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Associations between genetically
determined dietary factors and
risk of autism spectrum disorder:
a Mendelian randomization study
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China, 2Department of Neonatology, Weifang Traditional Chinese Hospital, Weifang, China

Background: Existing studies confirm the importance of dietary factors in

developing autism spectrum disorder (ASD) and disease progression. Still, these

studies are primarily observational, and their causal relationship is unknown.

Moreover, due to the extensive diversity of food types, the existing research

remains somewhat limited in comprehensiveness. The inconsistency of the

results of some studies is very disruptive to the clinic. This study infers a causal

relationship between dietary factors on the risk of developing ASD from a genetic

perspective, which may lead to significant low-cost benefits for children with

ASD once the specificity of dietary factors interfering with ASD is confirmed.

Methods: We performed a two-sample Mendelian randomization (MR)

analysis by selecting single nucleotide polymorphisms (SNPs) for 18 common

dietary factors from the genome-wide association study (GWAS) database as

instrumental variables (IVs) and obtaining pooled data for ASD (Sample size

= 46,351) from the iPSYCH-PGC institution. Inverse variance weighted (IVW)

was used as the primary analytical method to estimate causality, Cochran’s Q

test to assess heterogeneity, the Egger-intercept test to test for pleiotropy and

sensitivity analysis to verify the reliability of causal association results.

Results: The MR analysis identified four dietary factors with potential causal

relationships: poultry intake (fixed-e�ects IVW:OR= 0.245, 95%CI: 0.084–0.718,

P < 0.05), beef intake (fixed-e�ects IVW: OR = 0.380, 95% CI: 0.165–0.874, P <

0.05), cheese intake (random-e�ects IVW: OR= 1.526, 95% CI: 1.003–2.321, P <

0.05), and dried fruit intake (fixed-e�ects IVW: OR = 2.167, 95% CI: 1.342–3.501,

P < 0.05). There was no causal relationship between the remaining 14 dietary

factors and ASD (P > 0.05).

Conclusion: This study revealed potential causal relationships between poultry

intake, beef intake, cheese intake, dried fruit intake, and ASD. Poultry and beef

intake were associated with a reduced risk of ASD, while cheese and dried fruit

intake were associated with an increased risk. Other dietary factors included in

this study were not associated with ASD.
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Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental
disease characterized by social and communication impairments,
restricted interests, and repetitive behavior (1). The global
incidence is ∼1–3% (2–5), and the incidence of the disease
is increasing yearly due to significant changes in the social
environment, improved diagnosis and widespread social attention.
The high prevalence and highly abnormal social stereotypic
behaviors have made it an increasingly important health problem
threatening children worldwide. Children with ASD have a variety
of presentations that overlap with the clinical manifestations
of many psychiatric disorders (1). The inaccuracy of diagnostic
methods based on scales and the lack of specific diagnostic markers
(6, 7) ultimately lead to an increased likelihood of under diagnosis
and misdiagnosis, which is a significant threat to the physical and
mental health of children and their growth and development as
well as a potential social hazard. Currently, no single treatment is
effective for all symptoms of ASD, and routinely prescribed therapy
for a primary sign is not recommended (8), with the first line of
treatment remaining behavioral interventions (7).

