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Nutrition serves as the cornerstone of an athlete’s life, exerting a profound 
impact on their performance and overall well-being. To unlock their full potential, 
athletes must adhere to a well-balanced diet tailored to their specific nutritional 
needs. This approach not only enables them to achieve optimal performance 
levels but also facilitates efficient recovery and reduces the risk of injuries. In 
addition to maintaining a balanced diet, many athletes also embrace the use of 
nutritional supplements to complement their dietary intake and support their 
training goals. These supplements cover a wide range of options, addressing 
nutrient deficiencies, enhancing recovery, promoting muscle synthesis, boosting 
energy levels, and optimizing performance in their respective sports or activities. 
The primary objective of this narrative review is to comprehensively explore the 
diverse nutritional requirements that athletes face to optimize their performance, 
recovery, and overall well-being. Through a thorough literature search across 
databases such as PubMed, Google Scholar, and Scopus, we  aim to provide 
evidence-based recommendations and shed light on the optimal daily intakes of 
carbohydrates, protein, fats, micronutrients, hydration strategies, ergogenic aids, 
nutritional supplements, and nutrient timing. Furthermore, our aim is to dispel 
common misconceptions regarding sports nutrition, providing athletes with 
accurate information and empowering them in their nutritional choices.
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1 Introduction

Achieving peak physical condition and optimizing athletic performance significantly 
hinge on the role of food (1). Optimal nutrition is instrumental in supporting physical activity, 
enhancing sports performance, and facilitating post-exercise recovery. Professional athletes 
are expected to comprehensively meet their nutritional requirements by consuming foods in 
appropriate quantity and quality (2).
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A properly balanced diet generally provides adequate energy to 
sustain individuals with heightened energy needs due to physical 
activity, ensuring a maintained energy balance in most cases (3). 
However, meeting the energy needs of larger athletes with increased 
body weight and height, as well as athletes involved in demanding, 
high-volume training, can present a significant difficulty. Endurance 
athletes such as runners, swimmers, as well as those in sports like 
gymnastics, wrestling, and boxing that use dietary restriction for 
body composition adjustments, often face a negative energy 
balance (3, 4).

Sports nutrition refers to the nutrients found in sports-related 
foods that enhance physical capabilities. These nutrients form the 
foundation for meeting the metabolic requirements of athletes or 
bodybuilders engaged in regular physical exercise, contributing to the 
preservation of physical health and athletic performance (5).

The nutritional needs of athletes are primarily dictated by the 
demands of their activities and the goals they set to attain peak sports 
performance and overall health (2, 5). The age of athletes is critical, 
especially adolescents whose nutritional needs tend to be higher not 
only to cover the performance demands but due to growth demands 
also. Adhering to appropriate nutritional practices is crucial as it 
impacts nearly every bodily process, spanning from energy production 
to post-exercise recovery (6). Moreover, individual dietary choices 
may be influenced by factors such as knowledge, attitude, and the 
availability of nutrition-related information resources (7).

Dietitians need to consider various sport-specific factors when 
evaluating an athlete’s nutrition requirements and objectives. These 
factors include rules, arena size, competition timing, match frequency, 
and season length, which comprises macrocycles such as preseason, 
competition season, and off-season. Moreover, the physical attributes 
and position-specific responsibilities within the sport significantly 
impact the dietary requirements of athletes. For instance, rugby union 
forwards may require greater weight and strength compared to leaner 
and faster backs (8). Considering these sport-specific variables, 
variations in physique, and distinctions in positions, individualized 
dietary guidance becomes crucial for athletes participating in 
team sports.

Nutritional knowledge is a modifiable aspect that significantly 
shapes dietary behaviors (9). Athletes’ comprehension of sports 
nutrition can directly impact their food preferences, subsequently 
influencing their overall athletic performance (10–12). Therefore, 
athletes should seek reliable and certified sources for nutritional 
information, as this contributes to their understanding of nutrition 
(13, 14). A strategic approach to enhancing nutritional awareness 
among athletes involves the implementation of nutrition education 
programs (15, 16), including individual nutrition counseling, group 
workshops, or online educational materials (17–19).

Guidance that assists athletes in attaining adequate energy intake, 
achieving the right balance of macronutrients and micronutrients, and 
strategically timing their nutrition to enhance performance and 
recovery contributes to optimizing training and overall athletic 
performance (20). A previous review (21) revealed athletes in team 
sports frequently fail to meet the recommended dietary intake 
requirements (18, 19). Athletes who do not achieve sufficient energy 
intake and lack a well-balanced diet of macronutrients may encounter 
obstacles in both training adaptations and recovery processes (20, 22).

Inadequate energy intake can have adverse effects on an athlete’s 
performance, resulting in a reduction of fat-free mass, compromised 

immune function, decreased bone mineral density, heightened 
susceptibility to injuries, and an elevated occurrence of symptoms 
related to overtraining (20).

The field of sports nutrition has seen the publication of numerous 
new research papers, accompanied by the release of 17 fresh consensus 
statements and recommendation papers from authoritative 
organizations such as the IOC, ACSM, and ISSN (2, 20, 23–25). 
However, there is a recurrent observation of suboptimal adherence to 
sports nutrition guidelines among athletes (26–28).

Achieving optimal performance in sports demands meticulous 
attention to nutrition, where athletes must strategically examine the 
timing, amount, and nutritional value of their food consumption, 
coupled with ensuring sufficient fluid consumption. A synergistic 
blend of essential elements such as carbohydrates, proteins, fats, 
vitamins, and minerals plays a pivotal role, acting as the energy source, 
foundational components, and catalysts for success in the world of 
sports. This research paper endeavors to comprehensively examine 
existing literature on the nutritional needs of athletes, aiming to 
pinpoint and elucidate the specific nutritional demands essential for 
their peak performance.

Maintaining a healthy and well-balanced diet is of paramount 
importance for athletes and active individuals to optimize 
performance and overall well-being. The athlete nutrition guidelines 
under scrutiny in this manuscript play a pivotal role in guiding 
individuals to arrange their diet according to established 
recommendations. These guidelines not only serve the athletes 
themselves but also provide invaluable assistance to sports nutrition 
specialists in their work. The primary goal is to prevent disordered 
eating and eating disorders, which have become increasingly prevalent 
among the active population. As such, this manuscript seeks to 
comprehensively review current guidelines, offering a clear and 
updated overview. By doing so, it aims to empower athletes and active 
individuals to enhance their dietary practices, mitigating the risk of 
potential disordered eating.

2 Method

A narrative review was conducted over 6 months, spanning from 
November 2022 to April 2023. To ensure a comprehensive and 
relevant collection of studies, four prominent online databases–
PubMed, Google Scholar, Scopus, and Web of Science–were 
meticulously explored. The search aimed to encompass a broad 
spectrum of articles pertaining to various facets of nutrition and its 
impact on athletic performance. To facilitate an exhaustive search, a 
combination of specific search terms and keywords was employed. 
These included “Intake of Carbohydrates for athletes,” “Intake of 
Protein for athletes,” “Intake of fat for athletes,” “Vitamins,” “Minerals,” 
“Hydration,” “Ergogenic Aids,” “Nutritional Supplements,” and 
“Nutrient Timing.” These keywords were selected to cover key areas 
of interest within the field of sports nutrition. The search strategy 
involved using different combinations of the aforementioned 
keywords to optimize the retrieval of pertinent literature. The review 
specifically included studies of an experimental nature, comprising 
randomized controlled trials, observational studies, case studies, and 
case reports conducted within groups of elite or semi-elite athletes. 
During the evaluation process, the authors scrutinized the articles to 
assess how well they addressed and aligned with the overall objectives 
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of the literature review. Only those articles deemed highly relevant 
were included in the final selection.

3 Result

3.1 Energy (Kcal) and energy availability

In sports, maintaining peak performance relies heavily on precise 
nutritional practices and optimal energy intake. This is crucial not 
only for effective recovery and fatigue prevention but also to reduce 
the risk of injuries and illnesses (29).

Energy availability (EA) is a key concept, representing the dietary 
energy available for physiological functions after subtracting exercise 
energy expenditure. When there’s an imbalance, resulting in Low 
Energy Availability (LEA), athletes may face negative consequences 
across various physiological systems, including endocrine, 
cardiovascular, immune, metabolic, reproductive, and 
gastrointestinal (30).

