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Metabolic (dysfunction)-associated fatty liver disease (MAFLD) has emerged as 
a significant global health concern, representing a major cause of liver disease 
worldwide. This condition spans a spectrum of histopathologic stages, beginning 
with simple fatty liver (MAFL), characterized by over 5% fat accumulation, and 
advancing to metabolic (dysfunction)-associated steatohepatitis, potentially 
leading to hepatocellular carcinoma. Despite extensive research, there remains 
a substantial gap in effective therapeutic interventions. This condition’s 
progression is closely tied to micronutrient levels, crucial for biological 
functions like antioxidant activities and immune efficiency. The levels of these 
micronutrients exhibit considerable variability among individuals with MAFLD. 
Moreover, the extent of deficiency in these nutrients can vary significantly 
throughout the different stages of MAFLD, with disease progression potentially 
exacerbating these deficiencies. This review focuses on the role of micronutrients, 
particularly vitamins A, D, E, and minerals like iron, copper, selenium, and zinc, 
in MAFLD’s pathophysiology. It highlights how alterations in the homeostasis of 
these micronutrients are intricately linked to the pathophysiological processes 
of MAFLD. Concurrently, this review endeavors to harness the existing evidence 
to propose novel therapeutic strategies targeting these vitamins and minerals 
in MAFLD management and offers new insights into disease mechanisms and 
treatment opportunities in MAFLD.
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1 Introduction

Non-alcoholic fatty liver disease (NAFLD) represents a spectrum of liver disorders, 
ranging from simple steatosis to more severe conditions like steatohepatitis with fibrosis, and 
ultimately, cirrhosis. Recognizing its association with hepatic steatosis, obesity, T2DM, and 
hypertriglyceridemia, NAFLD has been renamed Metabolic (Dysfunction)-Associated Fatty 
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Liver Disease (MAFLD), highlighting its metabolic 
underpinnings (1–3).

MAFLD can lead to hepatocellular carcinoma in its more 
advanced stages, a malignancy known for its high mortality rate. 
Recent epidemiological studies reveal that MAFLD’s global prevalence 
has reached approximately 30% (4), and this trend shows no signs of 
abating. Most MAFLD patients initially have a benign condition, 
MAFL, with over 5% of hepatocytes containing lipid droplets (5). 
However, 20–30% progress to metabolic (dysfunction)-associated 
steatohepatitis (6, 7), characterized by significant steatosis, 
inflammation, and cellular ballooning, primarily in the liver’s alveolar 
zone 3 (8). Alarmingly, up to 38% of MASH patients with fibrosis may 
develop cirrhosis, and 2.4–12.8% of these individuals are at risk of 
hepatocellular carcinoma (HCC) (7). Both cirrhosis and hepatocellular 
carcinoma linked to MAFLD are associated with poor prognoses, 
highlighting the urgency for timely and effective management 
strategies in MAFLD patients.

Vitamins and minerals, essential micronutrients predominantly 
sourced from our diet, play a crucial role in normal body functioning 
through their antioxidant properties, enzyme activities, and immune 
system modulation (9). Recent research has brought to light the 
significant role of certain trace elements, particularly vitamins A, D, 
E, and minerals like iron, copper, selenium, and zinc. This article 
delves into their involvement in immune-inflammatory and metabolic 
processes (10, 11). The destabilization of these micronutrients has 
been linked to a variety of metabolic diseases (12), including MAFLD 
(13). Globally, vitamin and mineral deficiencies are widespread (14), 
and MAFLD patients frequently face similar challenges. These 
deficiencies are often tied to the dietary choices (15) of the individuals 
and a reduction in vitamin production due to altered intestinal flora 
(16). Despite the prevalence of MAFLD, current medical treatments 
remain inadequate. However, observations of micronutrient 
imbalances in MAFLD patients and animal models (17), along with 
the improvements seen in targeted therapies, open up new avenues for 
treating this condition. The ability of vitamins and trace minerals to 
positively impact the mechanisms at the core of MAFLD offers 
promising prospects for its pharmacological treatment (18, 19). This 
insight, focusing on correcting micronutrient imbalances, could pave 
the way for innovative strategies in managing and potentially 
mitigating the progression of MAFLD.