Its etiology and pathogenesis are not clear, but it is generally
accepted that dietary factors are one of the critical factors in the
development of ASD (3, 9). The gut-brain axis (GBA) effect on
ASD provides a theoretical basis for the link between diet and
ASD (10–12). The GBA promotes interactions between the gut
system and the neuroendocrine, neuroimmune, and autonomic
nervous systems, maintains homeostasis in the brain, and helps
regulate cognitive and emotional functions (13–15). And the gut
microbiome has been shown to play an essential role in regulating
GBA (16). Dietary preferences inevitably affect the ecological
balance of the gut microbiome and the digestion and absorption of
nutrients, resulting in abnormal functional architecture along the
GBA associated with ASD phenotypic heterogeneity, affecting the
coding of amino acid, carbohydrate, and lipid profiles associated
with ASD and changes in gene expression associated with the
brain, leading to neurodevelopmental disorders and ASD (10, 17).
In addition, a study by SRM Alsubaiei et al. (18) suggested that
dietary therapies have anti-inflammatory and antioxidant effects
and can improve oxidative stress and neuroinflammation to help
prevent ASD. A case-control study that included 38 children
and adolescents with ASD and 38 gender and age-matched peers
without ASD suggested that maintaining a diet high in antioxidant
capacity may effectively reduce some of the symptoms of ASD (19).
Several other studies have also shown a strong link between diet
and ASD. For example, a study by Zhang et al. (3) found that
children with ASD had decreased fruit and vegetable consumption
by comparing the eating and mealtime behavioral changes of 105
children with ASD and 105 children with typically developing
(TD) and conducted an external validation cohort including 82
children with ASD and 51 TD children, with reliable results. A
clinical study involving 106 children with ASD and 207 children
with TD by Wang et al. (20) showed that poor diet quality was
associated with impaired working memory and organizational
capacity in children with ASD and that attention should be paid
to improving their dietary quality. Mathew et al. (21) showed
that altered dietary intake in children with ASD was associated

with differences in autistic traits and sensory processing styles.
A study by Rodrigues et al. (22) showed that children with
ASD are more selective in their diets than children with TD.
Although many studies have found a correlation between dietary
factors and ASD, the causal relationship between the two is
inconclusive. If risk and protective factors in the diet can be
identified, there may be significant low-cost benefits for children
with ASD.

Mendelian randomization (MR) is a type of instrumental
variables (IVs) analysis that employs genetic variants as IVs to
infer causal relationships between exposures and outcomes (23).
In MR studies, IVs are genetic variants occurring during meiosis,
making them less susceptible to environmental influences and
confounding factors. They adhere to the principle of random
allocation, akin to a “natural” randomized controlled trial (RCT),
which enhances the strength of the causal evidence compared
to observational studies (24); meanwhile, genetic variations are
established prenatally and persist throughout one’s lifetime, thereby
enabling MR studies to avoid the influence of reverse causality
effectively (25). The widespread application of MR continues to
grow, especially with the accumulation of data from genome-
wide association studies (GWAS). An increasing number of studies
are employing MR methods to investigate causal relationships
between dietary factors and diseases. These studies indicate that
dietary factors can influence disease risk and lifespan (26–29).
Adjusting dietary composition and altering dietary habits can
be effective in disease prevention. Therefore, MR is an ideal
approach for investigating causal relationships between dietary
factors and ASD. This study uses MR methods to uncover the
intrinsic link between dietary factors and ASD at the genetic
level, hoping to provide research ideas for the prevention and
diagnosis of ASD and help improve dietary guidance for children
with ASD.

Methods

Study design

This study was conducted according to the guidelines of
the STROBE-MR statement (30, 31). In this study, dietary
factors were used as exposure variables and single nucleotide
polymorphisms (SNPs) loci significantly associated with
them were selected as IVs, and the outcome variable was
ASD. A two-sample MR analysis was performed using a
publicly available GWAS based extensive sample database.
Cochran’s Q test was used to assess heterogeneity, the Egger-
intercept test for pleiotropy and sensitivity analysis to verify
the reliability of causal association results. As the data used
is previously publicly available, no additional ethical approval
is required.

MR analysis requires three core assumptions to be
satisfied (32): (i) The selected IVs are strongly correlated
with exposure; (ii) IVs are not related to confounding
factors; (iii) IVs cannot be directly related to outcomes.
The two-sample MR study design model is shown in
Figure 1.
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FIGURE 1

Overview of the Mendelian randomization study design. SNPs, single nucleotide polymorphisms; MR, Mendelian randomization; ASD, autism

spectrum disorder.