Athletes persisting in a state of low energy availability may 
experience a range of issues, from disruptions in menstrual function 
to heightened focus on food, increased illness susceptibility, 
diminished mood, compromised performance, decreased libido, and 
hormonal imbalances (31).

While energy availability and energy balance seem similar, they 
differ fundamentally. Energy balance considers all components of 
energy expenditure, particularly relevant in changes induced by diet 
and exercise on body weight and composition. In contrast, energy 
availability focuses specifically on exercise energy expenditure, 
providing a nuanced perspective on the intricate relationship between 
nutrition and athletic performance (32).

3.2 Carbohydrate

A high proportion of carbohydrates in the diet can significantly 
enhance performance during endurance and intense training. This is 
achieved by increasing exogenous carbohydrate availability and 
storing carbohydrates, known as glycogen, in muscles and the liver 
(33). During training, there is a gradual depletion of endogenous 
carbohydrates due to energy expenditure; this dependence is 
contingent upon the level and length of the exercise. Rapid 
carbohydrate intake after exercise replenishes carbohydrate stores 
quickly and enhances the body’s training-induced adaptation 
processes. Among macronutrients, carbohydrates play a particularly 
crucial role in athletic performance since they can be metabolized 
aerobically and anaerobically (34, 35). Muscle glycogen and blood 
glucose are key energy sources for active muscles. Achieving optimal 
carbohydrate intake aids recovery and optimizes glycogen stores for 
subsequent training sessions. The recommended carbohydrate 
requirement varies with training volume and intensity. Emphasize the 
importance of incorporating foods exhibiting a glycemic index that 
extends across the spectrum from low to moderate into the meal 
plan, including complex carbohydrates (3). Nevertheless, during 
challenging and intense training sessions or when meeting high 
carbohydrate needs becomes difficult due to the substantial bulk and 
fiber content of complex carbohydrates, it is permissible to 
incorporate concentrated, nutrient-dense sources of carbohydrates. 

Additionally, low-risk supplements may be considered to meet daily 
requirements if necessary (3, 22).

The glycemic index functions as a tool to classify carbohydrate-
containing foods according to their impact on blood glucose levels 
relative to glucose or white bread consumption (22). Its application in 
sports nutrition remains controversial, lacking clear recommendations 
for athletes. Studies indicate potential improvements in metabolism 
and substrate utilization during exercise when incorporating low 
glycemic index carbohydrate-containing foods in the pre-exercise 
meal (22). However, these findings do not consistently translate to 
enhanced exercise performance. Notably, the influence of glycemic 
index on the pre-event meal diminishes when carbohydrates are 
consumed during exercise (22). Therefore, choosing a low glycemic 
index meal before exercise might prove beneficial when restricted 
consuming carbohydrates during physical activity.

Endurance activities of moderate to high levels of intensity, along 
with resistance-based workouts, heavily depend on carbohydrates as 
a primary fuel source. Therefore, maintaining essential glycogen 
stores, around 80–100 g in the liver and 300–400 g in the muscles of 
the skeletal system, is crucial. Numerous studies confirm the limited 
nature of glycogen stores (36, 37), highlighting their pivotal role as a 
predominant fuel source for several hours during moderate engaging 
in aerobic exercise at a high level of intensity (38).

There is documented evidence that as glycogen stores decrease, it 
becomes harder to maintain a high pace of intense exercise (23). 
Consuming a snack or meal high in carbohydrates before exercise 
ensures optimal muscle glycogen reserves. On the other hand, low 
pre-exercise glycogen levels result in early fatigue, reduced training 
intensity, depleted muscle glycogen, impaired muscle contraction, 
glycogenolysis, and protein degradation (34, 39, 40).

A straightforward suggestion for maximizing internal glycogen 
reserves in high-performance athletes is to consume adequate 
carbohydrates based on the intensity and duration of their training. 
Generally, the suggested daily carbohydrate intake falls within the 
range of 5–12 g/kg of body weight. This is particularly relevant for 
athletes engaged during training sessions of moderate to high 
intensity, lasting over 12 h per week; it is recommended to target the 
upper limit of this range, precisely 8 to 10 g/kg of body weight daily 
(41). When substantial muscle damage is not present, this level of 
carbohydrate intake has demonstrated effectiveness in maximizing 
glycogen storage. Recommendations based on percentages (for 
instance, aiming for 60–70% of your total daily caloric intake to come 
from carbohydrates) have lost favor because they fail to accurately 
prescribe the required carbohydrate amounts for athletes with elevated 
caloric intake or those following restricted energy intake (33).

It is important to highlight that athletes frequently fall short of 
meeting the recommended levels of energy and carbs. Consequently 
(42), emphasizing approaches to restore glycogen reserves could 
be  essential in preparing for optimal performance in the 
upcoming competition.

The synthesis of glycogen after exercise is closely tied to factors 
considering factors like the degree of glycogen reduction, the nature, 
duration, and intensity of the workout session (43). During the initial 
6 h following exercise, there is an increased pace of muscle glycogen 
replenishment, and consuming sufficient carbohydrates within 24 h 
after the workout can lead to full restoration of glycogen stores (44).

Current studies suggest that having a recovery meal within 2 h 
after exercise, as opposed to not eating, proves effective in enhancing 
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recovery (45). Despite optimal conditions, complete muscle glycogen 
resynthesis can extend up to 24 h, prompting studies to explore 
techniques for accelerating the pace at which muscle glycogen is 
restored (46). Customizing the approach based on the degree of 
glycogen depletion, an effective strategy for adequate glycogen 
resynthesis involves ingesting 1.0 to 1.5 g of carbohydrates per kg of 
body weight per hour right after exercise and maintaining this intake 
at 30-min intervals for up to 6 h following the workout (2, 47). On the 
contrary, in instances where carbohydrate (CHO) intake is postponed 
by 2 h, studies indicate a 45% reduction in glycogen resynthesis rates 
(48). The absorption of glucose in the intestines might serve as a 
constraint on glycogen resynthesis, especially notable when a 
significant quantity of carbohydrates is ingested in a single bolus after 
exercise (49). There is a proposition that carbohydrate (CHO) 
supplementation administered at a rate of about 1.0 g/kg/h, given at 
consistent intervals (15 to 60-min intervals) post-exercise, is more 
efficacious than a substantial single bolus in sustaining elevated blood 
glucose levels. This, consequently, facilitates increased muscle 
glycogen restoration (48).

Studies investigating glycogen resynthesis rates after varying 
carbohydrate consumption post-exercise yield inconsistent results 
(50). Van Loon et  al. discovered that increasing post-exercise 
carbohydrate consumption–raising carbohydrate intake cyclists who 
consumed carbohydrates ranging from 0.8 to 1.2 g per kg per hour, in 
terms of body weight, at 30-min intervals exhibited increased rates of 
muscle glycogen synthesis (16.6 vs. 35.4 mmol/kg dry weight/h) 
following a glycogen depletion cycling trial (43). Current studies 
suggest that 2-h intervals may not be the most effective for promoting 
muscle glycogen resynthesis, especially given the rapid restoration 
observed within the initial 2 h post-exercise (43, 51). Additional 
studies have documented higher rates of glycogen resynthesis with 
more frequent supplement ingestion compared to a single large 
bolus (52).

Variations in study outcomes may arise from disparities in 
protocols; the effectiveness of post-exercise recovery meals is 
influenced by factors such as the timing and intervals of consumption, 
the subjects’ training status, and the type of carbohydrates used. Given 
these limitations and variations in research protocols, the current 
evidence indicates that an ingestion of carbohydrates ranging from 1.0 
to 1.5 grams per kilogram per hour is recommended and is sufficient 
to achieve maximal glycogen resynthesis (2, 48, 50). Further research 
is essential, especially studies investigating the prolonged impacts of 
post-exercise nourishment and simulating a typical training program.

3.2.1 Recommended daily intake of 
carbohydrates

To estimate athletes’ carbohydrate needs, a recommended 
guideline involves ingesting 3-12 g of carbohydrate consumption per 

kilogram of body weight each day, with the precise quantity contingent 
on the intensity and duration of their physical activity. Individual 
variations and the comfort of their digestive systems should also 
be considered. For approximate carbohydrate needs, please refer to 
Table 1 (35, 53).