The review aims to provide the latest summary on the 
pathophysiologic pathways linking micronutrients to the development 
of MAFLD and to focus on new data from clinical trials exploring the 
safety and efficacy of vitamin and mineral supplementation on liver 
outcomes in patients with MAFLD (See Figure 1).

2 Pathogenesis of MAFLD and current 
therapeutics

2.1 Pathogenesis of MAFLD

The pathogenesis of MAFLD is not well defined, and the “multi-hit 
theory” is more widely recognized. MAFLD is a complex disease 
characterized by interactions between the environment and the 
susceptible polygenic host background that determine the phenotype 
and progression of the disease, MBOAT7, and other variants in the 
genes are strongly and consistently associated with MAFLD (20). On 

this basis, modern high-fat diet and unhealthy lifestyle habits act as 
triggers for impaired hepatic fat metabolism, hepatocellular fat 
accumulation producing lipotoxicity (21), endoplasmic reticulum 
stress (22), increased synthesis of reactive oxygen species, synthesis of 
adipokines, activation of inflammatory cells and release of 
inflammatory factors triggering intrahepatic inflammation (23), 
disruption of hepatic homeostasis, and comorbid insulin resistance 
(24). Gut microecological changes (25), accelerating the 
transformation of MAFL to MASH, liver fibrosis and cirrhosis (See 
Table 1).

2.2 Current therapeutics

Current treatment strategies for Metabolic Dysfunction-
Associated Fatty Liver Disease (MAFLD) are limited in effectiveness. 
Clinical guidelines primarily advocate for lifestyle interventions (44) 
and, in cases where obesity has advanced significantly, bariatric 
surgery (45) to facilitate weight loss. For lean MAFLD patients, the 
recommended approach is lifestyle modification coupled with a 
reduction in fructose and sugar-sweetened beverages, aiming for a 
modest weight loss of 3–5% (46). Other pharmacological treatments, 
such as metformin, thiazolidinediones, and liraglutide, are generally 
reserved for patients with concurrent diabetes mellitus. However, their 
efficacy specifically for MAFLD is not conclusively proven, and they 
have shown potential side effects or unintended results in animal 
studies (47).

Research into MAFLD patients’ micronutrient levels reveals 
complex interactions and trends. Vitamins A, E, Zinc, and Copper are 
often reduced, while Vitamin D varies and Iron increases. These 
micronutrients interact within MAFLD, complicating disease 
understanding and progression. This interplay presents challenges yet 
offers new therapeutic opportunities. Current research focuses on 
understanding these interactions to develop targeted MAFLD 
treatments, marking a shift towards more effective 
management approaches.

3 Vitamins and MAFLD

3.1 Vitamins deficiency status in MAFLD 
patients

Vitamin deficiency is a global health issue with widespread impact 
(48). In metabolic diseases related to obesity, most vitamins are found 
to be deficient (49). Specifically, in MAFLD, the primary vitamins 
affected are the fat-soluble ones: A, D, and E. MAFLD patients, often 
consuming diets low in nutrients, rich in high-fat meats/proteins, and 
high in sodium (50), are prone to lower levels of these vitamins 
without additional supplementation. Furthermore, alterations in the 
intestinal microecology significantly influence vitamin absorption, 
contributing to the vitamin deficiencies observed in MAFLD patients 
(51, 52). Additionally, vitamin deficiencies play a role in low-intensity 
inflammation, exacerbated by the release of inflammatory adipokines 
from adipose tissue, which further aggravates the condition of 
MAFLD patients. This complex interplay underscores the importance 
of addressing vitamin deficiencies in managing and improving the 
health outcomes for those with MAFLD (49).
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3.2 Role of vitamins in pathogenesis of 
MAFLD

