UKB Data Showcase in November 2023. 
We restricted the analyses to unrelated (no kinship found; field ID: 
22021), white British (field ID: 22006) individuals whose genetically 

https://doi.org/10.3389/fnut.2023.1308622
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Astore and Gibson 10.3389/fnut.2023.1308622

Frontiers in Nutrition 03 frontiersin.org

assessed sex (field ID: 22001) was the same as their self-reported sex 
(field ID: 31) and individuals who do not have sex chromosome 
aneuploidy (field ID: 22019). In addition, we restricted the cohort 
analyses to individuals having phenotypic information for the selected 
covariates, such as age (field ID: 21022), sex (field ID: 31), first 10 PCs 
(field ID: 22009 a{1:10}), BMI (field ID: 21001), waist circumference 
(field ID: 48), and hip circumference (field ID: 49). Individuals who 
had elected to withdraw from the UKB study at the time of data 
accession were excluded. This resulted in 276,169 individuals after the 
imputed genotype and phenotype data quality control (QC). A 
preliminary analysis was also performed on 121,643 members of the 
cohort whose metabolite data were available in 2022 and that included 
siblings and other individuals with kinship.

2.2 UKB fatty acid metabolite levels

There are approximately 280,000 individuals in the UKB with 
reported metabolite levels after the September 2023 data release. Of 
these, we  analyzed only individuals with genotypes, passing the 
sample QC filters, which resulted in a sample size of 101,793. 
Metabolite levels were extracted for ω3FA (field ID: 23444), ω6FA (field 
ID: 23445), and DHA (field ID: 23450). In addition, the metabolite 
level QC flags were extracted for ω3FA (field ID: 23744), ω6FA (field 
ID: 23745), and DHA (field ID: 23750). If a QC flag field for a given 
metabolite reported a warning (e.g., unknown contamination), that 
metabolite level for the individual was removed. We had 155,486, 
155,494, and 155,476 individuals passing QC for ω3FA, ω6FA, and 
DHA, respectively. For individuals with more than one reporting of 
the metabolite level, the median of the levels was taken. A metabolite 
Z-score for the metabolite level was evaluated using the following 
formula: z x

=
- m
s , where x  is the median metabolite level for an 

individual, m  is the mean of the median metabolite levels in the 
sample, and s  is the standard deviation of the median metabolite level.

2.3 UKB disease cohorts

ICD-10 summary diagnosis codes were extracted from UKB to 
create case and control cohorts using the case inclusion and control 
exclusion criteria for each disease-specific phenotype code (phecode) 
using the phecode mappings1 (33). There were 1,755 potential disease 
endpoints to assess; however, only diseases with at least 50 cases were 
analyzed, which resulted in the evaluation of 1,254 diseases and 
disease sub-types.

2.4 Non-genetic associations of fatty acid 
metabolites and diseases

Logistic regression models were implemented to assess the 
association between each Z-scoreMetabolite and disease phecode (case 
versus control). Age, sex, age2, and the first 10 global genotypic 
principal components were included in the model as covariates.

1 https://phewascatalog.org

 

Disease status Zscore age
sex age PC PC

Metabolite ~ +

+ + + +¼+2
1 10

2.5 Genetic associations of fatty acid 
metabolites and diseases

Supplementary Table S1 summarizes the details, including the 
sample size, population, and references for each GWAS summary 
statistic utilized. The Bayesian approach to PRS calculation, PRScs 
(34), was used, estimating posterior SNP effect sizes under continuous 
shrinkage (CS) priors for each GWAS summary statistic using the UK 
BioBank European linkage disequilibrium (LD) reference panel.2 The 
inferred posterior effect sizes were then used to generate PGS-m or 
PRS-d across chromosomes using PLINK’s score function and then 
summed for each individual (35). Logistic regression models were 
performed to assess the association between each scaled polygenic 
score for the metabolite (PGS-m) and disease phecode (case versus 
control). Age, sex, age2, and the first 10 global principal components 
were included in the model as covariates.

 Disease status PGS age sex age PC PCm ~ + + + + +¼+2
1 10

2.6 Assessment of suggestive fatty acid 
metabolite—disease associations

A multiple testing value of p threshold of 6.65 × 10−6 (0.05/(1,254 
(number of diseases)*(3 (PUFA metabolites)*2 (Z-score and 
PGSMetabolite)))) was applied for assessing the significance of the 
metabolite-disease non-genetic and genetic associations. A fatty acid 
metabolite-disease association was inferred if there were overlapping 
significant non-genetic and genetic associations with concordant 
directions of effect (OR > 1 = Risk or OR < 1 = Protective).