The formula for calculating the daily intake of carbohydrates is 
as follows:

 

Daily Intake of Carbohydrates

Weight in Kilograms X Grams of

=
  Carbohydrates

3.3 Protein

Preserving and optimizing skeletal muscle mass are crucial goals 
for individuals with athletic aspirations, whether aiming for improved 
performance, increased muscularity, or accelerated recovery. Moreover, 
the importance of skeletal muscle mass extends beyond active 
individuals, providing direct clinical applications and benefits. This 
dynamic interplay–the balance between muscle protein synthesis and 
breakdown–is particularly crucial for aging adults, as skeletal muscle 
undergoes continuous regulation (54). The loss of muscle mass occurs 
when there is a negative balance, indicating a higher breakdown than 
synthesis, resulting in a net loss. On the flip side, the accumulation of 
muscle occurs when the rate of synthesis outpaces that of breakdown. 
The interaction between physical activity and dietary elements, 
particularly concerning the consumption of protein and indispensable 
amino acids, is pivotal in governing both the construction and 
degradation of muscle proteins (55). Recent findings indicate that 
alterations in the context of physical activity and nutritional intake have 
a more pronounced effect on muscle protein synthesis rates (56). 
Therefore, changes in muscle protein synthesis rates are deemed the 
principal determinants of variations in muscle mass over time as a 
response to both exercise and nutritional influences (57).

Amino acids are the structural constituents of proteins, providing 
the building blocks for all tissues. For athletes, the main purpose of 
consuming protein following vigorous exercise or competitions is the 
rebuilding and restoration involving both skeletal muscle and 
connective tissues (25). The amount, timing, and type of protein 
intake all affect the extent to which muscles remodel after training. It’s 
crucial to emphasize that protein is not the primary source of fuel for 
athletes (25).

Various factors, including the quantities of overall amino acids, 
indispensable amino acids, and BCAA concentrations, impact the 
anabolic effectiveness of a protein source. Additionally, factors such as 
protein digestibility, digestion rate, and absorption kinetics are taken 
into account. In the assessment of dietary protein quality, attention is 
often directed toward the indispensable amino acid composition 
offered by the protein source concerning human nutritional 
requirements. Additionally, its capacity for digestion, absorption, and 
assimilation by diverse tissues throughout the body is considered (58).

Two categories of protein determine whether they include 
essential amino acids: complete and incomplete protein sources. 
Animal protein is considered complete as it provides a comprehensive 
source of protein, containing all the required amino acids. In contrast, 
plant-based proteins are incomplete sources as they lack some 
essential amino acids (59).

TABLE 1 The approximate requirements for carbohydrates.

Exercise 
intensity

Minutes of 
activity per day

Recommended 
carbohydrate intake (g/kg)

Low <60 3-5

Moderate 60 5-7

High 60-180 6-10

Very high >180 8-12
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As highlighted in a comprehensive review (60), biological values 
for prevalent plant sources typically fall within the range of 56–74, 
whereas various animal sources exhibit a spectrum spanning from 77 
to 104 on theoretical scales ranging from 0 to 100 points. A similar 
discrepancy is noted regarding values of net protein utilization; plant 
sources typically fall within the range of 53–67, while animal sources 
tend to be in the range of 73–94 on a 100-point scale. The scores for 
Protein Digestibility Corrected Amino Acid stand out as one of the 
commonly utilized benchmarks for assessing protein quality (61) 
emerge as one of the most frequently employed metrics.

Casein, whey, and eggs achieve scores of 100 in their respective 
categories, serving as examples of animal protein sources, whereas 
red meat scores 92. In contrast, typical plant protein sources typically 
display Protein Digestibility Corrected Amino Acid stands values 
below 100, typically falling within the reported range of 45–75 (60). 
Except for soy protein, which has a score of 100, other plant sources 
generally fall below this threshold. Similarly, employing the DIAAS 
approach for evaluating protein quality reveals a consistent pattern: 
animal sources often exceed 100, in contrast, the majority of plant 
sources tend to be below this threshold. When analyzing the amino 
acid profiles of different plant-based isolates in comparison to 
standard proteins derived from animal sources and specimens from 
muscles in the human skeletal system, it becomes clear that several 
sources of protein derived from plants do not contain adequate 
quantities of specific amino acids, such as lysine and methionine 
levels (62). Moreover, they consistently exhibit reduced levels of 
indispensable and BCAA in contrast comparing animal protein 
sources to the amino acid composition present in human skeletal 
muscle. Furthermore, elements such as vary depending on factors 
such as the type of nutrient, individual characteristics, and the 
specific physiological context notably affect the nutritional quality of 
a protein. Concerning digestibility, compelling evidence suggests that 
numerous plant sources have a considerably lower digestibility rate 
(45–80%) compared to diverse animal proteins (>90%) (63). In 
essence, there is a general agreement that the transportation of amino 
acids to peripheral tissues from plant-based proteins is typically 
regarded as less efficient compared to that from animal proteins (64, 
65). These distinctions are considered critical factors that influence 
the postprandial protein synthesis response observed in 
different tissues.

To promote muscle repair, remodeling, and improve post-exercise 
strength- and hypertrophy-related responses, it is crucial to ingest 
protein before, during, and after a workout (66). Consumption of 
protein during these periods has been associated with a favorable 
impact on Muscle Protein Synthesis (MPS) (67).

Prior to exercise, ingesting protein with meals within 3-4 h before 
the workout can assist in maintaining muscle growth and enhancing 
muscle recovery, especially when combined with resistance training 
(68). Combining amino acids with carbohydrates before exercise can 
lead to peak rates of MPS, although the effects of protein and amino 
acid feedings during this period on exercise performance are not 
firmly established. However, consuming carbohydrates combined with 
protein or essential amino acids during endurance and resistance 
training can have beneficial effects, including an improved anabolic 
hormonal status, reduced muscle damage, improved muscle cross-
sectional area, and extended time to exhaustion (25).

It is important to note that protein has a limited capacity for the 
body to utilize as an energy source during activity, whereas 

carbohydrates are the primary fuel source. Therefore, rehydration and 
intake of simple carbohydrates (glucose) are most important for 
athletes during exercise (68).

To enhance myofibrillar protein synthesis after exercise and 
minimize amino acid degradation, a nutritional recommendation 
advises incorporating 0.31 g/kg of high-quality and quickly digestible 
protein, like whey protein. Those pursuing this objective should strive 
to integrate this amount per meal (69). A mixed meal consisting of 
carbohydrates and protein after exercise, with a carbohydrate-to-
protein ratio of approximately 4 to 1, is recommended to initiate 
muscle glycogen synthesis (20). Note that exercise has a sustained 
anabolic impact for at least 24 h. However, the ideal timing for protein 
ingestion depends on individual tolerance as it may diminish over 
time after activity (70).

3.3.1 The recommended daily intake of protein
Using the following recommendations in Table 2 may help the 

athlete to assess their need for protein and prevent excessive intake 
and keep them on track (74).

3.4 Fat

To achieve optimal performance, athletes need to consume an 
appropriate amount of energy not only during exercise but also during 
recovery. Fat oxidation primarily depends on oxygen, while 
carbohydrate catabolism can occur with or without oxygen. It’s worth 
noting that the complete breakdown of glucose in the mitochondria, 
involving the presence of oxygen, yields more ATP (75). Consuming 
an adequate amount of fat is important, but high-fat or fat-loading 
diets are ineffective (76, 77). It is recommended to consume dietary 
fat between 20 and 35% of the total calorie intake for athletes, with 
saturated fat intake being less than 10% (76).

Athletes frequently turn to dietary supplements to boost metabolic 
capacity, delay the onset of fatigue, enhance muscle hypertrophy, and 
shorten recovery periods (76). Omega-3, a type of PUFA, acts as a 
structural component within cell membranes of phospholipids. 
Omega-3 plays a crucial role in the inflammatory response of the body 
(78). Among athletes, Omega-3 has been linked to the postponement 
of onset muscle soreness, enhancement of anaerobic endurance 
capacity, improvement in oxygen efficiency during aerobic exercise, 
support for skeletal muscle health, and mitigation of exercise-induced 
oxidative stress (79). It is recommended to take omega-3 after or with 

TABLE 2 Recommendation of protein intake based on the healthy athlete 
in different types of exercise and goals.