3.2.1 Vitamin A and MAFLD
Vitamin A, essential for various physiological functions in the 

human body, relies exclusively on dietary intake. Its primary active 
form, retinoic acid (RA), plays a pivotal role by binding to retinoic 
acid receptors to facilitate biological signal transduction (53). 
Normally, vitamin A, being fat-soluble, is stored in hepatic stellate cells 
(54, 55). In patients with MAFLD, circulating concentrations of 
retinoic acid are observed to be  lower (56). There is a notable 
correlation between diminished levels of Vitamin A and the severity 
of hepatic fibrosis, as well as an increase in liver-related mortality (57). 
Furthermore, in patients with metabolic (dysfunction)-associated 
Steatohepatitis (MASH), high expression of hepatic AKR1B10 is 
linked to reduced hepatic retinoid levels, exacerbating the progression 
from MASH to Hepatocellular Carcinoma (HCC) (58). This highlights 
the critical role of Vitamin A in liver health and its potential 
implications in the progression of liver diseases.

Vitamin A contributes to the management of MAFLD through 
various mechanisms, including the modulation of lipid metabolism 
(26, 30, 59), antioxidant effects (28, 60), anti-inflammatory properties 
(27), and enhancing insulin sensitivity (30, 31). Notably, the retinoic 
acid receptor β2 agonist AC261066 has been shown to induce changes 
in the transcriptome and metabolome of hepatocytes (26), reduce the 
TGF-β1 inflammatory response in Kupffer cells, and alleviate liver 
fibrosis (27, 61). Dietary supplementation with all-trans retinoic acid 
(ATRA) notably improved insulin sensitivity in MAFLD model mice 
(C57BL/6J) (31). Additionally, ATRA acts on the retinoic acid receptor 
(62) to decrease PPAR-γ2 expression, thereby reducing fat 
accumulation in the liver (29).

Despite these promising findings, the clinical application of 
vitamin A in MAFLD treatment is constrained by its narrow 
therapeutic window and the limited number of clinical trials. This 
highlights the need for further research to fully understand and 
harness Vitamin A’s potential in MAFLD treatment while ensuring 
safety and efficacy in human applications.

3.2.2 Vitamin D and MAFLD
Vitamin D, primarily produced in the skin via sunlight exposure, 

is vital for both skeletal and extra-skeletal health. Clinical guidelines 
recommend keeping human serum 25(OH)D levels above 
50 nmoL/L. Despite this, about 7% of the global population has vitamin 
D levels below this threshold (63). Studies indicate that vitamin D 
deficiency is nonlinearly linked to increased MAFLD severity and 
higher all-cause mortality (64). Lower 25(OH) vitamin D levels are 
associated with increased MAFLD prevalence and liver fibrosis (65), 
while higher levels reduce fibrosis risk in MAFLD patients (66).

In a Western diet rat model, Vitamin D deficiency exacerbated 
MAFLD, potentially via toll-like receptor activation and endotoxin 
exposure (67). This deficiency also caused insulin resistance, increased 
hepcidin expression, and heightened inflammation and oxidative 
stress genes. Key to this severity in vitamin D-deficient MAFLD 
patients might be the activation of MAPK and NF-κB pathways (68).

In the realm of treating MAFLD with vitamin D, significant 
strides have been made. Studies across various regions (69, 70) and 
populations (71, 72) have shown that increased vitamin D levels may 
help prevent MAFLD. Different dosages of vitamin D exhibit varying 
degrees of improvement in MAFLD (33, 73).

Vitamin D induces autophagy (18) in mice, primarily by 
upregulating ATG16L1, thereby inhibiting the p53 pathway to prevent 
hepatocyte senescence and apoptosis (74). It also reduces 
inflammation via the enterohepatic axis, underscoring the importance 
of timely supplementation (75). Phototherapy-enhanced active 
vitamin D3 in mice mitigates hepatocyte apoptosis, inflammation, 
fibrosis, and insulin/leptin resistance caused by a CDAA diet (76). 
Additionally, vitamin D treatment curbs MAFLD induced by a 
high-fat diet (HFD), involving gut microbiota (77) and metabolic 
regulation (78), and modulates lipid metabolism through the PPARa 
signaling pathway (79). Vitamin D-regulated miRNAs are implicated 
in MAFLD pathogenesis, though more research is needed (80). It also 
exhibits antifibrotic effects by countering TGF-β signaling in hepatic 
stellate cells (81).