2.7 Evaluation of phenotypic differences 
across fatty acid metabolites

Concordant and discordant disease associations across the three 
metabolites were evaluated to identify shared diseases and diseases 
unique to each metabolite. A relative risk (RR) score for each disease 
group was computed for each metabolite to determine if the 
metabolites have distinct disease areas of association. The RR was 
computed by evaluating the number of significant diseases in a disease 
group (Nsignificant diseases in group   ), the total number of significant 
diseases (Nsignificant diseases ), the total number of diseases in the group 
(Ndiseases in group  ), and the total number of diseases (Ntotal diseases ). 
The calculation is as follows:

2 https://www.dropbox.com/s/t9opx2ty6ucrpib/ldblk_ukbb_eur.tar.gz
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A multiple testing value of p threshold was applied to control 15 
disease groups with at least 1 significant disease, such as a value of p 
threshold of 0.0033 (0.05/15).

2.8 MR evidence of suggestive fatty acid 
metabolite—disease associations

There were 184 unique significant diseases across the 3 fatty acid 
metabolites. Each of the 184 diseases was manually mapped by its 
name to a well-powered GWAS summary statistic available in the 
OpenGWAS database (36). These diseases were mapped based on 
having an exact match as per the phecode name or by having a 
synonymous or close disease term. Information on the exposure 
(metabolite) and outcome (disease) GWAS summary statistics (e.g., 
trait name, sample size, etc.) used for performing MR can be found in 
Supplementary Table S1. Two-sample Mendelian randomization (17) 
was performed to assess the causal association between the three 
metabolites as exposures and the 184 diseases as outcomes. The same 
MR and the instrumental variable outlier detection and removal 
approaches described in our previous study were applied (15). A 
nominally significant p-value threshold of 0.05 was applied using the 
inverse variance weighted (IVW) MR method to determine significant 
associations (16). We  also applied the weighted median test and 
highlighted associations with both IVW and weighted median signal 
in the resulting figure. Because the suggestive fatty acid metabolite-
disease associations were all protective, we  only assessed MR 
associations with OR < 1. The OR of the suggestive and causal 
associations for each metabolite was then compared.

2.9 Canalization of PUFA metabolites on 
disease

To assess the dependency of PUFA metabolites on disease, 
we  adapted an approach defined by Nagpal et  al. (32), to assess 
potential canalizing effects. Canalization of the PUFA metabolites on 
disease was evaluated for a few metabolite-disease associations with 
metabolite, metabolite PGS, and MR support. The PRS-d for 
cholelithiasis, major depressive disorder, and diabetic retinopathy was 
computed using the same approach as the metabolites. The GWAS 
summary statistics from which the variant weights were derived are 

presented in Supplementary Table S1. These diseases were selected as 
they had not only non-genetic and genetic support for at least one of 
the metabolites but also MR support. Specifically, we  evaluated 
canalization for the following associations: cholelithiasis and ω3FA, 
major depressive disorder and ω3FA, cholelithiasis and ω6FA, diabetic 
retinopathy and ω6FA, cholelithiasis and DHA, and major depressive 
disorder and DHA. To evaluate canalization of the PUFA metabolites 
on disease, the cohort was first dichotomized by the Z-scoreMetabolite, 
whereby high (Z-scoreMetabolite ≥ μMetabolite) and low groups 
(Z-scoreMetabolite < μMetabolite) were defined by being above or below the 
mean, respectively. Next, the prevalence for the disease was computed 
for 100 bins of the PRS-d for the high and low cohorts. We  then 
evaluated the PRS-d percentile versus the prevalence of the disease for 
high/low PUFA metabolite.