Type of training or 
exercise

The recommended amount 
of protein is typically 
expressed in g/kg of body 
weight

Preserving and building muscle 

mass (20)

1.4-2.0 g/kg of body weight

During caloric deficit periods (20) 2.3–3.1 g/kg fat-free mass

Endurance exercise (71, 72) 1.2-2.0 g/kg of body weight

Strength exercise (59) 1.6-2.8 g/kg of body weight

Gain (muscle) strength (73) 1.6-2.2 g/kg of body weight
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a high-fat meal for optimal absorption (79). The safe recommended 
dose for omega-3 is 450–900 mg/day, with a maximum recommended 
dose of up to 3 g per day (80).

Athletes have employed a dietary strategy of increasing the 
proportion of dietary fat, primarily aiming to enhance intramuscular 
triglyceride stores. The theory behind this approach suggests potential 
benefits for prolonged exercise performance while preserving 
glycogen stores (81). Endurance athletes, in particular, have considered 
and applied this strategy to improve their performance in prolonged 
exercises. Conversely, athletes focused on strength and power have 
given little thought to modifying fat intake in their training strategies.

Burke and her research team delivered compelling results, 
revealing that a five-day regimen of adhering to a high-fat diet, where 
over 65% of total calorie intake came from fat, while concurrently 
maintaining a low carbohydrate and a daily protein consumption of 
2.5 g per kg of body weight, not only enhanced fat utilization but also 
enabled athletes to effectively partake in high-intensity and high-
volume training sessions (82).

Moreover, sustained enhancements in fat utilization were 
observed even following the implementation of a regimen for 
carbohydrate loading aimed at replenishing muscle glycogen levels. 
This dietary strategy suggests that a sequence of high-fat intake 
followed by carbohydrate loading might establish a conducive 
environment, enabling skeletal muscle to oxidize more fat while 
maintaining sufficient muscle glycogen. Nevertheless, subsequent 
studies did not reveal improvements in exercise performance (83). 
Certainly, there was a noted decrease in the rates of muscle 
glycogen utilization throughout the exercise bout (84). Given the 
expectation that enhanced carbohydrate availability is likely to 
enhance power generation and exercise intensity, especially during 
the latter phases of prolonged exercise, these results were 
considered counterproductive.

While there has been extensive research on the effectiveness of 
high-fat diets, there is a general agreement that opting for a higher 
critical determinant, but rather, it depends on individual factors and 
the overall dietary context, an advisable approach to enhancing sports 
performance. In an extensive review of the literature, Johnson 
provided insights into how a high-fat diet affects performance in 
physical activities. These observations encompass (1): no definitive 
conclusions supporting the idea that decreasing intramuscular 
triglycerides adversely affects performance, a hypothesis intended to 
enhance performance (2); a diet rich in fats, comprising more than 
46% of total calories derived from fat and less than 21% from 
carbohydrates, promotes fat oxidation through mechanistic 
adaptations. These adaptations encompass increased enzymes 
involved in the oxidation of fatty acids and improvements in both fatty 
acid transport and beta-oxidation; and (3) despite these mechanistic 
changes, improvements in exercise performance were not consistently 
observed, and in certain cases, a negative impact was evident (81).

While the suggestion of increasing dietary fat intake has been 
made for a positive impact on the utilization of substrates, the 
prevailing consensus discourages high-fat diets due to their adverse 
effects on performance. Instances of reduced carbohydrate utilization 
and gastrointestinal discomfort further reinforce the argument against 
such dietary approaches. Whether the negative outcomes arise from 
the elevated consumption of dietary fat or the probable simultaneous 
decrease within dietary carbohydrate, the adoption of diets rich in fats 
is not recommended.

3.5 Micronutrients

Micronutrients play a crucial role in sustaining life, encompassing 
vitamins and minerals that support well-being, development, and 
reproductive processes. These essential substances, required in small 
quantities, must be obtained through dietary intake as the human 
body cannot synthesize them (85).

Vitamins are categorized based on their solubility, with A, D, E, 
and K being fat-soluble, and B and C being water-soluble. Minerals, 
on the other hand, are non-organic compounds contributing to 
physiological operations (85). Daily physiological requirements 
classify minerals, with macrominerals requiring around 100 mg per 
day and trace elements approximately 20 mg per day for individuals’ 
health (85).

While a nutritionally balanced diet generally provides essential 
micronutrients in recommended doses for regular bodily functions, 
the appropriateness of these guidelines for athletes is a subject of 
debate. Athletes often resort to micronutrient supplementation, with 
close to half of them incorporating vitamin or mineral supplements 
in their regimen, according to a meta-analysis (86).

Research findings indicate that, similar to the impact of exercise 
intensity, duration, and character on macronutrient needs, these 
factors also influence athletes’ micronutrient requirements. In sports 
with elevated energy demands, there’s a likelihood of increased 
micronutrient needs, though precise quantification remains 
challenging (85).

When athletes have heightened overall energy requirements due 
to their training regimen, this increased need should reflect in both 
macro- and micronutrient intake. Meeting this demand through a 
well-rounded diet aligned with recommended dietary reference 
intakes for vitamins and minerals is generally achievable (87). 
However, certain scenarios, such as substantial losses through sweat 
and urine or specific dietary preferences, may lead to increased 
vitamin and mineral requirements (85).

In instances where athletes face challenges in meeting their 
micronutrient needs through diet alone, supplementation may 
be  beneficial. Athletes might consider external supplements to 
enhance well-being and performance, especially in situations like 
altitude training, where iron supplementation may be necessary (88, 
89). Specific sports may present unique concerns, such as lower 
concentrations of vitamin D for athletes in winter sports or indoor 
activities (90).

Athletes consuming a diet rich in energy from nutrient-dense 
foods typically do not require vitamin and mineral supplements. 
However, those who struggle to meet their micronutrient needs may 
benefit from supplementation, guided by a sports nutritionist (91, 92). 
It’s crucial to emphasize that while micronutrients are crucial for 
health, they do not exert ergogenic effects, and factors like low-energy 
diets, vegetarianism, illness, and injuries can contribute to 
micronutrient deficiencies (40, 93).

3.6 Hydration

It is crucial to replenish fluid loss during, before, and after exercise. 
Researchers have found that losing 2% of body fluids can affect 
performance and cognitive function. Thirst is often not an effective 
indicator of dehydration, as 1.5 L can be lost before thirst perception 

https://doi.org/10.3389/fnut.2023.1331854
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Amawi et al. 10.3389/fnut.2023.1331854

Frontiers in Nutrition 07 frontiersin.org

(94). Athletes are susceptible to losing 0.3 to 2.4 L per hour of sweat, 
which includes not only water but also salt, potassium, calcium, 
magnesium, and chloride. Consequently, fluid and electrolyte 
replacement should be incorporated into their recovery (93).

Fluid balance is fundamental for athletes, as hypohydration, 
which occurs when body water levels are lower than normal due to 
excessive sweating during exercise or diarrhea, can have life-
threatening consequences and negatively impact performance (95). 
On the other hand, during endurance exercise, increased consumption 
of mostly sodium-poor or sodium-free liquids, such as water, can lead 
to hyponatremia (96). Excessive fluid consumption causes fluid 
retention in the body, resulting in dilutional hyponatremia (97). 
Athletes should be aware that the body can lose fluids in various ways 
through sweating as a natural result of prolonged exercise, urination, 
and other factors such as temperature and humidity (98).

The physical signs and symptoms of dehydration include dry and 
poor skin turgor, dark urine color, rapid weight loss, dry and sticky 
mouth, weakness, fatigue, headache, sunken eyes, muscle cramps, an 
increased rate of injuries, difficulty in recovery, and a racing heartbeat 
(99, 100). Additionally, over-hydration can manifest through physical 
signs and symptoms such as weight gain, swelling of the feet and 
hands (edema), nausea and vomiting, orthopnea (sensation of 
breathlessness during sleep), low blood sugar, weakness, seizures, 
fatigue, headache, and increased urination (99, 100).

Athletes are advised to initiate a pre-training regimen in a well-
hydrated state, ingesting approximately 500 to 600 mL of water or a 
sports beverage 2 to 3 h before engaging in exercise. An additional 
intake of 200 to 300 mL of water or a sports drink is recommended 10 
to 20 min before the onset of exercise (101). Throughout the training 
session, fluid replenishment should align with sweat and urine losses, 
endeavoring to sustain hydration levels while minimizing body weight 
reduction to less than 2%. Typically, this goal can be met by consuming 
200 to 300 mL of fluid at intervals of 10 to 20 min. Post-activity, the 
focus of hydration should be on rectifying any fluid deficits incurred 
during the practice or competition (102).