Data source

Data on exposure variables were obtained from the IEU Open
GWAS database summary website (https://gwas.mrcieu.ac.uk/),
which primarily comprises publicly available GWAS summary data.
We selected 18 variables as exposure factors, including processed
meat intake (GWAS ID: ukb-b-6324), beef intake (GWAS ID:
ukb-b-2862), pork intake (GWAS ID: ukb-b-5640), lamb/mutton
intake (GWAS ID: ukb-b-14179), non-oily fish intake (GWAS ID:
ukb-b-17627), oily fish intake (GWAS ID: ukb-b-2209), poultry
intake (GWAS ID: ukb-b-8006), cooked vegetable intake (GWAS
ID: ukb-b-8089), salad/raw vegetable intake (GWAS ID: ukb-b-
1996), water intake (GWAS ID: ukb-b-14898), tea intake (GWAS
ID: ukb-b-6066), coffee intake (GWAS ID: ukb-b-5237), alcohol
intake frequency (GWAS ID: ukb-b-5779), bread intake (GWAS
ID: ukb-b-11348), cheese intake (GWAS ID: ukb-b-1489), cereal
intake (GWAS ID: ukb-b-15926), dried fruit intake (GWAS ID:
ukb-b-16576), and fresh fruit intake (GWAS ID: ukb-b-3881).
These exposure datasets were extracted from the UK Biobank
through the IEU Open GWAS project. The summary statistics
data for the outcome variable (ASD) was also derived from
the IEU Open GWAS database. However, it should be noted
that this dataset was not extracted from the UK Biobank (the
outcome variables were from a different dataset to the exposed
variables). In the IEU Open GWAS database, a search for
“autism spectrum disorder” GWAS was conducted, and a dataset
was selected based on sample size, originating from Integrative
Psychiatric Research and the Psychiatric Genomics Consortium
(iPSYCH-PGC) (GWAS ID: ieu-a-1185, https://gwas.mrcieu.ac.uk/
datasets/ieu-a-1185/). This dataset comprises 46,351 participants
of European ancestry (18,382 cases and 27,969 controls) and
9,112,386 SNPs. Both the exposed and outcome study populations
were of European ancestry to mitigate bias stemming from race-
related confounding factors. The specific information is shown
in Table 1.

Selection of instrumental variables

SNPs that were significantly correlated with exposure factors
were screened (P < 5.0 × 10−8), and SNPs in a state of linkage
disequilibrium (LD) were removed using a strict cut-off (r2 < 0.001,
region size = 10000 kb). The bias introduced by weak IVs was
avoided by excluding IVs with F≤ 10 (33, 34). SNPs associated with
confounders and outcomes were removed via the PhenoScanner
website (http://www.phenoscanner.medschl.cam.ac.uk/) (35). We
harmonized exposure and outcome SNP effects and excluded
palindromic and incompatible SNPs (36). MR-pleiotropy residual
sum outlier (MR-PRESSO) test detected and excluded horizontal
pleiotropy outliers (37). The final SNPs obtained by filtering
according to the above criteria were used for MR analysis.

Statistical analysis

All analyses were performed using the “TwoSampleMR”
(version 0.5.6) and “MR-PRESSO” packages in R software (version
4.2.1) (38). This study used inverse variance weighted (IVW)
(39) as the primary analysis method to infer a potential causal
relationship between dietary factors and ASD. IVW is based on
the assumption that all genetically variable SNPs are valid IVs with
an overall bias of zero and is the most common and accurate
method for detecting causality in MR analysis. However, MR-Egger
intercept analysis (40) must satisfy P > 0.05, i.e., no horizontal
pleiotropy is present; otherwise, the IVW results are unreliable.
Heterogeneity was assessed according to Cochran’s Q test: if P <

0.05, heterogeneity was present, random-effects IVW was selected,
when heterogeneity was acceptable; if P ≥ 0.05, heterogeneity
was not present, fixed-effects IVW was selected. The weighted
median method (41) and MR-Egger regression (42) complement
IVW for MR analysis. The weighted median method informs the
majority of evidence-supported estimates based on the assumption
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TABLE 1 Details of the GWAS included in the two-sample Mendelian randomization study.