Contrastingly, some studies have found no correlation between 
plasma vitamin D levels and insulin resistance, hepatic fat 

FIGURE 1

Mechanisms of action for the effect of micronutrients. Replenishment of deficient micronutrients plays a pivotal role in reducing the risk and 
progression of metabolic (dysfunction)-associated fatty liver disease (MAFLD). By restoring these essential nutrients to optimal levels, there is a marked 
improvement in insulin sensitivity, a reduction in lipotoxicity, a decrease in inflammatory mediators, and a regulation of the intestinal microbiota. These 
changes collectively contribute to slowing the progression from metabolic (dysfunction)-associated fatty liver (MAFL) to metabolic (dysfunction)-
associated steatohepatitis, fibrosis, and potentially hepatocellular carcinoma.
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TABLE 1 Effect of vitamins and minerals in MAFLD.

Author (reference) Treatment and control Experimental model Treatment dosage and administration Findings

Tang et al. (26) Treatment: retinoic acid receptor β2 agonist(AC261066)

Negative controls:-

Positive controls:-

High-fat diet (HFD) induced wild-

type (wt) male C57BL/6 mice mouse

3 mg/100 mL drinking water, oral for 2 months  • ↓mRNA increases inPklr, Fasn, Thrsp., 

and Chchd6

 • ↓transcript and protein levels of KHK

Trasino et al. (27) Treatment: retinoic acid receptor β2 agonist(AC261066)

Negative control: RARγ agonist (CD1530)

Positive control: no treatment

High-fat diet (HFD) induced Wild 

type (wt) male C57BL/6 mice

15 IU/vitamin A-acetate/gram, oral for 3 months  • ↓hepatic steatosis and oxidative stress

 • ↓expression of 

pro-inflammatory mediators

 • ↓hepatic stellate cell (HSC) activation

 • ↓kupffer TGF-β1 expression

Zarei et al. (28) Treatment: atRA

Negative control:-

Positive control: -

High-fat diet (HFD) induced male 

New Zealand rabbits

5 mg/kg/day, oral for 30 days  • ↓liver steatosis

 • ↓liver oxidative agents

 • ↑total antioxidant capacity

Kim et al. (29) Treatment: atRA

Negative control: -

Positive control: -

WD-fed C57BL/6 mice Corn oil containing atRA (15 mg/kg/day), oral for 7 days  • ↓adiposity in brown fat

Berry et al. (30) Treatment: atRA

Negative control: -

Positive control: -

High-fat/high-sucrose diet 

C57BL/6Ntac mice

Subcutaneously implanted with an RA pellet or mock 

pelleted by using a 10-gauge precision trochar

 • ↑weight loss

 • ↑insulin responsiveness

Tsuchiya et al. (31) Treatment: ATRA

Negative control: -

Positive control:-

High-fat, high-fructose diet-induced 

C57BL/6 J mice

50 mg/kg ATRA, oral for 4 weeks  • ↓insulin resistance

Li et al. (18) Treatment: 1,25

(15)2D3

Negative control: -

Positive control: -

High-fat diet (HFD) induced male 

C57BL/6 mice

2.5 ng/g, three times per week for 4 weeks, i.p.  • ↓liver inflammation

 • regulated lipid metabolism

Dabbaghmanesh et al. (32) Treatment: cholecalciferol & calcitriol

Negative control: placebo

Positive control: no treatment

MAFLD patient 50,000 U vitamin D3 pearl/week for 3 months, oral 

or0.25 mg calcitriol pearl/day for 3 months, oral

 • ↓serumalkaline phosphatase and GGT

Wenclewska et al. (33) Treatment: cholecalciferol

Negative control: no treatment

Positive control: no treatment

Metabolic Disorder patients 2000 International Unit (11) cholecalciferol/day oral for 