Sports drinks are primarily used to rehydrate and replenish 
essential electrolytes and other important components for athletes, 
such as magnesium, sodium, calcium, potassium, glucose, and fluids 
lost during strenuous exercise, to enhance endurance and performance 
(103). On the other hand, the usage of sports drinks may differ based 
on the nature of the exercise. The best time to use a sports drink is 
during high-intensity and long-duration exercise lasting more than 
1 h, on hot and humid days, during heavy or salty sweating, and for 
recovery after training (104).

The beverage hydration index model was introduced to evaluate 
the hydrating potential of a drink compared to plain water when 
individuals are at rest. This model operates on the assumption that a 
beverage inducing greater diuresis than water results in less retained 
available fluid in the total body water pool, reflected by a beverage 
hydration index below 1.0. Although a recent addition to beverage 
metrics, akin to the glycemic index for foods, the beverage hydration 
index has garnered replication by various research groups (105–107) 
since its inception (108). Significantly, population-specific factors like 
body mass and sex seem to have negligible effects, and the 
reproducibility of the hydration index model is reported to be robust 
(105). Consequently, the hydration index model has gained 
recognition as a reliable method for evaluating beverage hydration 
characteristics in well-controlled conditions, particularly when 

individuals are in a state of dehydration, as opposed to rehydration 
scenarios following exercise.

The addition of electrolytes to water seems to enhance fluid 
retention according to the beverage hydration index method (105, 
109). Nevertheless, the minimum sodium level required to achieve 
this effect varies across studies, as some indicate that sports drinks 
with approximately 20 mmol sodium may not necessarily yield a 
significantly greater hydration index compared to the water control 
(106, 108). This aspect warrants further exploration, especially 
considering that sports drinks are commonly recommended for 
general public use as a suitable beverage for oral rehydration post-
dehydration. Beverages with elevated sodium content (usually around 
45 mmol), like Pedialyte, tend to exhibit a higher hydration index 
compared to water. However, whether Pedialyte has a hydration 
index superior to a sports drink remains uncertain in some studies 
(105, 107, 108). This aspect requires further investigation, especially 
considering that sports drinks are often recommended for general 
public use as a suitable beverage for oral rehydration after 
dehydration. Beverages with higher sodium content (typically around 
45 mmol), such as Pedialyte, generally show a higher hydration index 
compared to water. However, whether Pedialyte has a hydration 
index superior to a sports drink remains uncertain in some studies 
(107, 108).

3.7 Ergogenic aids and nutritional 
supplements

In recent times, there has been a significant increase in attention 
devoted to nutritional supplements and ergogenic aids within the 
sports community. Nutritional supplements are concentrated 
reservoirs of nutrients or other compounds exhibiting nutritional or 
physiological qualities beyond what is naturally obtained through a 
regular diet (110). Ergogenic aids pertain to pharmaceutical 
substances employed to boost sports performance (111). Recognizing 
a profitable market, commercial brands cater to high-performance 
athletes (112), university students (113), and young amateur athletes 
(114) who enthusiastically supplement their diets with these products. 
The growing prevalence of athletes using nutritional supplements and 
ergogenic aids has raised concerns among health and sports 
authorities. A significant number of these supplements and aids have 
been found to be contaminated with harmful or banned substances 
(115). Such contamination could pose a risk to the health of athletes 
or lead to competition bans if the products contain prohibited doping 
substances (116). While the utilization of nutritional supplements and 
ergogenic aids is common among athletes ranging from recreational 
to elite levels, only a select few ergogenic aids (such as creatine, 
sodium bicarbonate, and caffeine) have been proven to enhance sports 
performance (117).

Dietary supplements play a crucial role in building muscle, 
boosting the immune system, and providing fuel to enhance training 
or athletic performance. Elite athletes often utilize performance-
enhancing agents, with many considering supplements to be  an 
essential component for sports success (118). A Canadian study 
revealed that 87% of elite male and female athletes used supplements 
regularly (112), while another study conducted in Canada found that 
98% of young athletes between the ages of 11 and 25 used supplements 
on a regular or intermittent basis (119). In this section, we will discuss 
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the effectiveness of the most widely used supplements for improving 
physical performance.

3.7.1 Creatine
Creatine stands out as the most frequently used and scientifically 

backed ergogenic aid (120, 121). It holds a preferred status over other 
ergogenic aids due to its proven ability to increase power, enhance 
muscular strength, and promote an increase in fat-free mass, 
ultimately improving exercise and sports performance (121).

Recent studies highlight that creatine supplementation, with doses 
ranging from 0.3 g per kg per day for 3 to 5 days or 20 g per day for 5 
to 7 days without interruption, results in a rapid increase in 
intramuscular creatine, providing ergogenic advantages (122). 
Additionally, creatine supplements have been shown to accelerate 
recovery from injury and muscle damage (122, 123). Notably, a study 
demonstrated that introducing a preload at 0.3 g/kg body weight and 
a post-maintenance protocol at 0.1 g/kg body weight after a vigorous 
eccentric resistance training session in young men led to reduced 
muscle damage and strength loss (124). Another study documented a 
substantial reduction in oxidative stress and an increase in athletic 
performance in male athletes who took creatine monohydrate 
(20 g/day) after 7 days (125). Previous research also suggests that 
creatine supplements can mitigate muscle damage resulting from 
prolonged, intense exercise sessions.

Studies on creatine supplements consistently show enhanced 
performance and increased strength in short-duration, maximal-
intensity exercises, as evidenced by improvements in metrics such as 
single-repetition maximum, muscular strength, repetitions, muscular 
endurance, speed, and overall strength (126, 127). A meta-analysis 
examining the impact of creatine supplementation on upper and lower 
extremity performance revealed a noticeable increase in strength for 
both extremities (128). Notably, performance improvement was 
observed in individuals following a creatine supplementation 
program, particularly in conjunction with resistance training. This 
effect was particularly pronounced in individuals without a history of 
prior training, defined as those engaging in exercise less than 3 h 
per week.

Currently, the scientific literature strongly supports the utilization 
of creatine supplementation for boosting performance in short-
duration, high-intensity resistance training, demonstrating a distinct 
influence on lean body mass. Nevertheless, it remains unclear whether 
these effects of creatine supplementation translate into enhanced 
athletic performance.

3.7.2 Caffeine
Caffeine, a natural derivative stimulant, is associated with several 

proposed ergogenic effects. Known for its stimulating properties, 
caffeine not only improves performance but also increases the release 
of neurotransmitters, enhances intellectual ability, and boosts energy 
expenditure (129). Studies indicate that caffeine serves as a potent 
ergogenic aid for both aerobic and anaerobic training, particularly 
benefiting endurance activities like cycling and running (71).

Research suggests that consuming 2-5 mg/kg of caffeine before 
engaging in performance-based activities can significantly enhance 
sports performance (130). Another study demonstrated an 
approximate 3.2% improvement in athletic performance with similar 
doses of caffeine (131). It has been observed that moderate doses of 
caffeine, ranging from 3 to 6 mg/kg, are effective in improving sports 

performance, while high doses (≥ 9 mg/kg) do not show any 
additional benefits (80).

Several proposed mechanisms aim to explain the impact of 
caffeine supplements on athletic performance, focusing on their 
effects on endurance, muscle contraction, and perceived exertion 
(132, 133). The primary mechanism involves caffeine’s action within 
the central nervous system, where it competes with adenosine for its 
receptors, mitigating the adverse effects of adenosine on 
neurotransmission, arousal, and pain perception (134). Additionally, 
the analgesic effect of caffeine reduces the perception of pain and 
effort during exercise, potentially serving as an additional mechanism, 
especially in exercises inducing discomfort (132, 133). Consequently, 
reduced pain perception may contribute to sustained or increased 
motor unit firing rates, facilitating greater force production (133, 135).

The recommended dosage of 2-5 mg/kg aligns with existing 
literature, emphasizing the importance of optimal caffeine intake for 
maximizing benefits. The observation that high doses do not yield 
additional advantages suggests a dose–response relationship, 
emphasizing the need for moderation in caffeine consumption.

3.7.3 Protein and amino acid supplements
Amino acid supplements enjoy widespread popularity and are 

commonly utilized by highly-trained athletes. Beyond the realm of 
sports, amino acids offer potential therapeutic benefits, such as 
promoting healing, enhancing the immune system, preventing muscle 
atrophy in both the elderly and malnourished individuals, and 
contributing to the treatment of kidney and liver diseases (136).