Exposure or
outcome

GWAS ID Sample
size

Number
of SNPs

Consortium Population Year Author

Processed meat
intake

ukb-b-6324 461,981 9,851,867 MRC-IEU European 2018 Ben Elsworth

Beef intake ukb-b-2862 461,053 9,851,867 MRC-IEU European 2018 Ben Elsworth

Pork intake ukb-b-5640 460,162 9,851,867 MRC-IEU European 2018 Ben Elsworth

Lamb/mutton
intake

ukb-b-14179 460,006 9,851,867 MRC-IEU European 2018 Ben Elsworth

Non-oily fish intake ukb-b-17627 460,880 9,851,867 MRC-IEU European 2018 Ben Elsworth

Oily fish intake ukb-b-2209 460,443 9,851,867 MRC-IEU European 2018 Ben Elsworth

Poultry intake ukb-b-8006 461,900 9,851,867 MRC-IEU European 2018 Ben Elsworth

Cooked vegetable
intake

ukb-b-8089 448,651 9,851,867 MRC-IEU European 2018 Ben Elsworth

Salad/raw vegetable
intake

ukb-b-1996 435,435 9,851,867 MRC-IEU European 2018 Ben Elsworth

Water intake ukb-b-14898 427,588 9,851,867 MRC-IEU European 2018 Ben Elsworth

Tea intake ukb-b-6066 447,485 9,851,867 MRC-IEU European 2018 Ben Elsworth

Coffee intake ukb-b-5237 428,860 9,851,867 MRC-IEU European 2018 Ben Elsworth

Alcohol intake
frequency

ukb-b-5779 462,346 9,851,867 MRC-IEU European 2018 Ben Elsworth

Bread intake ukb-b-11348 452,236 9,851,867 MRC-IEU European 2018 Ben Elsworth

Cheese intake ukb-b-1489 451,486 9,851,867 MRC-IEU European 2018 Ben Elsworth

Cereal intake ukb-b-15926 441,640 9,851,867 MRC-IEU European 2018 Ben Elsworth

Dried fruit intake ukb-b-16576 421,764 9,851,867 MRC-IEU European 2018 Ben Elsworth

Fresh fruit intake ukb-b-3881 446,462 9,851,867 MRC-IEU European 2018 Ben Elsworth

Autism spectrum
disorder

ieu-a-1185 46,351 9,112,386 iPSYCH-PGC European 2017 -

that more than 50% of the weights are derived from valid genetic
instruments. MR-Egger regression allows all genetic instruments
to be pleiotropic, thereby providing consistent estimates, provided
that the InSIDE assumptions are met (43). The leave-one-out
analysis is used for sensitivity analysis to assess the stability of
the results.

Results

After screening the corresponding GWAS databases for SNPs
with strong correlations with exposure and eliminating the
interference of LD, the number of SNPs we initially screened for
the 18 exposure factors ranged from 8 to 99. The number of SNPs
with F≤ 10 was excluded, ranging from 0 to 19, and the remaining
SNPs all had F statistics above 10. After completing all screening
criteria, the final number of valid SNPs for MR analysis ranged
from 6 to 69. Basic information about these SNPs is presented in
the Supplementary material (Basic information of SNPs).

This study analyzed the causal relationship between 18 dietary
factors and ASD. Based on the results of the IVWmethod, a causal
relationship between four dietary factors and ASD was identified.
We found that poultry intake (fixed-effects IVW: OR= 0.245, 95%

CI: 0.084–0.718, P < 0.05) was associated with a reduced risk of
developing ASD and was a protective factor for ASD. The risk of
developing an ASD decreases with increased poultry intake. The
results of this study were not affected by heterogeneity (P > 0.05)
or pleiotropy (P > 0.05). After removing each SNP individually,
the leave-one-out analysis showed no significant bias in our results.
The weighted median method (OR = 0.208, 95% CI: 0.050–0.857,
P < 0.05) verified this finding. In the MR analysis of the beef
intake, the fixed-effects IVW results showed an OR = 0.513, 95%
CI: 0.231–1.142, P= 0.102> 0.05, indicating no causal relationship
between beef intake and the risk of ASD. However, the weighted
median method (OR = 0.270, 95% CI: 0.090–0.850, P = 0.026
< 0.05) showed a causal relationship. When sensitivity analysis
was performed on them, it was found that rs7791463 caused a
significant bias to our findings, dominating the occurrence of no
statistical significance. The significant estimates observed in the
weighted median method also suggest that the potential outliers
rs7791463 biased the causal inference of the IVWmethod (44). We
re-ran the MR analysis after excluding rs7791463, and the fixed-
effects IVW results showed: OR = 0.380, 95% CI: 0.165–0.874, P
= 0.023 < 0.05. This result was not affected by heterogeneity (P >