three months

 • ↓oxidative stress

 • ↓insulin resistance

 • ↑metabolic profile

El Amrousy et al. (34) Treatment: vitamin D

Negative control: placebo

Positive control: no treatment

100 children with biopsy-proven 

MAFLD

2000 IU/day orally for 6 months  • ↓hepatic steatosis

 • ↓lobular inflammation

Mosca et al. (19) Treatment: vitamin E & hydroxytyrosol

Negative control: placebo

Positive control: no treatment

Children with MAFLD 3.75 mg of hydroxytyrosol plus 5 mg of Vitamin E/day, 

oral for 16 weeks

 • ↓systemic inflammation

 • ↓oxidative stress

(Continued)
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TABLE 1 (Continued)

Author (reference) Treatment and control Experimental model Treatment dosage and administration Findings

Scorletti et al. (35) Treatment: vitamin E

Negative control: no treatment

Positive control: no treatment

MAFLD patients Not for sure  • ↓overall mortality

 • ↓risk of MAFLD

Vilar-Gomez et al. (36) Treatment: vitamin E

Negative control: no treatment

Positive control: no treatment

MASH patients 800 international units/day of vitamin E for ≥2 years  • ↑clinical outcomes

Podszun et al. (37) Treatment:vitamin E

Negative control: no treatment

Positive control: no treatment

MAFLD patients 200–800 IU/d, oral for 24 weeks  • ↓oxidative stress

Doboszewskaet al. (38) Treatment: Zinc

Negative controls: Zinc-deficient (ZnD)diet

Positive controls: Zinc-adequate (ZnA) diet

Male Sprague-Dawley rats 50 mg Zn/kg or 3 mg Zn/kg, for 4 or 6 weeks  • ↓oxidative damage

 • ↓pro-inflammatory status

Ma et al. (39) Treatment: high-iron (HI) diets

Negative controls: low-iron (LI) diets

Positive controls: -

Male db/db mice High-iron (HI) diets (1,000 mg/kg chow) or low-iron 

(LI) diets (12 mg/kg), oral for 9 weeks

 • ↑Gluconeogenesis

 • ↓Lipogenesis

 • ↑Insulin resistance

Fujiwara et al. (40) Treatment: high-iron

Negative controls: Western diet

Positive controls: Western diet + high-iron

Male F344/DuCrlCrlj rats 6% of blending iron citrate (FeC6H5O7・5H2O), oral 

for 26 weeks

 • ↑serum triglyceride and cholesterol

 • ↑hepatic inflammation

Wang et al. (41) Treatment: Se-enriched spirulina

Negative controls: normal diet with Se-enriched spirulina

Positive controls: HFD with Se-enriched spirulina

High-fat diet (HFD) induced 

C57BL/6 mice

Se content 0.45 mg/kg, oral 12 weeks  • ↓hepatic injury and insulin resistance

 • ↓fat accumulation & expression of 

lipogenic genes

Xu et al. (42) Treatment: sodium selenate,

Negative controls: -

Positive controls: -

Male APP/PS1 transgenic mice 12 μg/mL sodium selenate, oral for 2 months  • ↓insulin resistance

Zhang et al. (43) Treatment: Se

Negative controls: -

Positive controls: -

free fatty acid (FFA) induced primary 

rat hepatocytes

0.1 μM Se, cell cultivation  • ↓oxidative stress

 • ↓apoptosis

Miyataet al. (6) Treatment: Selenoneine

Negative controls: -

Positive controls: -

Fxr-null mice 0.3 mg Se/kg selenoneine-containing diet oral for 

4 months

 • ↓hepatocellular injury

 • ↓hepatic steatosis
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accumulation, or MASH severity (82–85). Similarly, randomized trials 
using vitamin D supplements for MAFLD treatment have not 
consistently shown benefits (73, 86). Polymorphisms in the Vitamin 
D receptor gene could explain the varied outcomes observed. While 
Vitamin D ameliorates liver damage in MAFLD, early expression of 
its receptor in MAFLD patients’ livers and decreased lipid 
accumulation in mice lacking this receptor gene point to its intricate 
involvement in MAFLD’s development and progression (87).