Critical for maintaining a positive nitrogen balance in the body, 
amino acid supplements, including branched-chain amino acids and 
protein powder, play an essential role (71). Approved by the FDA to 
counteract nitrogen loss, protein supplements are recognized as safe 
when used in accordance with good manufacturing or feeding 
practices (REF) (80).

3.7.4 Whey protein
Following resistance training, incorporating whey supplements 

may contribute to enhanced muscle building. In a study, participants 
who consumed a 20 g whey supplement before and after resistance 
exercise exhibited greater gains in muscle mass and strength over a 
10-week period compared to those who took a placebo (137). Another 
investigation revealed that athletes who consumed a whey supplement 
before and after a training session achieved the ability to perform 
more repetitions and lift heavier weights 24 and 48 h after the exercise, 
respectively (138).

It is crucial to emphasize that immediately after resistance 
training, the consumption of a high-quality protein source promotes 
muscle growth and aids in recovery (139). While whey supplements 
may be preferred over casein or soy in the immediate post-exercise 
period due to their faster absorption, there is no evidence suggesting 
that they result in greater muscle growth over a 24-h period (140). 
Additionally, whey protein has been associated with potential immune 
system benefits. Participants taking whey supplements experienced a 
smaller drop in glutathione levels, linked to lower immunity, after a 
40-kilometer cycling time trial (141).

After intense exercise, additional protein is necessary to build new 
muscle proteins and repair damaged muscle cells (137). Current 
recommendations from scientists suggest athletes should consume 
between 1.3 and 1.8 g of protein per kilogram of body weight per day. 
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The precise amount of protein required for muscle building has been 
a subject of debate, with strength and power athletes tending to 
consume at the higher end of this range (1.6–1.8 g) (103).

The study’s results support the idea that the timing and type of 
protein intake can influence post-exercise outcomes. While the faster 
absorption of whey is advantageous immediately after training, the 
overall 24-h impact on muscle growth appears comparable to other 
high-quality protein sources. Athletes can strategically incorporate 
whey protein into their post-exercise nutrition, recognizing its 
advantages while ensuring a balanced overall protein intake.

3.7.5 Branched-chain amino acid
The best way to describe branched-chain amino acids (BCAAs) is 

as a combination of three out of the nine essential amino acids. Valine, 
leucine, and isoleucine, the three BCAAs, cannot be synthesized by 
the body on its own (142). These amino acids collectively constitute 
one-third of muscle proteins and play a pivotal role in the metabolism 
of skeletal muscle due to their distinctive properties (143). BCAAs 
facilitate the absorption of blood sugar by muscle fibers and influence 
insulin signaling (143). Notably, leucine is of particular importance 
among the three BCAAs, serving a crucial role in regulating muscle 
protein synthesis (MPS) and acting as a modulator even in the 
presence of hyperaminoacidemia (144).

Additionally, BCAA supplements operate through various 
mechanisms, including reducing soreness and preventing muscle 
tissue breakdown during resistance and intense training (145). They 
contribute to the reduction of central fatigue, promote muscle 
function recovery, and maximize the MPS response (145).

According to some studies, incorporating BCAAs before and after 
exercise may effectively prevent exercise-induced muscle damage and 
increase muscle protein synthesis (146). There is evidence suggesting 
that taking BCAA supplements before resistance training can also 
reduce delayed-onset muscle soreness and assist athletes in 
maintaining muscle mass during dieting (147).

However, it seems that endurance athletes may not significantly 
benefit from BCAA supplementation. A study conducted at Florida 
State University indicated that while taking a BCAA supplement 
before and during prolonged endurance exercise reduced muscle 
damage, similar effects were achieved by consuming a sports drink 
with carbohydrates (146). Another study involving long-distance 
runners found that, compared to a placebo, BCAA supplements taken 
7 days prior to a marathon did not improve performance or reduce 
muscle damage (148). In essence, BCAAs do not appear to offer 
significant performance advantages during endurance exercises.

BCAAs, with a particular emphasis on leucine, play a crucial role 
in muscle protein synthesis and various aspects of muscle metabolism. 
The documented advantages of BCAA supplementation, such as 
reducing soreness, preventing muscle tissue breakdown, and 
enhancing recovery, align with their well-established role in 
supporting muscle function. While BCAAs demonstrate potential 
benefits in situations like resistance training and muscle preservation 
during dieting, their advantages may not be notably pronounced in 
the context of endurance exercises.

3.7.6 Arginine
L-arginine, a non-essential amino acid naturally produced in the 

body, is commonly known by names such as arginine alpha-
ketoglutarate (A-AKG) and arginine ketoisocaproate (A-KIC) (80). 

Numerous studies suggest that the performance of elite athletes during 
anaerobic exercise remains largely unaffected by arginine supplements 
(149). In a study focused on A-AKG supplements, athletes did not 
exhibit differences in nitric oxide (NO) levels, blood flow, or 
performance (150). However, a review of multiple studies indicated 
that arginine supplements might offer a modest benefit to novice 
athletes but not to more experienced athletes or female athletes (151). 
The recommended safe dose for arginine is up to 20 g per day (80).

While arginine is a naturally occurring amino acid, its 
supplementation seems to have a limited impact on elite athletes 
during anaerobic exercise, as suggested by several studies. The 
potential modest benefit for novice athletes, highlighted in a review, 
prompts further investigation into factors such as experience level and 
gender that may influence the effectiveness of arginine 
supplementation. The specified safe dose serves as a reference for 
individuals considering incorporating arginine into their 
nutritional regimen.

3.7.7 Beta-alanine
Beta-alanine, a non-essential amino acid naturally produced in 

the body, increases muscle carnosine concentrations when taken as a 
supplement (152). Elevated muscle carnosine levels enhance buffering 
capacity, reducing lactic acid buildup during high-intensity exercise, 
which can improve performance in sprints and short distances by 
mitigating fatigue (153).

A systematic review of 19 randomized controlled studies has 
confirmed that beta-alanine supplements enhance performance in 
short, high-intensity activities (154). Analyzing 15 studies revealed an 
average performance improvement of 2.85%, translating to a 6-s 
enhancement over a 4-min event (155). Notably, runners who took 
beta-alanine supplements for 28 days in an Australian study 
significantly improved their 800-meter race times (156). In a 
United Kingdom study, amateur boxers receiving 6 g of beta-alanine 
per day for 4 weeks experienced a 20-fold increase in punch force and 
a four-fold increase in punch frequency (80). Many studies utilize 
daily doses of 3.2–6.4 g for six to 10 weeks (157). However, optimal 
results seem achievable with approximately 3 g (4 × 800 mg) per day 
for 6 weeks, followed by a maintenance dose of 1.2 g per day (156).

Beta-alanine supplementation has demonstrated efficacy in 
enhancing performance in short, high-intensity activities through 
increased muscle carnosine levels. The systematic review and specific 
studies provide robust evidence of its positive impact on various 
athletic parameters. The recommended dosage strategy underscores 
the significance of both the initial loading phase and the subsequent 
maintenance dose for optimal results. Athletes and individuals 
involved in high-intensity activities may consider beta-alanine 
supplementation as part of their performance enhancement 
strategy (158).

In summary, sports supplements lack systematic regulation, and 
there is no guarantee that they fulfill their claims or do not contain 
prohibited substances. Major sports organizations, including 
United  Kingdom Sport, the US National Collegiate Athletic 
Association, and the International Olympic Committee (IOC), have 
policies advising against the use of sports supplements (159). It is 
recommended to prioritize a healthy diet and consult with your 
medical team or sports nutritionist before considering any 
supplements (160). Further research is essential to comprehend the 
combined effects of various sports supplement intake.
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3.8 Nutrient timing

Nutrient timing involves strategically providing the appropriate 
macronutrients when the body is most primed to utilize them 
effectively (161). In the context of exercise, nutrient timing can 
be segmented into three distinct phases: the energy phase, the anabolic 
phase, and the adaptation phase.

The energy phase encompasses the period right before and during 
the exercise itself. Following exercise, the anabolic phase occurs 
immediately and typically spans about 60 to 90 min. This period, often 
referred to as the anabolic or metabolic window (161), 
highlights the heightened responsiveness of exercised muscles to 
nutrient intervention.

Subsequent to the anabolic phase, the adaptation phase unfolds. 
Consistently incorporating suitable supplements and meals during 
this period sustains an improved response to nutrient intervention for 
an extended duration. This fosters quicker recovery and facilitates 
training adaptation, enhancing overall exercise performance.

