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The piquin chili is a wild spice widely consumed from the South United States to 
Central America and stands out as a source of flavonoids, essential metabolites 
with antioxidant properties. The concentrations of flavonoids, carotenoids, and 
capsaicinoids vary according to regions, maturity stages, and ripening processes. 
These compounds, which are known for their health benefits and industrial 
applications, highlight the importance of identifying ideal environmental 
conditions for collecting fruits with the highest contents. Comprehensive studies 
of the piquin chili are essential for understanding its properties for the benefit of 
consumers. This approach fortifies trade, contributes to resource conservation, 
and advances cultivated chili production.
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1 Introduction

The plants synthesize phytochemical compounds as part of biosynthetic processes to 
perform ecological and physiological functions. The phytochemical compounds are perceived 
through aromas, flavors, and colors, which humans could exploit (1). The wide phytochemical 
diversity with nutraceutical potential from wild plant sources includes phenolics, alkaloids, 
terpenoids, polysaccharides, glycosides, and compounds of a peptide nature (2–4).

The consumption of nutraceutical sources from vegetal ecosystems is widely practiced across 
world cultures, showing the importance of conservation and proper management of natural 
resources (5–7). Nevertheless, consuming products with nutraceutical potential from wild 
sources must consider the differences in contents and composition compared with cultivated 
forms, which consequently affect the product quality, organoleptic, and functional characteristics, 
that are considered as influencing elements of consumer decision (8–11). It is imperative to 
perform comprehensive studies to maintain optimal production conditions for nutraceuticals, 
recreating natural processes supported by genetic improvement, analytical techniques, traditional 
practices, natural resource management, industrial process innovations, specific sustainable 
forestry production principles, and public policies for their exploitation (12).
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The piquin chili, Capsicum annuum var. glabriusculum (Dunal) 
Heiser and Pickersgill, is a wild form of Capsicum, considered the 
ancestor of anunum species, widely distributed from the southeast of 
the United States of America to northern South America, with names 
such as piquin, chile de monte, chiltepin, chiltepe, amashito, 
timpinchile, amash, chile congo, mosquito chili, kipin, and chilpaya 
(13–16). This wild resource contains nutraceutical compounds 
integrated with phenolics, alkaloids, carotenoids, and volatile 
compounds. Piquin chili fruits are regionally consumed mainly 
through direct extraction from the ecosystem (17, 18).

The piquin chili represents a food resource that provides 
nutraceutical compounds to the diet of the rural population since 
consumption is associated with customs from the chili distribution 
area, thereby highlighting the interaction of identity and culture 
(17, 19). As a wild plant, it shows wide genetic variability and 
plasticity resulting from local adaptations (20). Hence, its 
nutritional and nutraceutical composition results from genetic 
influence, the environment in which it is grown, ecological 
interactions, harvesting practices, harvesting season, and post-
harvest storage and processing (21). The research on the 
phytochemicals and nutraceutical potential of the wild forms of 
Capsicum is limited, compared with improved and commercial 
varieties of C. annuum, C. frutescens, and C. chinense that have been 
extensively studied (22–25). Although there are studies about the 
phytochemistry of piquin chili, management has yet to be archived 
to ensure the content of bioactive compounds with potential effects. 
The nutraceutical potential of piquin chili leads is influenced by 
nature and management conditions, supporting that holistic 
knowledge can reinforce future initiatives for establishing quality 
criteria for this spice focused on consumer benefits by means of 
chemical diversity, variation in contents, and evidence about 
accumulation patterns in wild and cultivated natural populations.

According to official statistics in Mexico1, the production of piquin 
chili is not as high as other varieties; however, the commercial value of 
a ton of cultivated green piquin chili is close to US$ 23,800. In 
comparison, a ton of jalapeño chili is approximately US$ 500, and a ton 
of serrano chili is approximately US$ 640. Regarding its role in the rural 
economy, it was recently highlighted that the price per kilogram of wild 
piquin chili is strongly associated with the number of fruits collected per 
day, which depends on multiple environmental factors and the season 
during which the plants are produced. For example, in April, in the 
northeastern region of Mexico, a kilogram of green wild piquin costs up 
to US$ 85. The wild piquin chili is considered a social identity resource 
where the collection is performed by the male gender given the 
remoteness and isolation of the wild piquin populations; however, the 
cleaning and selection of the fruits are carried out by women, which 
shows the relevance of the piquin chili in the territory (26).