2.10 Interaction between PUFAs and body 
weight measurements on disease

BMI (field id: 21001), waist circumference (field id: 48), and hip 
circumference (field id: 49) were extracted from the UKB. For 
individuals with more than one reporting the body weight 
measurement, the median of the available measurements was taken. 
Next, the waist-to-hip ratio was computed using the median values 
for waist circumference and hip circumference (i.e., waist 
circumference/hip circumference). A Z-score was evaluated for 
BMI and waist-to-hip ratio using the following formula: 

body weight measurement
xZ score - m

- =
s

, where x  is the median 
measurement, m  is the mean of the median measurement, and Ã is 
the standard deviation of the measurement. To evaluate the genetic 
and non-genetic interactions of the suggestive metabolite-disease 
associations, the associations were then subjected to logistic 
regression models, assessing the interaction between the genetic 
(PGSm) and exposure (Z-scoreMetabolite) effects with the two body 
weight measurements, BMI and waist-to-hip ratio on the outcome 
disease. The constructed models were as follows:

 

Disease status PGS Z score

PGS Z

m Body weight measurement

m

~ + -
+ * - sscore

age sex age PC PC

Body weight measurement

+ + + + +¼+2
1 10

 

Disease status Z score

Z score

Metabolite

Body weight measur

~ -
+ - eement Metabolite

Body weight measurement

Z score Z

score ag

+ - *

- + ee sex age PC PC+ + + +¼+2
1 10

In addition, we ran the same models using obesity status for BMI 
and WHR, instead of the Z-scoreBody weight measurement. The cohort was 
divided into two cohorts for each body weight measurement, BMI and 
WHR, defining obese and non-obese by standard cutoff values. The 
BMIObese group had individuals with a BMI > 30, while the BMINon-obese 
group comprised individuals with a BMI ≤ 30 (37). The WHRObese 
group had individuals with a WHR > 0.85 for women and WHR > 0.95 
for men, and the WHRNon-obese group had individuals with a 
WHR ≤ 0.85 for women and a WHR ≤ 0.95 for men (38).
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2.11 Canalization of body weight 
measurements and obesity on PUFA 
metabolites and the impact of it on disease

A set of disease-metabolite associations identified by the 
aforementioned interaction models, assessing PUFA metabolites 
and weight measurements on disease, were further used to assess 
the potential events of canalization of the body weight 
measurements on PUFA metabolites and the impact of it on disease. 
Specifically, type 2 diabetes and ω3 fatty acids, obstructive chronic 
bronchitis and ω3FA, type 2 diabetes and DHA, chronic obstructive 
bronchitis and DHA, and diaphragmatic hernia and DHA. The 
cohort was divided into two sets for each body weight measurement, 
with BMI and WHR defined as obese and non-obese using standard 
cutoffs reported in the previous section. The prevalence for the 
disease was computed for 100 bins of the PGSMetabolite for the obese 
and non-obese body weight measurement cohorts. To quantify 
canalization, we  first computed delta observed, which is the 
difference between the extreme 2% right and left tail differences of 
the obese and non-obese groups. We then computed delta expected, 
which is the difference between the right and left tail differences, 
simulating the disease prevalence for 10 iterations and assuming 
equal variance in each percentile group. These two values were then 
used to compute delta departure, a scaled estimate of the departure 
between observed delta and expected delta, a measure of 
canalization. More information on this approach is explained in the 
study by Nagpal et al. (32).

3 Results

3.1 Direct clinical and polygenic PUFA—
disease associations

Assessment of the direct association of three PUFAs with over 
1,200 prevalent diseases or clinical conditions revealed that DHA was 
the most associated, followed by ω6FA and ω3FA. A total of 170 
significant (p-value <6.65 × 10−6) disease associations with ω3FA were 
observed, of which 165 were protective associations (OR < 1) and 5 
were risk associations (OR > 1). The five risk associations for ω3FAs 
were uterine leiomyoma (OR = 1.08; 95% CI: 1.05–1.11; 
p-value = 1.07 × 10−6), hyperlipidemia (OR = 1.10; 95% CI: 1.07–1.14; 
p-value = 8.19 × 10−11), hypercholesterolemia (OR = 1.11; 95% CI: 
1.09–1.13; p-value = 1.47 × 10−44), mixed hyperlipidemia (OR = 1.36; 
95% CI: 1.19–1.54; value of p = 1.91 × 10−6), and gout (OR = 1.13; 95% 
CI: 1.09–1.18; value of p = 7.97 × 10−10). Similarly, 236 significant 
disease associations were observed for ω6FAs, all of which were 
protective. There were 285 significant disease associations with DHA, 
of which 284 were protective associations and 1 was risk association, 
for contracture of palmar fascia [Dupuytren’s disease] (OR = 1.12; 95% 
CI: 1.07–1.18; p-value = 3.25 × 10−7). The summary statistics for the 
significant non-genetic disease associations for ω3FAs, ω6Fas, and 
DHA are demonstrated in the “Disease-Metabolite level associations” 
tab on https://pufa.biosci.gatech.edu and Supplementary Table S2. 
Notably, 22.4% of the significant DHA non-genetic protective disease 
associations did not overlap with those detected with ω3FAs or ω6FA, 
while ω6FA and ω3FA only yielded 14.7 and 0.6% of unique disease 
associations, respectively.