0.05) or pleiotropy (P > 0.05). No significant bias was found in the
leave-one-out analysis. The weighted median method (OR= 0.258,
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95% CI: 0.083–0.807, P < 0.05) yielded stable results and continues
to support that beef intake is a protective factor for ASD. We also
identified two risk factors for ASD: cheese intake (random-effects
IVW: OR = 1.526, 95% CI: 1.003–2.321, P < 0.05) and dried fruit
intake (fixed-effects IVW: OR = 2.167. 95% CI: 1.342–3.501, P <

0.05). The former pleiotropy was not significant (P > 0.05), but
there was heterogeneity (P < 0.05), and we used random-effects
IVW for causal estimation, and the results remained reliable. The
latter was not affected by heterogeneity (P > 0.05) or pleiotropy
(P > 0.05). The leave-one-out analysis showed that the results of
our study were reliable. The weighted median method verified a
causal relationship between dried fruit intake and ASD (OR =

2.201, 95% CI: 1.077–4.496, P < 0.05). However, the weighted
median method did not find a causal relationship between cheese
intake and ASD (P > 0.05). Since the three statistical methods
yielded the same beta direction and no outliers were found in
the sensitivity analysis, the IVW test still prevailed. The causal
relationship between cheese intake and ASD remained reliable.
None of the results were significant in the MR-Egger regression
model (P > 0.05). As MR-Egger regression allows all SNPs to be
pleiotropic and the findings are not sufficiently rigorous, we do not
use MR-Egger regression as the final evaluation criterion for our
findings. The results of the above study are shown in Figure 2. The
visualization results and sensitivity analysis of the MR analysis can
be found in the Supplementary material (Visualization results).

The remaining 14 dietary factors were tested for causal
relationships with ASD using the IVW method, showing that
processed meat intake (fixed-effects IVW: OR = 0.810, 95% CI:
0.466–1.411, P > 0.05), pork intake (random-effects IVW: OR
= 0.388, 95% CI: 0.085–1.775, P > 0.05), lamb/mutton intake
(fixed-effects IVW: OR = 1.010, 95% CI: 0.537–1.899, P > 0.05),
non-oily fish intake (fixed-effects IVW: OR = 0.629, 95% CI:
0.282–1.403, P > 0.05), oily fish intake (fixed-effects IVW: OR =

1.116, 95% CI: 0.810–1.538, P > 0.05), cooked vegetable intake
(random-effects IVW: OR= 1.156, 95% CI: 0.392–3.407, P > 0.05),
salad/raw vegetable intake (fixed-effects IVW: OR = 1.668, 95%
CI: 0.618–4.504, P > 0.05), water intake (fixed-effects IVW: OR
= 1.261, 95% CI: 0.856–1.857, P > 0.05), tea intake (fixed-effects
IVW: OR = 0.799, 95% CI: 0.603–1.061, P > 0.05), coffee intake
(fixed-effects IVW: OR = 0.944, 95% CI: 0.673–1.324, P > 0.05),
alcohol intake frequency (random-effects IVW: OR = 1.085, 95%
CI: 0.886–1.328, P > 0.05), bread intake (random-effects IVW:
OR = 1.287, 95% CI: 0.714–2.320, P > 0.05), cereal intake (fixed-
effects IVW: OR = 0.920, 95% CI: 0.584–1.450, P > 0.05), fresh
fruit intake (random-effects IVW: OR = 1.792, 95% CI: 0.850–
3.780, P > 0.05) and ASD were not causally related. Heterogeneity
was found for some of the exposure factors (pork intake, cooked
vegetable intake, alcohol intake frequency, bread intake, and
fresh fruit intake) and analyses using the random-effects IVW
model considered the effect of heterogeneity on the results, which
remained reliable. No pleiotropy was found for all results of the
MR-Egger intercept analysis test (P > 0.05). After excluding each
SNP individually, the leave-one-out analysis showed no significant
bias in the study results. The results of the above study are
shown in Figure 3. The visualization results and sensitivity analysis
of the MR analysis can be found in the Supplementary material
(Visualization results).