2 The piquin is a wild source of 
nutraceuticals

The dependence on plant resources to obtain functional benefits 
lies in the knowledge acquired through generations, traditional 

1 https://nube.siap.gob.mx/cierreagricola/ (Accessed March 22, 2024).

knowledge, and seasonal use related to the productive and 
phenological cycle of plants in native, indigenous, and rural 
communities (27, 28). The consumption of wild plants, such as piquin 
chili, has a close relationship between humans and the ecosystem; for 
example, this natural resource activates the local economy due to the 
interest of people to acquire piquin plants, fruits, and derivatives such 
as spicy oils, sauces, salts, and dry milled chili. All these products 
originate in rural areas and are sold in rural and cities, where 
consumers recognize them by their flavors and pungency (29, 30). As 
a wild species, its organoleptic and phytochemical characteristics vary 
(Figure 1), causing an impact on the consumer. Although agroforestry 
or greenhouse production programs exist, few species have achieved 
the phytochemical contents associated with the characteristics 
required by the consumer. It is essential to understand the impact of 
environmental conditions on the growth, organoleptic, and functional 
characteristics of the piquin chili due to its various compounds with 
nutraceutical potential that are highly influenced by the environment 
(Table 1) (20).

3 Flavonoids

Flavonoids are specialized metabolites with a 15-carbon structural 
core called the flavone skeleton, where different chemical substitutions 
(Figure 1A) give them biofunctional and antioxidant properties. They 
are essential in the food, cosmetics, and pharmaceutical industries. 
Flavonoids can accumulate in specific organs or tissues in significant 
concentrations, which lead to identifying rich natural sources of these 
compounds (40). The presence of flavonoids in piquin chili has been 
repeatedly reported, highlighting its phytochemical potential as a 
natural source (18, 20).

The piquin chili flavonoid concentrations vary between the 
evaluated accessions. Samples collected in the areas of Valles Centrales, 
Sierra Sur, and Oaxaca Isthmus (Southern Mexico) had flavonoid 
concentration differences according to the immature and mature state, 
with 0.5 and 0.95 mg per gram of tissue, respectively, showing a 
difference close to 50% of flavonoid concentration. However, it does 
not consider the chemical diversity of total flavonoids (41). The 
mature chili peppers obtained in Sonora (Northwest of Mexico), 
analyzed through HPLC-DAD, reported piquin chili with 
0.065 ± 0.006 mg per gram in dry weight (DW) (42). Mature chili 
peppers collected in the central, coastal, plain, and southern regions 
of Tamaulipas (Northeast of Mexico) had contents between 0.24 and 
0.36 mg of quercetin equivalents per gram of tissue (20), lower than 
those reported in the Oaxaca samples (41). Among populations within 
a region, mature piquin chili fruits have flavonoid contents with 
variations that reach up to 30%. Even the content of flavonoids is 
higher than in some chili-cultivated varieties (20, 43, 44). This 
highlights the precedence of the germplasm and its ripening process 
to maximize flavonoid contents and unleash the full range of potential 
benefits associated with consuming these phytochemicals (45). In this 
regard, the variation in flavonoid contents in several chili species and 
genotypes has shown dynamic patterns, where the environmental 
conditions have been remarked as more important in the final 
contents; however, the genetic interaction, agronomical practices, and 
the direction of particular flavor by artificial selection according to 
preferences and uses should not be discarded to reach high yields 
when the purpose is harvesting chili fruits rich in flavonoids (22, 46).
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4 Carotenoids

Carotenoids are lipophilic compounds produced by plants that 
protect photosynthetic systems from light excess and are precursors 
of phytohormones. The carotenoids have a 40-carbon skeleton derived 
from repetitive condensation of isoprene units (Figure 1B) and have 
been considered of nutraceutical interest against complications 
associated with oxidative stress (47). For the chili peppers, carotenoids 
contribute to the coloration of the mature states, which is evident as 
the chlorophyll degrades (48, 49). In this regard, it is worth 
highlighting the marked influence of environmental conditions and 
the genetics of chili peppers regarding the accumulation of 
carotenoids, which have been regularly identified in various chili 
genotypes, where specific accumulation patterns have been observed 
(50–52). As an example, in the piquin chili, the carotenoid content has 
been reported as contrasting between the immature (green fruit) and 
mature states (red fruit), in addition to being undetectable in the first 
state and reaching considerable levels when ripe (33).