Next, we  evaluated whether the PGS for each metabolite was 
associated with the diseases. The results were strongly concordant with 
the direct clinical assessments, but since only ~50% of each metabolite 
level is explained by the PGS, fewer associations were observed. There 
were 33 significant (p-value <6.65 × 10−6) diseases for ω3FA, of which 
31 were protective associations (OR < 1) and 2 were risk associations 
(OR > 1). The two risk associations for ω3FA genetics were 
hyperlipidemia (OR = 1.13; 95% CI: 1.10–1.17; p-value = 6.5 × 10−16) 
and hypercholesterolemia (OR = 1.13; 95% CI: 1.11–1.14; 
p-value = 1.5 × 10−65). There were 50 significant diseases for ω6FA, of 
which 48 were protective associations and 2 were risk associations. 
The two risk associations were also hyperlipidemia (OR = 1.07; 95% 
CI: 1.04–1.05; value of p = 2.0 × 10−6) and hypercholesterolemia 
(OR = 1.10; 95% CI: 1.08–1.11; p-value = 9.0 × 10−42). Additionally, 139 
significant disease associations were detected for DHA, of which 138 
were protective associations and 1 was risk association, for prostate 
cancer (OR = 1.06; 95% CI: 1.04–1.09; p-value = 2.3 × 10−6). The 
summary statistics for the significant genetic disease associations for 
ω3FA, ω6FA, and DHA are presented in https://pufa.biosci.gatech.edu 
on the “Disease-Metabolite PGS associations” tab and 
Supplementary Table S3. With the non-genetic associations, 58.5% of 
the DHA PGS associations were distinct from those observed with 
ω3FA and ω6FA. In contrast, 99.3% of the ω3FA genetic disease 
associations overlapped with either ω6FAs or DHA, while 4.8% of 
ω6FA genetic disease associations were unique to ω6FA levels.

Additionally, we  characterized the directional similarity of 
protective disease associations, which is significant for both the 
clinical and genetic assessments. Figure 1A shows the 31, 47, and 136 
cases for ω3FAs, ω6FAs, and DHA, respectively. Despite the large 
number of ω3FA and ω6FA indications, DHA has an additional 58% of 
its associations as distinct. Strong overlap, as shown in Figure 2A, is 
expected since the correlation of the three PUFA polygenic scores is 
greater than 0.85 for ω3FAs and DHA and approximately 0.4 for ω6FAs.

Enrichment for associations in each of the 15 disease groups was 
quantified for each metabolite by computing a relative risk (RR) score 
defined as the ratio of the proportion of significant diseases due to the 
group, to the proportion of each group in the total number of diseases 
(see Methods section). These scores are presented in Figures 2B–D for 
each metabolite, and the cross-correlations are presented as a circos 
plot in Figure  2E. Notably, ω3FAs were enriched for endocrine/
metabolic and respiratory conditions, and DHA was enriched for 
digestive diseases, while ω6FAs were more likely to be attributed to 
diseases of the circulatory and endocrine/metabolite systems. Overall, 
neoplasms and musculoskeletal disorders were under-represented, as 
they were not significantly impacted by PUFA metabolites. While 
mental health disorders are also generally not associated, below we do 
explore the impacts of the metabolites on major depression.

3.2 Body weight by PUFA interaction 
influencing disease prevalence

For each of the diseases associated with both metabolite and 
PGS-m measures, we next asked whether these associations are a 
function of two measures of body weight and obesity cutoffs, by fitting 
logistic regression models and evaluating the significance of 
the interaction terms. These results are presented in 
Supplementary Figure S1, where we  show the diseases for each 
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metabolite that were nominally significant from the interaction model 
and also significant for metabolite and PGS-m measures. BMI is the 
ratio of mass-to-zheight-squared and is thought to relate more to 
eating behavior since GWAS findings are enriched for neuronally 
expressed genes, whereas WHR is more likely to reflect metabolic 
gene function (39–42). The two measures are highly correlated, but a 
much higher proportion of women is characterized as obese using 
standard WHR cutoffs (Supplementary Figure S2). Nevertheless, 
significant interaction effects are overall quite similar for the two body 
weight measures when comparing metabolite and PGS-m measures.