These findings highlight vitamin D’s potential in MAFLD 
treatment but also reveal its multifaceted and context-dependent 
nature. The genetics and epigenetics of MAFLD may influence vitamin 
D’s regulatory mechanisms, necessitating further research to elucidate 
these intricate relationships.

3.2.3 Vitamin E and MAFLD
Vitamin E, currently the only medication recommended by 

guidelines for treating MASH, is valued for its antioxidant and anti-
inflammatory properties (88, 89). It has been observed that patients 
with MAFLD often have reduced serum levels of both vitamin E and 
A (90). In a non-randomized, propensity score-adjusted study, a daily 
intake of 800 IU of vitamin E was associated with significant 
reductions in total mortality and hepatic decompensation in patients 
with MASH-induced bridging fibrosis and cirrhosis, both in diabetic 
and non-diabetic individuals (36). Moreover, vitamin E has been 
effective in lowering AST and ALT levels in adult patients with 
MAFLD (91). It inhibits oxidative stress, which reduces de novo 
lipogenesis (DNL) and intrahepatic triglyceride (IHTG) accumulation, 
thereby disrupting the cycle between oxidative stress and the MAFLD 
process (92). Histological improvements in MAFLD patients have also 
been noted with vitamin E treatment, demonstrating its therapeutic 
potential (92–95).

However, the effectiveness of vitamin E in altering the histological 
course of MASH in patients with Type 2 Diabetes Mellitus (T2DM) 
has not been significant (96). Additionally, its use is limited in the 
treatment of common comorbidities associated with MAFLD (96). 
While vitamin E shows promise in MAFLD treatment, its role and 
efficacy may vary depending on specific patient conditions and 
comorbidities, indicating the need for a nuanced approach in its 
clinical application.

4 Minerals and MAFLD

4.1 Minerals deficiency status in MAFLD 
patients

Mineral deficiencies are widely acknowledged as a significant 
public health issue worldwide, often leading to increased 
susceptibility to infections. By replenishing these deficient trace 
minerals to their recommended levels, we can enhance immune 
function, bolster resistance to infection, and facilitate quicker 
recovery from such illnesses. While epidemiological data on the 
connection between trace mineral deficiencies and the onset and 
advancement of MAFLD are scant, the role of inflammation as a key 
contributor to MAFLD, coupled with the dietary habits commonly 
observed in individuals with MAFLD, suggests a potential close link 
between these mineral deficiencies and the disease’s development 
and progression.

4.2 Role of minerals deficiency in the 
process of MAFLD progression

4.2.1 Major minerals
Calcium, phosphorus, and magnesium, as major minerals, play 

important roles in MAFLD. These minerals are key factors in the 
inflammatory processes related to MAFLD, participating in signaling 
mechanisms, hepatocyte injury and regeneration, and the regulation 
of inflammatory factors (62, 97–99). The intricate roles of these major 
minerals in the human body and their specific associations with 
MAFLD have been extensively discussed in other reviews (100) and 
studies (101), and thus fall outside the primary focus of this paper. 
Instead, this review concentrates on trace minerals, including zinc, 
iron, copper, and selenium, exploring their relationship with MAFLD 
and their impact on the progression and management of the disease.

4.2.2 Zinc and MAFLD
Zinc, a crucial trace element, plays vital roles in antioxidant, anti-

inflammatory, and anti-apoptotic functions in the human body (102, 
103). The risk of zinc deficiency increases with age (104). There is 
growing evidence linking zinc deficiency to the development of 
MAFLD (105, 106). In patients with biopsy-proven MAFLD, a 
J-shaped correlation exists between serum zinc levels and the severity 
of hepatic necroinflammation (107, 108). Serum zinc deficiency, 
commonly associated with oxidative stress, endoplasmic reticulum 
stress, apoptosis, and inflammation, has been noted in MAFLD mouse 
models (109, 110).