Discussion

The development of ASD is now understood to be closely
associated with genetic factors. However, it is typically not
attributed to specific genes or highly localized lesions but
rather arises from a combination of unknown genetic risks and
abnormalities in neural pathways (45). To date, there are no official
laboratory diagnoses or predictive tools for ASD. The forefront
of medical research in ASD continues to focus on pathogenesis
and diagnostic tools, including genetics, peptides, proteins,
metabolites, and transcriptomics. Nevertheless, identifying genetic
variations within common risk factors for ASD, which often
overlap with the general population, can be challenging (46). In
addition to genetic factors, the risk of developing ASD is also
strongly associated with dietary factors. Dietary factors play an
essential role in the development of ASD, from the maternal
nutritional status to the onset and prognosis of children with
ASD. Maternal nutritional status may have an impact on fetal
brain development. Several studies have suggested that poor
nutrition during pregnancy, deficiencies in critical nutrients, and
exposure to specific illness may be associated with an increased
risk of ASD (47–52). Likewise, infancy and early childhood play
a pivotal role in the complex process of brain development.
Diet has a profound effect on neurological development and
functioning during this critical period, and nutritional imbalances
and disorders in the diet may potentially impact the onset and
development of ASD. Consequently, extensive research efforts
have been dedicated to investigating diet-nutrition therapy for
enhancing ASD management. Shaaban et al. (53) conducted
an experiment in which probiotic nutritional supplements were
administered to autistic children. After 3 months, an examination
of fecal specimens revealed increased levels of Bifidobacteria and
Lactobacilli, accompanied by significant improvements in autistic
severity and gastrointestinal symptoms among the affected children
(53). N, N-dimethylglycine (DMG) is a dietary supplement that
has been reported to be beneficial for children with ASD, as it can
ameliorate the mental and physical conditions of ASD children
(54). Additionally, meta-analysis results indicate that dietary
interventions can significantly ameliorate the core symptoms of
ASD, and gluten-free diets are conducive to improving social
behaviors (55). Although many studies have reported the efficacy
of dietary interventions for ASD, these studies are predominantly
observational in nature, and their causal relationships remain
unknown. Moreover, the inconsistency of some research findings
poses significant challenges to clinical interpretation. This study
gives a genetic perspective on the intrinsic link between diet and
the risk associated with ASD.

In this study, 18 daily dietary intake factors were selected
as exposure variables, with ASD as the outcome variable. MR
methods were employed to infer the causal relationships between
dietary intake and ASD. The results indicated that the risk of
ASD increased with higher cheese and dried fruit intake, while
it decreased with increased beef and poultry intake. However,
there were no statistically significant causal relationships observed
between ASD and processedmeat intake, pork intake, lamb/mutton
intake, non-oily fish intake, oily fish intake, cooked vegetable
intake, salad/raw vegetable intake, water intake, tea intake, coffee

Frontiers inNutrition 05 frontiersin.org

https://doi.org/10.3389/fnut.2024.1210855
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Li et al. 10.3389/fnut.2024.1210855

FIGURE 2

Mendelian randomized causal estimation of the risk of autism spectrum disorder by poultry intake, cheese intake, and dried fruit intake.

intake, alcohol intake frequency, bread intake, cereal intake, or
fresh fruit intake.