Although ω3FAs have the fewest associations with disease, they 
engage in the greatest proportion of interactions, approximately 
one-third for both the metabolite and the ω3FA PGS as compared with 
less than a quarter for ω6FAs or DHA. In addition, it is notable that DHA 
shows more interaction effects with the genetic risk than with the 
metabolite for diseases of the circulatory system, suggesting, for 
example, that the protective effect of DHA on peripheral vascular 
disease is predicted to be a function of obesity from the genetics, but this 

interaction is offset by dietary intake of DHA. Conversely, endocrine/
metabolic disease, particularly type 2 diabetes, shows the opposite trend, 
showing a highly significant interaction between WHR or BMI and 
DHA that is less obvious for the genetic component of the metabolite.

Considering specific interaction effects, both type 1 and type 2 
diabetes seem to increase in ω3 fatty acid protective effect as weight 
(measured as either BMI or WHR) increases, but type 1 diabetes is not 
affected by interactions between body weight and DHA. Interestingly, 
hypoglycemia has strong interaction effects with ω3FA genetics. The 
only statistically strong interactions involving ω6FAs are with essential 
hypertension, and with diabetic retinopathy, explored in more detail 
in the next section. DHA and ω3FAs also show a series of genetic and 
direct metabolite interactions between obesity and multiple modes of 
respiratory disease, including chronic bronchitis, airway obstruction, 
and emphysema. A noteworthy interaction involving DHA and body 
weight is with diaphragmatic hernia. Each of these cases illustrates the 
importance of considering PUFA associations with disease as a 
function of obesity.

FIGURE 1

ω3FA, ω6FA, and DHA concordant disease associations. OR and 95% CI representing the genetic (PGS-m) and direct clinically significant protective 
disease associations for (A) ω3FAs, (B) ω6FAs, and (C) DHA.
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3.3 Mendelian randomization

Further evidence that PUFAs are causally protective against 
multiple diseases was sought by performing Mendelian randomization 
analyses using the inverse variance method (IVW) and the weighted 
median methods (14–16). Figure  3 illustrates the odds ratio per 
standard deviation of the metabolite, the PGS, or the mediating effect 
of the PGS, for each of 3 ω3FAs, 6 ω6FAs, and 15 DHA associations that 
also have nominally significant MR results. These are also summarized 
in the “Metabolite~Disease Mendelian randomization associations” 

tab on https://pufa.biosci.gatech.edu, which includes the summary 
statistics across five MR methods that have nominal 
significance (p-value <0.05). In addition, these results are also 
presented in Supplementary Table S4. Notably, in all cases, the inferred 
effect is protective. Cholelithiasis (gallstones) is causally implicated for 
ω3FAs and DHA. Major depression is specific to DHA, and ω6FAs are 
uniquely likely to be  causal for neurological and ophthalmic 
complications of both types of diabetes, and (like DHA) with diabetic 
retinopathy. In contrast, DHA is multiply connected with gastric 
diseases, with implications for dietary associations with gut health.

FIGURE 2

Overlaps of disease classes with ω3FAs, ω6Fas, and DHA. (A) Venn diagram demonstrating the overlap of significant protective clinical and genetic 
disease associations across ω3FAs, ω6Fas, and DHA. (B–D) RR implying enrichment for each indicated disease group colored by significance. (E) Circos 
plot representing the enrichment of each disease group across the three PUFA metabolites. The width of each ribbon is proportional to the number of 
significant associations between each disease class and metabolite.
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3.4 Interaction between PRS for disease 
and PUFA levels modulates disease risk

To further visualize the nature of the metabolite-PGS by body 
weight interactions reported above, we next plotted the dependency 

of disease prevalence as a function of the PRS-d in individuals in the 
top and bottom halves of the distribution of the metabolite, as shown 
in Figure 4 as contrasting results. Notably, PRSCholelithiasis, PRSMajor depressive 

disorder, and PRSDiabetic retinopathy, had p-values of 5.2 × 10−160, 0, and 
6.9 × 10−28, respectively, evaluating the PRS-d performance on 

FIGURE 3

MR-supported ω3FA, ω6FA, and DHA disease associations. OR and 95% CI representing from left to right the genetic (MR), polygenic (PGS-m), and 
clinical protective disease associations supported by all three assessments for (A) ω3FAs, (B) ω6FAs, and (C) DHA.
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FIGURE 4

(De)canalization of polygenic risk for disease via PUFA dysregulation. (A) Prevalence of cholelithiasis versus PRSCholelithiasis, dichotomized by low versus high 
Z score fatty acids- w

3
 . (B) Prevalence of major depressive disorder versus PRSMajor depressive disorder, dichotomized by low versus high Z score fatty acids- w

3
 . 