Furthermore, zinc supplementation has been shown to alleviate 
disorders in lipid and glucose metabolism caused by high-fat diets 
(111). In diet-induced MAFLD mice, zinc supplementation not only 
improves liver weight and morphology but also helps prevent hepatic 
failure (112).

Recent studies reveal zinc’s mechanisms in improving MAFLD: in 
mouse models, PLZF, relying on SIRT1, regulates hepatic lipid and 
glucose homeostasis (113). The HDAC3/β-catenin pathway promotes 
lipolysis and inhibits adipogenesis (114). ZHX2 activation of PTEN 
protects against MASH progression (115). Zinc alpha2 glycoprotein 
in hepatocytes impacts triglyceride accumulation and key gene 
expressions (116). The ADA/XO/UA pathway and caspase 3 signaling 
show potential in liver rescue (116). Zinc oxide nanoparticles in mice 
reduce hepatic steatosis via the AMPK axis (117), while the Zn2+/
MTF-1/PPARa pathway aids in reducing lipid deposition (118). These 
findings collectively highlight zinc’s multifaceted role in addressing 
various aspects of MAFLD pathogenesis and progression.

Despite that, the specific studies and recommended zinc dosages 
for clinical treatment of MAFLD still require further exploration 
and validation.

4.2.3 Iron and MAFLD
The increasingly recognized causal link between iron overload 

and the progression of MAFLD (119, 120) suggests that dietary iron 
overload may worsen inflammation and lipid metabolism disorders, 
akin to human dietary iron overload syndrome (DIOS) (40). 
Hyperferritinemia the main manifestation of disturbed iron 
homeostasis often portends more severe metabolic dysfunction and 
liver injury (121, 122). In the hypoxic intestinal environment, 
HIF-2alpha plays a crucial role in regulating iron absorption by 
affecting the DMT1 gene (123). Abnormal iron-induced hepcidin 
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release, influenced by natural genetic variants may enhance iron 
absorption (124). Additionally, excess free fatty acids (FFAs) disrupt 
hepatic iron metabolism, encouraging iron uptake via IRP1 and TfR-1 
(125). Iron overload contributes to ferroptosis, initiating inflammation 
in nonalcoholic steatohepatitis and leading to oxidative DNA damage 
(126, 127). This condition can be exacerbated by a high-fat diet, which 
aggravates lipid metabolism disorders, hepatic injury, and oxidative 
stress (128). Iron-containing extracellular vesicles from hepatocytes 
induce liver steatosis and fibrosis in mice on a Western diet, causing 
iron deficiency in hepatocytes and overload in hepatic stellate cells 
(129). The complex interaction between gut microflora and the host 
not only impacts MAFLD progression but also influences iron balance 
(130, 131). This situation results in a detrimental cycle where iron 
overload increases lipid deposition through oxidative stress-induced 
mitochondrial dysfunction and activation of the HIF1α-PPARγ 
pathway (129, 132).

While numerous studies have indicated that bloodletting to 
address iron overload can improve insulin resistance in patients with 
MAFLD and hyperferritinemia (133–135), other findings suggest that 
lowering ferritin through phlebotomy does not necessarily improve 
liver enzymes, liver fat, or insulin resistance in MAFLD patients (136). 
This discrepancy highlights the need for more detailed research to 
unravel these complex interactions and effects.

4.2.4 Copper and MAFLD
Copper, a vital cofactor in numerous physiological redox 

reactions, has a complex relationship with MAFLD. In vivo 
bioluminescence imaging has shown copper deficiency in a mouse 
model of MAFLD (137). Concurrently, both hair and hepatic copper 
concentrations in MAFLD patients are significantly lower and 
correlate with increased hepatic steatosis, MASH severity, and 
metabolite alterations (138). Limiting copper intake in mice has been 
shown to induce hepatic steatosis and insulin resistance, leading to the 
development of MAFLD (17, 139).