A study involving 41 primary school children with ASD and
191 children with TD found that primary school children with
ASD consumed fewer cheese and yogurt compared to children
with TD (56). This finding contradicts our research results and
may be attributed to the smaller sample size included in the
study. Most importantly, we cannot determine the temporal
relationship between cheese intake and the onset of ASD, and
therefore, the relationship between cheese intake and ASD remains
worthy of exploration. Current research suggests that cheese
contains a high level of casein, and an excess of casein can
be metabolized into opioid peptides (57, 58), which mimic
analgesic effects and may contribute to the development of certain
aberrant neurological behaviors (59, 60). Reducing casein intake
may potentially reduce the incidence of ASD (61–63). Some
studies have indicated significant improvement in ASD symptoms
following strict dietary restrictions of gluten-free and casein-free
foods in children (64). Therefore, we posit that cheese intake
is highly likely to be a risk factor for ASD. No other studies
have indicated a direct relationship between dried fruit and ASD.
This study may represent the inaugural attempt to reveal a
causal relationship between the two through MR methodology.
However, the underlying mechanisms between the two remain
unclear. Dried fruits emerge from moisture removal from fruits,
culminating in the concentration of nutritional constituents and a
relatively heightened sugar content. Research indicates that diets
with excessive sugar content might exert unfavorable effects on
children with ASD, potentially leading to challenges in emotional
and behavioral problems among individuals with autism (65, 66).
Given the established positive correlation between inflammation
and psychological issues and autism-related symptoms (67, 68),
its plausible mechanisms may be associated with the potential
elevation of inflammatory risks attributed to sugar intake (66,
69, 70). This could be one factor contributing to the onset of

ASD due to excessive consumption of dried fruits. Furthermore,
it is worth noting that while the IVW method did not unveil
a causal relationship between fresh fruit intake and ASD, the
outcomes derived from the weighted median method suggest
an elevated risk of ASD with increased intake of fresh fruit.
However, in the case of dried fruits after moisture extraction,
both research methodologies elucidate a causal relationship with
ASD. Future research endeavors should investigate the association
between dried fruit intake and the risk of developing ASD.
The causal relationship between beef intake and the onset of
ASD necessitates further in-depth clinical investigation. However,
the underlying connection between these two factors provides
us with some basis for investigation. Psychiatric disorders such
as autism are genetically correlated with human temperament
phenotypes (71, 72). The study by R Costilla et al. (73) showed
that genetic control of temperament might be shared between
humans and beef cattle. And certain susceptibility genes for ASD
are associated with beef cattle temperament. Furthermore, genes
associated with the temperament of beef cattle contribute to
neuron development functions and exhibit differential expression
in human brain tissues. This may provide potential evidence
for beef intake as a protective factor in the development of
ASD. The protective mechanism of poultry intake as a protective
factor for ASD is unclear. It is speculated that it may be
related to the intake of micronutrients and unsaturated fatty
acids (74–76).

This study has several limitations that warrant consideration.
Firstly, the study population consisted of individuals of
European ancestry, which may limit the generalizability of
the findings to other populations. Secondly, the potential for
unobserved pleiotropy, which was not fully addressed in the
MR analysis, introduces the possibility of bias in the results.
Thirdly, we could not further categorize distinct dietary intake
types, nor could we discern the effects of different dietary
combinations. Furthermore, the dietary factors selected in
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FIGURE 3

Mendelian randomized causal estimates of 14 dietary factors on the risk of developing autism spectrum disorder.
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this study lack substantiation from foundational research
and high-quality, large-scale clinical RCTs regarding their
association with ASD. Thus, their effectiveness remains to
be confirmed.

Conclusion

In summary, this study revealed potential causal
relationships between poultry intake, beef intake, cheese
intake, dried fruit intake, and ASD. Poultry and beef intake
were associated with a reduced risk of ASD, while cheese
and dried fruit intake were associated with an increased
risk. Other dietary factors included in this study were not
associated with ASD. These findings provide a foundation
for reliable clinical nutritional interventions for children
with ASD, contributing to primary prevention strategies
for ASD.
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