(C) Prevalence of Cholelithiasis versus PRSCholelithiasis, dichotomized by low versus high Z score fatty acids- w
6

 . (D) Prevalence of diabetic retinopathy versus 
PRSDiabetic retinopathy, dichotomized by low versus high Z score fatty acids- w

6
 . (E) Prevalence of cholelithiasis versus PRSCholelithiasis, dichotomized by low versus 

high Z scoreDHA- . (F) Prevalence of major depressive disorder versus PRSMajor depressive disorder, dichotomized by low versus high Z scoreDHA- .
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predicting the disease via logistic regression models with DHA that 
include covariates for age, sex, and 10 genotypic PCs. For cholelithiasis, 
low ω3FA, or even more strikingly DHA, is a particularly adverse risk 
factor for intermediate levels of polygenic susceptibility. For major 
depression, the disease prevalence also becomes more similar for 
individuals with low DHA and the highest polygenic risk of 
depression. These two phenomena can be regarded as examples of 
canalization of disease since higher risk does not yield the expected 
degree of increased prevalence. For diabetic retinopathy, high ω6FA is 
protective essentially, regardless of polygenic risk, but the genetic 
influence is strong in individuals with low ω6FA.

3.5 Obesity modifies the influence of 
PUFAs on disease risk

Since obesity is both a metabolic and psychological disease, and 
to some extent, PUFA levels reflect dietary consumption, we next 
decided to investigate whether PUFA impacts on disease are modified 
in obese individuals as defined by WHR and BMI. Using a similar 
strategy, we further assessed the interactions between metabolite PGS 
and disease prevalence as a function of a binary classification denoting 
obesity status for WHR or BMI. Some representative examples are 
shown in Figure 5. In each case, obese individuals have two-fold to 
four-fold higher rates of disease, but the genetic predisposition for the 
fatty acid has different effects. For example, the ω3FA PGS protection 
against chronic bronchitis is almost completely absent in obese BMI 
individuals but exacerbated in WHR obesity. This situation is inverted 
for diaphragmatic hernia since the DHA PGS is only a risk factor in 
non-obese individuals as judged by WHR. Type 2 diabetes clearly 
illustrates a case where DHA but not ω3FAs is a whole influence 
disease risk. For essential hypertension, almost half of all obese 
individuals suffer from the condition, but higher levels of DHA seem 
to be even more protective in the WHR-obese group, though BMI also 
has an unexpectedly high dependency on the PGS.

To quantify interaction effects on this framework, we computed 
the delta departure for each metabolite and body weight (obese/
non-obese) pair across the set of significant disease associations. Delta 
departure is the difference between observed and expected deviations 
in disease prevalence at the bottom and top two percentiles of the 
polygenic score for each disease (32). Because we  are assessing 
protective associations, a positive delta departure implies that the two 
curves for the obese and non-obese groups show less deviation than 
expected (which can be interpreted as canalization) while a negative 
delta departure represents greater deviation than expected (which can 
be  interpreted as decanalization). Full documentation of the delta 
observed, delta expected, and delta departure is presented in 
Supplementary Figures S3–S8, and individual cases can be viewed on 
our RShiny web application, https://pufa.biosci.gatech.edu. In 
addition, canalization results are presented in Supplementary Table S5.

This analysis shows that there is a clear distinction between 
WHR-obesity and BMI-obesity in how they modify the genetic 
influence of PUFAs on disease prevalence in the UK Biobank. Notably, 
ω3FAs and DHA have some similar patterns in this analysis, which are 
significantly different from those observed with ω6FAs, as shown in 
Figure 6. Focusing just on diseases in the digestive group (green), 
endocrine/metabolic group (blue), or the circulatory system (pink), 
there are clear tendencies with respect to the delta departure measure. 

Specifically, digestive diseases such as cholelithiasis have negative 
measures for the ω3FAs and DHA PGS, implying enhancement of the 
genetic effect regardless of the mode of obesity. For ω6FAs, those are 
circulatory conditions (including essential hypertension and coronary 
atherosclerosis) that show this decanalization tendency, whereas such 
conditions are canalized in the high BMI group.