However, its accumulation and degradation patterns are highly 
dynamic at a molecular level, which results in different amounts 
and a wide chemical diversity of carotenoids and related 
compounds during the ripening process (51). While it is suggested 
that the maximum accumulation of some carotenoids is reached 
when the chilies mature, this process is responsible for the bright 
and attractive tones of the chilis (53). Mature chili is recommended 
for use due to its accumulation of some carotenoids and its 
increased antioxidant property, which is associated with its 

industrial uses and consumption to obtain the greatest 
nutraceutical effects (32). The Cumpas and Sahuaripa chilies, 
ecotypes of piquin chili, showed levels with significant differences 
of β-carotene on mature chilies, with 6.03 and 5.70 mg per gram 
for DW, respectively. Both chilies were from Sonora State 
(northwest of Mexico) and were grown under greenhouse 
conditions (34). Two ecotypes of piquin chili from Tabasco State 
(southeastern Mexico) showed significant differences between 
carotenoid contents in ripe and unripe fruits. Mature fruits show 
higher carotenoid content and are subjected to various levels of 
shading, reaching up to 28.80 mg g−1 of DW in the dry season, in 
an open sky system for the Garbanzo genotype and 23.71 mg g−1 of 
DW in the rainy season, in an open sky system for the Amashito 
genotype (50). The same research shows a difference in carotenoid 
levels in mature chili peppers, and these differ according to the 
shading conditions, with higher levels when the plants are exposed 
to natural light in the open field system and lower levels when 
shade conditions are increased. The carotenoid levels were different 
between seasons and humidity. The amount of pigment, associated 
mainly with carotenoids, present shows a wide heterogeneity 
between ecotypes of piquin chili from a wide area sampled in 
Tamaulipas (northeast of Mexico) (20). Thus, the levels of 
carotenoids present in piquin chili are highly influenced by 
phenological, genotypic, and environmental conditions, which 
increase the complexity of the consensus under which this wild 
plant can have a specific content and stability according to its 
growth conditions. Although this could be  considered a 

FIGURE 1

Chemical structures of the principal chili compounds. (A) Capsaicin (PubChem CID: 1548943); (B) α and β-carotenes (PubChem CID: 6419725 and 
5280489); (C) flavonoid structure (PubChem CID: 73981632); blue squares represent the functional group for (D) alcohol (PubChem CID: 5780) and 
(E) ester (PubChem CID: 17758570). All chemical structures were reproduced from PubChem.
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disadvantage for intensive or industrial use, it represents an 
opportunity to strengthen local uses, which take advantage of this 
heterogeneity to increase added value for local consumers.

5 Capsaicinoids

Capsaicinoids (CAPs) are compounds synthesized mainly in the 
pericarp and placental tissue of chili fruits (Capsicum) and are 
considered within the group of alkaloids. This biosynthesis is highly 
controlled at a molecular level (54, 55). Capsicum plants synthesize 
them as a defensive mechanism against herbivores and 
phytopathogens. The CAPs show low polarity and are structurally 
based on a vanilloid group (an aromatic ring with a hydroxyl and a 
methyl group), together with a long hydrocarbon chain and the amide 
group (Figure 1C) (56, 57). The study of CAPs aims to optimize the 
content of chili fruits, especially the capsaicin responsible for chili’s 
heat and pungency. Effects such as antitumor, antiangiogenic, 
antineoplastic, thermogenic, and antimicrobial have been related to 
CAPs (57, 58). It also relates to industrial applications such as 
functional coatings, clinical applications, food uses, and 
biotechnological developments (59, 60). Therefore, several 
investigations address ideal conditions, biosynthesis, and extraction 

methods with optimal yields, low prices, high purity, and 
concentration to meet market demands. In this regard, the 
accumulation of capsaicinoids in chili fruits depends on the growing 
conditions, climate, genotype, and agronomic management (61, 62). 
The biosynthesis of capsaicinoids presents a highly dynamic genetic 
activity during fruit development, and there is evidence that supports 
changes in pungency driven during the domestication process in the 
case of C. annuum, being different between wild types and cultivated 
relatives (63). The accumulation of capsaicinoids in C. annum var. 
annum has been characterized, indicating that approximately 90 days 
after anthesis, the fruits reached the highest content. This information 
highlights the appropriate time for harvesting chili fruits when 
capsaicinoids are the compounds of interest (31).

For piquin chili, the CAP content evaluations present a wide 
variation. The content of capsaicin and dihydrocapsaicin under wild 
conditions is not affected once the fruit has reached its size of 
commercial interest, being statistically similar between mature and 
immature fruits (35); however, there is evidence that levels of 
capsaicinoids could change, the highest level being discovered in mature 
fruits and when they are cultivated under greenhouse conditions (36). 
The proportion of capsaicin and dihydrocapsaicin in 16 wild native 
populations presented similar levels, but there was observed variation 
in capsaicinoids per population sample (20). Díaz-Sánchez et al. (36) 

TABLE 1 The main phytochemicals identified in piquin chili.