3.8.1 Pre-exercise nutrition
The recommended timeframe for pre-exercise nutrition typically 

extends to the hour leading up to a training session, although some 
research has investigated the impact of consuming nutrients up to 4 h 
before engaging in physical activity (162). During this period, the 
primary objective of nutrient consumption is to ensure an adequate 
fuel reserve for the muscles, thereby enhancing performance during 
the exercise.

Explorations into pre-exercise nutrition trace back to the 1930s, 
when researchers began investigating physiological reactions during 
exercise in response to the intake of pre-exercise carbohydrates 
(CHO), such as glucose and fructose (163). As research progressed, 
studies delved into manipulating exercise performance through 
pre-exercise nutrition strategies.

An early study involving trained swimmers, employing different 
nutritional strategies, including supplemental cane sugar, did not 
reveal significant differences in performance (164). However, this 
study laid the groundwork for subsequent interventions and 
explorations in the field. Hargreaves et  al. (165) found that 
consuming 75 g of CHO, either as glucose or fructose, 45 min before 
exercise did not confer advantages in time-to-exhaustion 
performance or glycogen utilization during 75% effort of maximal 
oxygen uptake in trained cyclists compared to a placebo. Conversely, 
a larger carbohydrate intake of 312 g, consumed 4 h prior to 
exercise, enhanced time trial performance at a 70% effort level 
VO2max after 100 min in individuals with recreational cycling 
training. However, these differences were not statistically significant 
when compared to meals with equivalent energy content comprising 
either 45 or 156 grams of carbohydrates (166).

In a separate study, significant improvements in a similar 
performance task were observed when recreationally trained 
individuals ingested either 1.1 or 2.2 g/kg of carbohydrates 1 h before 
exercise, in contrast to a placebo. Interestingly, no significant 
distinctions were noted between the two CHO doses (167) (33). 
Additionally, pre-exercise carbohydrate consumption has 
demonstrated an impact on substrate utilization during exercise, 
promoting glucose oxidation over free fatty acids even at low-to-
moderate intensities (below 60% of maximal oxygen uptake, VO2max) 
(168) (34).

In summary, the collective influence of pre-exercise carbohydrate 
intake on endurance performance generally appears favorable, 
although findings across studies can be inconsistent. Interpretation of 
results should consider methodological aspects, including factors like 
the time elapsed since the last intense training session and existing 
muscle glycogen levels, which are interconnected and can influence 
the effectiveness of pre-exercise feeding.

The significance and performance-enhancing benefits of 
pre-exercise carbohydrates may be contingent on muscle glycogen 
content before feeding. This suggests that individuals with limited rest 
between training sessions may derive greater benefits compared to 
those with extended rest periods, provided they adequately consume 
carbohydrates. While much of the research has focused on aerobic 
exercises, there is growing evidence that activities involving high-
intensity intervals, such as resistance exercise, may also experience 
advantages. These activities predominantly rely on glycolytic, fast-
twitch muscle fibers, which generate force through rapid muscular 
contractions fueled by stored phosphagens and anaerobic glycolysis, 
leading to lactate production.

Even with around 40% total glycogen depletion after high-volume 
resistance exercise, it suggests that carbohydrate availability may not 
be a limiting factor unless glycogen stores are suboptimal. Importantly, 
substantial evidence indicates that pre-exercise supplementation with 
carbohydrates can mitigate glycogen reductions, even if it does not 
notably impact blood glucose levels (169).

3.8.2 During exercise nutrition
Carbohydrate (CHO) intake during physical activity has been 

extensively studied since the 1960s (49). It plays a crucial role in 
mitigating the utilization of muscle and liver glycogen, especially in 
situations involving high exercise intensity, durations exceeding 
60 min, or shorter, supramaximal exertions (170, 171). Insufficient 
CHO in these scenarios can lead to decreased exercise intensity due 
to a shortage of efficient fuel, diminished calcium release, and 
increased fatigue (172, 173). Inadequate carbohydrate intake during 
such activities may result in decreased exercise intensity due to a 
shortage of efficient fuel, diminished calcium release, and increased 
fatigue. Carbohydrate (CHO) oxidation rates from exogenous sources 
show an exponential increase in the initial 75–90 min of exercise, 
underlining the significance of commencing CHO ingestion from the 
start and sustaining it throughout the exercise session for the 
conservation of muscle and liver glycogen (174). Excessive CHO 
intake, on the other hand, may lead to gastrointestinal upset, 
potentially impeding performance goals. Diversifying CHO ingestion 
with different transporters can enhance CHO uptake and oxidation to 
approximately 1.5 g/min or 90 g/h (175). This varied CHO 
consumption not only improves CHO availability without causing 
gastrointestinal upset (176) but also carries the potential to enhance 
overall performance (177). For example, a study illustrated an 8% 
increase in power output during a time trial after 120 min of steady-
state cycling when cyclists consumed beverages with a 2:1 ratio of 
glucose to fructose, as opposed to glucose alone (177). Importantly, 
fructose ingested at a rate of 1.2 g/min, when combined with an equal 
amount of glucose, leads to a higher CHO oxidation rate compared to 
lower quantities, in line with the commonly recommended 60 g/h. 
These results highlight the potential benefits of integrating varied 
carbohydrate (CHO) intake to enhance performance (171–174, 
176, 177).
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An alternative approach to optimizing carbohydrate (CHO) 
delivery, with the goal of minimizing gastrointestinal distress and 
potentially boosting performance, involves the simultaneous intake of 
protein and CHO. Recent findings from a review and meta-analysis 
indicated positive performance outcomes, especially in time trials or 
efforts to exhaustion, for groups consuming a combination of CHO 
and protein compared to CHO alone (178). The noted favorable effect 
persisted consistently, even with the utilization of non-isocaloric 
supplements. However, when ensuring that CHO and protein 
supplements were equivalent in CHO content and subsequent 
examination of the effects of isocaloric supplementation involving 
both CHO and protein or CHO alone on time to exhaustion, no 
notable differences were observed (178).

Although the simultaneous ingestion of protein and carbohydrates 
may not yield immediate performance improvements, there are 
indirect advantages. These encompass the capacity to boost caloric 
intake while reducing carbohydrate consumption to prevent 
gastrointestinal distress, enhancing amino acid bioavailability to 
reduce muscle protein breakdown, and improving amino acid 
availability for gluconeogenesis. Moreover, co-ingestion may play a 
role in postponing central nervous system fatigue (179).

The effectiveness of intra-exercise nutrition, especially the 
consumption of carbohydrates (CHO), is highly contingent on 
variables like pre-exercise feeding, glycogen status, and the type of 
exercise (178). For aerobic activities lasting more than 2 h, optimal 
results are achieved by consuming 90–144 g/h of CHO in a 2:1 glucose 
to fructose solution. This strategy maximizes the uptake and oxidation 
of CHO while simultaneously preserving muscle glycogen.

In competitive scenarios, where extended endurance events 
frequently conclude with a sprint to the finish line, relying significantly 
on anaerobic metabolism and the utilization of endogenous muscle 
glycogen, the prudent conservation of this fuel source throughout the 
entire bout becomes paramount.

3.8.3 Post-exercise nutrition
After engaging in physical activity, individuals commonly 

experience a temporary surge. During this phase, there is an increase 
in fatigue, muscle soreness, and a decline in performance. In this stage, 
catabolic processes take precedence, leading to decreased insulin 
levels, restricted glycogen, and limited substrate availability. Cortisol 
and catecholamines collectively influence physiological processes in 
the body, heightening the pace at which muscle protein is being 
broken down (180).

The intake of carbohydrates and protein post-exercise offers the 
potential to raise glucose levels in the bloodstream, reduce cortisol 
levels, and improve substrate availability, enabling the transition from 
a catabolic state to a more anabolic condition (180). Additionally, 
activating muscle GLUT4 transporters, increasing glycogen synthase 
activity, and enhancing insulin sensitivity all contribute to improving 
how responsive skeletal muscles are to absorbing carbohydrates and 
amino acids (50, 181). Therefore, the post-exercise period offers a 
strategic opportunity for nutrient intake to aid in replenishing muscle 
glycogen, promoting protein synthesis, and reducing the degradation 
of muscle proteins (180, 181). Integrating the timing of nutrient intake 
after exercising into a training routine becomes essential for 
optimizing recovery rates and maximizing the benefits of training.