4 Discussion

Thousands of reports have addressed the association between 
PUFA and disease, but the literature is full of conflicting conclusions 
and uncertainties. Likely reasons for variable repeatability include 
heterogeneity in study design, participant attributes, analytical 
methods, and small sample biases. Very large population biobank 
studies overcome some of these difficulties, providing a relatively 
unbiased approach to epidemiological assessment in hundreds of 
thousands of individuals in whom hundreds of associations can 
be evaluated simultaneously. Using a tiered evidence approach starting 
with measurement of ω3FAs, ω6FAs, and DHA in just over 120,000 
people reporting 1,350 different diseases or conditions, we confirm 
that ω3FAs generally and DHA specifically for the most part offer 
protection against a wide range of morbidities, as do ω6FAs, which 
may promote inflammation and metabolic disease. Then, 
incorporating genetics in the larger sample of almost 500,000 people 
reduces the number of significant associations, though it should 
be noted that polygenic scores only capture half of the variance for 
PUFA levels. Adding the stringent requirement for Mendelian 
randomization evidence reduces causal support to just 22 diseases or 
disease manifestations, which is still close to 2% of all of the 
assessments. All of our findings reported here replicate observations 
with a subset of the UKB cohort that included close relatives but only 
the first half of the metabolite release, with only minor deviations.

While writing up this study, we  became aware of a similar 
PheWAS analysis of PUFA in the UK Biobank, which was reported by 
Zagkos et al. (30) in February 2023. They emphasized the protective 
influence of ω3FAs for cholelithiasis (gallstones) and obesity, 
contrasting with the risk for coronary heart disease posed by the 
ω6FAs linoleic acid. They included a multivariable Bayesian MR 
approach to tease apart the contributions of ω6FAs and ω3FAs and 
were able to independently replicate some findings in the FinnGen 
cohort (43). While we do observe many of their significant effects, our 
approach has uncovered additional associations and includes an 
extensive evaluation of polygenic influences across exposure groups. 
Major differences between the two studies include our use of the 
Bayesian PRScs (34) approach to genetic prediction of metabolites, 
performance of PRS-d association in the entire white British UK 
Biobank cohort (they exclude individuals contributing to metabolite 
measures), adoption of PRS-d from the OpenGWAS database (36), 
and evaluation of just 3 of the 8 PUFA measures which reduce the 
multiple comparison burden, all of which will have increased statistical 
power. We think that it is useful to have two parallel, independently 
conducted analyses and would argue that instances of disagreement 
deserve more detailed follow-up with additional large cohort studies.

Unique to our analysis is the quantification of obesity-by-
metabolite interactions. Multivariable logistic regression models 
revealed that ω3FAs show fewer main effects overall than either ω6 fatty 
acids or DHA, which may be due to them being more likely to have 
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FIGURE 5

Canalization of polygenic risk for PUFAs in the context of obesity. (A) Prevalence of type 2 diabetes versus PGS fatty acidsw
3

  in 4 groups: obese BMI, 
non-obese BMI, obese WHR, and non-obese WHR. (B) Prevalence of obstructive chronic bronchitis versus PGS fatty acidsw

3
  in the four groups. 

(C) Prevalence of type 2 diabetes versus PGSDHA. (D) Prevalence of obstructive chronic bronchitis versus PGSDHA. (E) Prevalence of diaphragmatic 
hernia versus PGSDHA. (F) Prevalence of essential hypertension versus PGS fatty acidsw

3
  in the four groups.
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modulated effects in obese individuals, who constitute over a quarter 
of the sample. It also suggests that genetic influences on DHA 
production that protect against peripheral vascular disease may 
be overcome by dietary intake, which conversely has a major influence 
on type 2 diabetes risk and pathology. Very strong associations of 
ω3FAs with hyperglycemia and ω6FAs with hypertension are also 
exacerbated by obesity. These findings imply that genetic effect sizes 
differ with weight gain, which will affect the performance of 
Mendelian randomization, which, in turn, likely underestimates 
causal inference in diverse cohorts.