Phytochemical Line, ecotype, and 
genotype

Content range Variation 
source

Reference

Flavonoids Chiltepín Northwest Mexico 4.24 ± 0.10 mg/g DW Nr Hayano-Kanashiro et al. (14)

Amashito

Garbanzo

13.93–20.56 mg/g DW

6.15–10.32 mg/g DW

Phe De la Cruz-Ricardez et al. (31)

Cumpas

Sahuaripa

2.34 ± 0.14–4.14 ± 1.0 mg CE/g DW

1.32 ± 0.17–3.53 ± 1.3 mg CE/g DW

Gr, Phe Vázquez-Flores et al. (32)

Amashito

Garbanzo

9.01–11.56 mg QE/g DW

5.06–9.62 mg QE/g DW

Gn, Na De la Cruz-Ricardez et al. (33)

1S

15 Ct, 14 Ct

0.24, 0.22

0.36, 0.70

Gr Moreno-Ramírez et al. (20)

Carotenoids Cumpas

Sahuaripa

1.60 ± 0.02–6.03 ± 0.08 mgβCE/g DW

0.66 ± 0.002–5.70 ± 0.8 mgβCE/g DW

Gr, Phe Vazquez-Flores et al. (34)

Chiltepín Northwest Mexico 12.81 ± 0.7–33.23 ± 0.3 Phe Hayano-Kanashiro et al. (14)

Amashito

Garbanzo

≈5.0–≈10.0 mg/g DW

≈2.0–≈15.0 mg/g DW

Phe De la Cruz-Ricardez et al. (35)

Amashito

Garbanzo

5.41–23.71 mg/g DW

3.71–28.8 mg/g DW

Phe, Ag De la Cruz-Ricardez et al. (33)

Capsaicinoids III-1, I-3 13.7 ± 0.1, 27.2 ± 0.3 mg/g DW Na Moreno-Ramírez et al. (18)

Pue 01, Nay 02 135 ± 19 μg/ml, 1,379 ± 95 μg/ml Na Díaz-Sánchez et al. (36)

Oax10, Ags01 301 ± 34 μg/ml, 3,719 ± 101 μg/ml Gn Díaz-Sánchez et al. (36)

San Fernando 0.67 ± 0.37–3.13 ± 0.33 mg/g DW Ag Valiente-Banuet and Gutiérrez-Ochoa (37)

Cumpas

Sahuaripa

1.68 ± 01–8.73 ± 0.06 mg/g DW

1.41 ± 0.01–8.59 ± 0.04 mg/g DW

Gr, Phe Vazquez-Flores et al. (34)

G8 0.56–1.06 mg/g FW Phe Morales-Fernández et al. (38)

Chiltepín (Querétaro, 

México)

216.22 ± 0.68–1249.28 ± 12.54 mg/g DW Phe Fayos et al. (39)

Phe, phenological state variation; Na, natural variation; Ag, variation due to agronomic management; Gn, genotype variation; Gr, variation for geographic origin; Nr, not reported; DW, dry 
weight; FW, fresh weight; CE, catechin equivalent; QE, quercetin equivalent; mgβCE, β-carotene equivalent.
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examined 31 accessions of piquin chili that are grown under greenhouse 
conditions with similar capsaicin and dihydrocapsaicin ratios. 
Variations in the total content of capsaicinoids were shown, with the 
lowest value being 301 ± 34 in the Oax10 accession and the maximum 
value being 3,719 ± 101 μg/ml in Ags01 (36). During the process of fruit 
formation and ripening, a high classification of both capsaicinoids has 
been established, which indicates that these proportions are maintained 
even when the ripening time varies (39). The number of capsaicinoids 
could be maintained without variation when the growth conditions are 
not so drastic or long-lasting as to impact the accumulation of these 
metabolites in the fruit (64). However, the content of total capsaicinoids 
has been reported with differences according to the degree of ripening 
under controlled conditions, with 1.41 and 1.68 mg g−1 DW in the 
immature state and 8.59–8.73 mg g−1 DW in mature fruits of the 
Sahuaripa and Cumpas lines, respectively (34). The analysis of ripe fruits 
of wild piquin chilis from Tamaulipas showed that the contents of total 
capsaicinoids were statistically different and showed differences among 
ecotypes in the same municipality (18, 65). The above result suggests 
that diverse environmental factors may influence the final accumulation 
of total capsaicinoids more than other factors. Due to this, it is suggested 
that knowledge of ideal environmental conditions could support the 
selection of sites with the best characteristics for collecting fruits with 
the highest CAP contents (65) for diverse purposes, including their 
biosynthesis, their ecophysiological role, and the promotion of regional 
or international marketing. Recently, it was demonstrated that the 
accumulation of CAPs in piquin chili also follows a pattern similar to 
other chili varieties, which could help in breeding programs to obtain 
more pungent chilis and to establish times for collecting fruits with 
optimal contents (66).