During moderate-to-high intensity exercise, muscle glycogen 
assumes a crucial role as the primary source of energy to sustain 

physical activity. In light of this situation, precise post-exercise 
nutrient timing becomes vital, emphasizing the primary goal of 
replenishing muscle glycogen to hasten the recovery process. After 
physical activity, there is a decrease in the heightened levels of post-
exercise glucose transporters, which are crucial for the absorption of 
nutrients. This decline brings the transporter levels back to baseline 
within a two-hour period (182).

Aside from glycogen synthesis, the consumption of protein and 
essential amino acids following exercise plays a pivotal role in 
triggering muscle protein synthesis and aiding in the reconditioning 
of skeletal muscles (183). After exercising, there is a notable increase 
in muscle damage and protein degradation in the aftermath of exercise 
(161, 181). Moreover, when glycogen stores are depleted, the pace of 
protein breakdown increases, as amino acids could potentially 
undergo gluconeogenesis to be  utilized in replenishing levels of 
glycogen (91). As a result, it is crucial to consume protein after exercise 
to mitigate the breakdown of proteins and assist in the repair of 
muscle damage (183).

When aiming to stimulate muscle protein synthesis, proteins that 
are rapidly digestible and of high quality, containing an adequate 
amount of essential amino acids, may be more effective than proteins 
with lower quantities of branched-chain amino acids or those that are 
slower to digest (69).

Comprehensive training and maintaining a sufficient daily protein 
intake are crucial for achieving strength and hypertrophy. However, 
beyond these foundational aspects, there are potential advantages to 
carefully considering the timing of protein consumption, especially 
immediately after exercising. The positive impacts on net protein 
balance and glycogen synthesis underscore the significant benefits of 
ingesting protein in the post-training period.

Fundamentally, critical factors contributing to optimal 
performance include not only the quality of the training but also the 
overall protein intake throughout the day. The strategic timing of 
protein consumption provides an additional layer of support to boost 
performance. Even if the resulting benefits are seemingly minor, this 
aspect becomes a pertinent factor, particularly for competitive athletes 
who are dedicated to optimizing their performance.

In summary, the significance of nutrient timing is a nuanced 
matter, and its relevance varies greatly depending on the context. 
Defined as the delivery of adequate macronutrients precisely when the 
body is ready to use them (184), nutrient timing represents a dietary 
approach where specific nutrients are ingested before training to 
enhance both short-term performance and long-term adaptations (23).

Early research delved into the effects of acute carbohydrate 
(CHO) consumption on exercise performance, focusing on glycogen 
depletion and use during moderate to high-intensity aerobic activity 
(185, 186). Subsequent studies broadened the scope to investigate 
how acute protein consumption (PRO) impacts endurance and 
resistance workout performance, as well as recovery and adaptation. 
Despite these inquiries, it’s noteworthy that the effects of nutrient 
timing on performance, recovery, and adaptation outcome variables 
have only been explored in a limited number of chronic 
interventional studies.

The time before exercise, typically within 4 h prior, involves 
specific dietary tactics. Glucose loading, for instance, aims to boost 
muscle glycogen reserves in the days preceding an endurance race, 
resulting in enhanced glycogen storage levels and improved 
performance in activities lasting over 90 min (167, 187).
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Consuming 150–200 grams of carbs 4 h before exercise has shown 
to significantly increase muscle glycogen reserves, ultimately 
contributing to improved exercise performance (188–190). 
Additionally, it is advisable to include healthy fats in the diet 6-5 h 
before exercise. Conversely, to prevent gastrointestinal discomfort, it’s 
recommended to avoid fiber consumption 2-3 h before engaging in 
physical activity (67, 190, 191).

The energy phase during a workout is crucial as muscles require 
sufficient energy for contractions. According to timing science, 
consuming carbohydrates, proteins, specific amino acids, and vitamins 
10 min before and during exercise is necessary for this objective. The 
benefits encompass a good supply of glycogen, a reduction in cortisol, 
and assistance in preparing muscle enzymes for faster recovery 
(192, 193).

Post-workout nutrition timing is widely regarded as the most 
crucial phase. Intensive resistance training sessions damage muscle 
fibers and deplete the body’s reserves of fuel, including glycogen and 
amino acids. Consuming the right balance of nutrients during this 
time initiates the healing process for injured tissue and replenishes 
energy stores. This occurs in a super-compensated manner, enhancing 
exercise performance and body composition. Researchers often refer 
to this limited timeframe following training as the “anabolic window 
of opportunity,” emphasizing its significance in maximizing muscle 
adaptations related to the training (194–196).

4 Conclusion

In conclusion, this narrative review offers targeted 
recommendations for addressing the nutritional needs of the active 
population, with a specific focus on preventing disordered eating. 
Given the unique challenges faced by athletes, it is imperative to tailor 
nutrition plans to individual requirements.

Individualization emerges as a cornerstone in preventing 
disordered eating among athletes. Recognizing diverse goals, body 
compositions, metabolic rates, and dietary preferences is essential. 
Tailoring nutrition plans to accommodate these individual factors can 
significantly contribute to optimizing performance while mitigating 
the risk of disordered eating (197).

Macronutrients, which include carbohydrates, proteins, and fats, 
play a critical role in athletic nutrition. Adequate carbohydrate intake 
is necessary to support energy production and replenish glycogen 
stores, thereby reducing the likelihood of restrictive eating behaviors 
(33). Proteins are indispensable for muscle repair and growth, 
emphasizing the importance of meeting increased protein needs 
without resorting to excessive dietary restrictions (198). Meanwhile, 
healthy fats contribute to sustained energy, hormone production, and 
overall health, promoting a balanced approach to nutrition.

In addition to macronutrients, micronutrients, encompassing 
vitamins and minerals, are paramount for energy metabolism and 
immune function. Promoting a diverse, nutrient-dense diet is crucial 
to ensuring athletes receive adequate micronutrients, thereby reducing 
the risk of nutritional deficiencies that might contribute to disordered 
eating (199).

Hydration emerges as a key factor in preventing disordered eating 
among the active population. Proper fluid balance is essential for 
physiological function, and athletes must be attuned to their individual 

fluid needs. Maintaining adequate hydration levels before, during, and 
after exercise is crucial, as dehydration can exacerbate disordered 
eating behaviors.

While acknowledging the interest in sports nutrition supplements, 
caution is advised. Athletes should prioritize meeting their nutritional 
needs through whole foods to minimize the risk of disordered eating 
patterns (200). Supplements should only be considered when dietary 
intake falls short or specific deficiencies are identified. Consultation 
with qualified professionals is essential to ensure safe and 
appropriate usage.

In summary, implementing these targeted nutritional 
recommendations can serve as a proactive tool in preventing 
disordered eating within the active population. By understanding and 
addressing the unique challenges faced by athletes, promoting 
individualization, and emphasizing a balanced and informed 
approach to nutrition, this review contributes to the overarching goal 
of investigating and preventing disordered eating in the 
active population.

This review delves into the most recent research findings on 
nutritional recommendations for athletes, offering readers a 
comprehensive overview of the current state of the field. By skillfully 
spotlighting significant patterns, accepted procedures, and novel 
studies, we provide an invaluable resource for both researchers and 
practitioners, enhancing the reader’s comprehension of the intricate 
connection between nutrition and athletic performance.

It is important to note that the authors’ judgment played a major 
role in the inclusion of studies. The absence of a systematic search and 
uniform inclusion criteria may lead to the inclusion of research with 
methodological flaws or the unintentional exclusion of pertinent 
studies. Additionally, subjectivity in the interpretation of results may 
have resulted in the overemphasis of some topics and the omission 
of others.

In summary, this review underscores the pivotal role of athlete 
nutrition guidelines in facilitating optimal dietary arrangements for 
individuals involved in sports and physical activity. By 
comprehensively reviewing existing guidelines, this manuscript aims 
to furnish a resource that benefits athletes directly and aids sports 
nutrition specialists in their vital work. The overarching objective is to 
cultivate an environment of informed dietary choices, contributing to 
the prevention of disordered eating and promoting the long-term 
health and performance of athletes and active individuals. As 
we navigate the intricacies of sports nutrition, the insights gleaned 
from this manuscript aspire to guide future research and interventions, 
ensuring a holistic approach to the well-being of individuals engaged 
in athletic pursuits.
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