Research exploring the link between copper and lipid metabolism 
indicates a negative correlation (140). Restoration of intrahepatic 
copper, achieved by down-regulating copper cyanin, enhances 
lipolysis through the assembly of copper-loaded SCO1-LKB1-AMPK 
complexes, showing improvements in MAFLD conditions in mice 
(141). A case-control study found that high levels of copper 
significantly improved MAFL in males, highlighting copper’s 
protective role in MAFLD treatment (140, 142).

However, studies also point out the harmful effects of copper 
overload on lipid metabolism (143, 144) and increased MAFLD risk 
and severity (145). Moreover, there is a noticeable gap in clinical 
research exploring the relationship between copper and MAFLD, and 
the potential toxicology of copper also warrants special attention. 
Despite these complexities, the intricate link between copper and 
MAFLD presents a potential avenue for breakthroughs in 
MAFLD treatment.

4.2.5 Selenium and MAFLD
Selenium, a crucial micronutrient, plays diverse roles in the 

human body, including antioxidant activities, cancer prevention, and 
immunomodulation, thanks to its structural and enzymatic functions 
(146–148). It also has significant implications in metabolic diseases 
(149). The relationship between selenium and MAFLD is complex and 
appears to be dose-dependent (150).

Studies have shown that lower blood selenium levels are associated 
with a higher incidence of advanced liver fibrosis (151). Conversely, 
higher blood selenium levels (above ~130 μg/L) have been positively 
correlated with both MAFLD and ghrelin, indicating a dose–response 
relationship (150, 152). In experimental settings, selenium 
supplementation in MAFLD mice models has demonstrated beneficial 
effects, such as mitigating hepatic injury, reducing oxidative stress, 
lowering insulin resistance, and decreasing inflammation (6, 41, 
43, 153).

However, the use of selenium in MAFLD treatment necessitates 
careful consideration of its delicate balance between therapeutic 
efficacy and toxicity. Determining the appropriate dosage of selenium 
is critical and remains a subject of ongoing research and debate in the 
context of MAFLD treatment. This nuanced understanding of 
selenium’s role underscores the importance of precise dosing in its 
potential application as a therapeutic agent for MAFLD.

4.3 Relationship between micronutrients in 
MAFLD

While individual trace elements’ roles in MAFLD have been 
detailed, research on their complex interrelationships is scarce. Zinc 
and selenium have been linked to reduced cardiovascular risk (109), 
and Vitamin D and zinc both enhance immune function (154). 
Additionally, copper and ascorbic acid can interfere with non-heme 
iron absorption (155). These findings indicate a delicate balance 
among trace elements, crucial for maintaining overall 
body homeostasis.

5 Conclusion and outlook

In this review, we  examine recent research on the impact of 
various vitamins and trace minerals on MAFLD. Most studies suggest 
that deficiencies in vitamins and minerals negatively affect 
MAFLD. Timely and appropriate supplementation could aid in 
disease recovery or slow its progression, potentially improving patient 
prognosis. However, there are also contrasting views or skepticism 
regarding the causal link between these deficiencies and MAFLD, an 
aspect this review critically explores.

Currently, there’s no unified approach to the pharmacological 
treatment of MAFLD. Lifestyle interventions and bariatric surgery 
have shown relative effectiveness, but their success is often limited by 
patient compliance and eligibility criteria. Hence, their widespread 
application among MAFLD patients is restricted. The search for 
effective drugs targeting MAFLD’s pathogenesis continues. Vitamins 
and minerals, crucial in regulating oxidative stress, inflammation, and 
lipid metabolism, offer promising directions for MAFLD treatment. 
The need for a drug that can improve the course and prognosis of 
MAFLD, provided in the necessary amounts for normal body 
function, is urgent.

Given the complex pathophysiology of MAFLD, the effectiveness 
of single-agent treatments observed in various studies suggests that 
individualized combination regimens might be necessary for optimal 
management of MAFLD. This review seeks to shed light on these 
multifaceted approaches and the potential of vitamins and minerals 
in the treatment landscape of MAFLD.
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