All previous studies support the relevance of understanding the 
impact of growing conditions and genetic components, which 
influence piquin fruits with specific phytochemical contents. Although 
some initiatives have been made to stimulate agroforestry and 
greenhouse production, the yields and qualities are hard to emulate, 
mainly due to the impact of genetic diversity and multifactorial 
environmental influences; hence, the more we learn, the closer we get 
close to improving the management of this species.

6 Volatile compounds

In chili, this category includes a heterogeneous group of chemical 
compounds (Figures 1D,E) responsible for aroma and partial flavor, 
which influences the organoleptic perceptions of consumers and 
criteria for specific uses (67, 68). They are organic, low molecular 
weight compounds, and volatile at environmental temperatures (69). 
In Capsicum species, several chemical groups have been reported, 
including aldehydes, organic acids, esters, lipoxygenase cleavage 
products, nitrogen-containing compounds, hydrocarbons, alcohols, 
ketones, furans, terpenoids, phenolics, and miscellaneous compounds, 
highlighting the complexity of volatile compounds in these fruits. 
However, not all compounds contribute to the aroma, and chemical 
diversity fluctuates between species, varieties, and phenology (68, 70). 
Piquin chili is also preferred by consumers due to its aromatic traits, 
especially in the green stage, with fresh, fruity, and herbal notes, which 
are associated with its complex chemical array. Piquin chili includes 
up to 140 compounds, among which esters, alcohols, aldehydes, 
ketones, terpenes, organic acids, and hydrocarbons were detected (71). 

This wild chili shares some volatile compounds responsible for fruity 
notes with C. chinense Jacq. cv. Habanero and C. frutescens L. (72, 73). 
The volatile compounds in piquin chili change during the ripening 
process, with the high diversity and contents in the green stage 
decreasing as it matures in the case of esters; however, mature fruit 
shows slightly higher levels of other compounds. This suggests that 
flavor and aroma are different, influencing consumer preferences for 
uses depending on their ripening stages (71).

All this evidence supports the potential of the piquin chili to 
provide phytochemicals associated with benefits for human health; 
however, its consumption is driven by cultural issues linked to 
traditional uses and forms of preparation that influence the intake of 
these compounds. In this regard, the purpose of the consumption and 
the traditional use must be considered and linked with all information 
about the chemical composition in different stages. As mentioned 
above, the phytochemical groups explored in this study showed great 
variation as a result of multifactorial influences (genetic background, 
highly dynamic regulation of biosynthesis, environmental effects, and 
agronomic issues), which makes it challenging to designate ideal 
conditions for collecting chili fruits from the wild. Nevertheless, 
cultivated piquin chili was shown as a better strategy to produce fruits 
with more stable phytochemical contents to benefit consumers and 
also with the potential to reduce the extraction pressure in natural 
populations. Therefore, developing strategies to improve agronomic 
management to increase the availability of chili with better 
phytochemical contents derived from optimal growing conditions and 
versatile genotypes is needed.

7 Conclusion

Since piquin chili is a wild spice obtained from natural populations, 
and in some cases with incipient agronomic management, holistic 
studies of the piquin chili should be  considered to understand the 
factors that affect the biosynthesis of the compounds responsible for the 
organoleptic properties and bioactive components to guarantee the 
ideal contents for the benefit of the consumer, which will strengthen its 
trade at a local and international level, in addition to promoting the 
conservation of this resource. This requires genetic knowledge, 
agronomic knowledge, and technological improvements focused on the 
integrative management of piquin. Piquin chili is not only considered 
for its commercial or nutraceutical value but also for its holistic 
knowledge relevant to being the ancestor of many cultivated varieties of 
commercial chili peppers, making it a basis for understanding and 
improving the production of such varieties. On the other hand, piquin 
domestication focuses on obtaining lines that satisfy consumers or 
market requirements in specific ways to reduce extraction pressure on 
natural populations. However, what highlights its significance is the 
relationship since its recollection and exploitation as a wild resource, 
linked to customs, regional uses, and biocultural factors.
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