Following our strategy for the detection of canalization of disease 
risk by contrasting the deviations at the tails of the prevalence—
polygenic risk percentile curves between conditions, we  adduce 
further evidence that obesity, itself mediated by PUFA, has a pervasive 
influence on how PUFA mediated disease. Given the proportion of the 
disease explained by PGS-m and the prevalence in two subsets of the 
data, we can contrast the observed deviations with those expected on 
the assumption that risk is constant across exposures. Since PUFAs are 
generally protective, large negative differences between obese and 
non-obese deviations in the prevalence between the high and low tails 
of risk provide evidence that genetic effects are enhanced in obese 
individuals. Positive differences imply the opposite, for example, if the 
genetic effects are suppressed, or if obesity itself overwhelms the 
genetic influence of the PUFAs. Across 178 diseases/conditions, two 
measures of obesity (BMI and WHR), and all three metabolites (1,068 
comparisons), 66 were more than 2 standard deviations more deviant 
than expected and just 9 less deviant, implying considerably more 
decanalization and hence that low PFA exacerbate polygenic risk. 
Correspondingly, there were 177 cases of more than 1 standard 
deviation and 43 with less than expected deviation at this cutoff.

However, several patterns of disease class enrichment are highly 
significant. Notably, in Figure  6, digestive diseases tend to 
be decanalized (have enhanced genetic influence) for ω3FAs or DHA, 
whether obesity is measured by WHR or BMI, whereas circulatory 
and cardiovascular diseases only show this effect for WHR (and 
maybe canalized by high BMI). In addition, contrarily, the influence 
of ω6FAs on circulatory disease, as well as hypoglycemia and type 2 

diabetes, is exacerbated for both classes of obesity. Evolutionary 
genetic theory suggests that canalization evolves under persistent 
stabilizing selection to buffer the effects of genetic and environmental 
perturbations. Decanalization implies the loss of protection afforded 
by PUFA in obese individuals, particularly those with low levels, and 
appears to be  more consistently observed for WHR, which is a 
stronger indicator of metabolic perturbation than BMI. Our data thus 
imply that ω3FAs and ω6FAs have evolved different roles in protection 
against digestive, endocrine/metabolic, and circulatory diseases, and 
that contemporary obesity perturbs the protection disproportionately.

The implications of our findings for personalized medicine are 
debatable. Even if PUFAs are causally involved in diverse diseases, the 
heterogeneity of effects across disease classes calls for caution in 
therapeutic supplementation, despite the overwhelmingly protective 
nature of their associations. It is also not clear that if low levels of DHA 
promote disease, dietary supplementation after a certain age will 
be curative or preventative, but our data do support more clinical trials 
to evaluate this proposition. However, it also implies that obesity status 
needs to be included as a covariate in all such initiatives. For several 
diseases, PUFAs may be more protective in obese individuals than they 
are in the normal weight class, and in that group, it could be argued that 
disagreement between polygenic prediction and observed metabolite 
levels should be used to promote dietary supplementation. Thus, a 
person predicted genetically to have high ω3FA levels who does not have 
obesity, is likely to benefit from higher intake, but their decision should 
also be motivated by whether they are most concerned about gut, 
cardiovascular, endocrine, or even mental health.

The major limitations of this study are that few of the findings 
have been replicated with external datasets or PGS-m, and all of them 
are derived solely from European ancestry study participants. It will 
be particularly interesting to ascertain to what extent the findings also 
pertain to non-European ancestry groups and/or other countries with 
different dietary patterns, but this will require analysis of different 
biobank studies, such as All-of-Us. The results reported here may 
be  specific to the white British participants in the UKB, who are 
themselves a biased representation of the total British population. 
Regarding replication, it should however be noted that there is a broad 

FIGURE 6

WHR and BMI affect disease classes differently. Each plot shows the delta differential, with BMI on the x-axis and WHR on the y-axis, for the observed 
versus expected deviation between the tails of the disease prevalence versus PGS-m percentile, for (A) PGS fatty acidsw

3
 , (B) PGS fatty acidsw

6
 , and 

(C) DHA, contrasting obese and non-obese groups. Green represents digestive system disease, blue represents endocrine and metabolic, and pink 
represents circulatory.
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agreement between our results and those of the study by Zagkos et al. 
(30), generated with different PGS-m and confirmed in some instances 
in FinnGen (43). Where attempted, for example, for IBD and 
cholelithiasis, external replication has been strong (30). A third 
limitation is that the disease status in any population study may 
be strongly affected by disease comorbidity and the wide range of 
pharmaceutical and non-medical interventions that people take. 
Future research should address the likely implications for modification 
of PUFA influences on disease.
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